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Abstract: The monitoring and supervision of batch Saccharomyces cerevisiae cultivations 

are presented by ultrasonic velocity measurements. The measurements are performed in a 

by-pass to reduce the influence of bubbles. Using these signals the typical phases of such 

cultivations can be identified. Applying a multi-linear regression model the ultrasonic veloc-

ity can be estimated by the biomass, the glucose and the ethanol concentration with a mean 

estimation error of 1.6 m/s. The multi-linear regression model has also been used to predict 

one of the three process variables by the other two and the ultrasonic velocity. Here the 

mean error of prediction is 0.6 g/L, 2.3 g/L and 1.5 g/L for biomass, glucose and ethanol 

concentration respectively. Using a Kalman filter theses variables have been estimated with 

mean errors of 0.6 g/L, 1.8 g/L and 1.6 g/L.  
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Introduction 
In bioprocess engineering it is still a problem, that important variables can not be measured 

on-line [7]. For the analysis of the performance of bioreactors, measurements are fundamental 

[4]. Therefore, new measurement systems are still required. An alternative are software sen-

sors, which can also be used for elucidation of a bioprocess state and behaviour. State observ-

ers are a type of such software sensors. With an observer information can be gained even 

about non measurable variables of a process. Observers predict these variables by using 

mathematical models as well as data from measured variables. The on-line calculation of the 

non measurable variables is performed by the integration of the general state observer equa-

tions. Due to different optimization criteria during calculation of the variables different ob-

servers like the (extended) Luenberger or Kalman observer have been realized successfully 

[1].  

 

Another type of software sensors based more on black box models like artificial neuronal 

networks, multi-linear regression or principal component regression. Here, the model struc-
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ture and equation has no inherently knowledge about the process. The data of on-line meas-

ured process variables and sometimes also their historic data form pattern, which are used by 

these models to determine the model structure as well as their parameter values. However, 

these data driven methods need a lot of measurement data from different process runs to build 

the model reliably. Most often the prediction ability can get lost, if process conditions are 

changed. If the measured values are highly correlated themselves, then principal component 

analysis is applied, for data transformation and reduction. The data transformation bases on a 

variance analysis and creates so called latent variables, which are orthogonal. The latent vari-

ables, whose significance has to be determined by special criteria, are then used as input pat-

tern for artificial neuronal networks or for a multi-linear regression model to predict the non 

measurable variables.  

 

These two different kinds of software sensors are also used together as a hybrid model or grey 

box model. The process knowledge is used to develop a mechanistic model whose unknown 

relations, such as how a kinetic expression depends on specific variables, are modelled by any 

black box model. These types of models gain more and more significance, which will still in-

crease. Such a grey model for the evaluation of ultrasonic measurements is presented by 

Becker et al. [2]. The model uses the velocity measurements to determine the density of beer 

during fermentation. The measurement is performed outside the reactor tank. They pointed 

out, that for every sort of beer and every tank the geometry parameters have to be clarified. 

Resa et al. [5] presented an analysis of the density and the ultrasonic velocity changes during 

the alcoholic fermentation of several aqueous mixtures. They concluded that ultrasonic tech-

niques are well suited to monitor fermentation processes, but the influence of carbon dioxide 

has to be investigated further. An overview of the application of ultrasonic sensors in the 

process industry is presented by Hauptmann et al. [3].  

 

The goal of this investigation is the analysis of ultrasonic signals for the supervision and 

monitoring of Saccharomyces cerevisiae cultivations. Ultrasonic signals depend on several 

bioprocess variables, such as biomass, glucose and ethanol concentration but also on further 

variables such as bubbles, pressure and temperature. This multivariate dependence makes the 

evaluation of the measurement difficult. Here the supervision by ultrasonic velocity meas-

urements of the yeast cultivation of Saccharomyces cerevisiae is investigated by the predic-

tion of biomass, glucose and ethanol concentration.  
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Material and Methods 
1. The reactor and measurements 

The ultrasonic measurements have been carried out at a cultivation of Saccharomyces cere-

visiae in a 1.5 L bioreactor. As medium the Schatzmann medium [6] supplemented with glu-

cose was used. Four different cultivations have been performed in batch mode with different 

start glucose concentrations of 33 g/L, 32 g/L, 30 g/L and 9 g/L, which will be referenced as 

cultivation A, B, C, and D respectively. The temperature was controlled at 30°C, the pH at 5.5 

and the stirrer speed at 1000 rpm. CO2 concentrations were measured on-line; for off-line glu-

cose measurements as well as for biomass and ethanol concentration determination samples of 

about 10 mL were taken roughly every 1.5 hours. To prevent metabolic activity of the cells in 

the sample taken, they were cooled down in ice water immediately. Glucose concentration 

was measured using the Yellow Springs Analyzer (Yellow Springs Instruments, USA). Etha-

nol has been determined by the gas chromatograph Shimadzu GC-14B (Shimadzu, Germany). 

Fig. 1 presents the ultrasonic measurement system (US2100, IFAC, Barleben, Germany) used 

for supervision of the cultivation. As can be seen the measurement system is connected to the 

reactor in a bypass. A valve was used to stop the flow of culture broth in the measurement 

chamber to reduce the influence of bubbles on the ultrasonic velocity.  

 

2. The software sensors 

As observer the continuous-discrete extended Kalman filter was used to predict the concentra-

tions of biomass, glucose and ethanol. The model (state equations) considers the cultivation of 

the yeast cells in an ideal stirred tank reactor in batch mode, where the typical diauxic growth 

is described by two Monod models with respect to glucose and ethanol as the limiting sub-

strate. During the oxido-reductive growth on glucose ethanol is produced. If all glucose has 

been consumed, the second phase starts in which ethanol is consumed for biomass production. 

This behaviour can be described by the following equations:  
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Fig. 1 The ultrasonic measurement system connected to the bioreactor by using a by-pass. 

 

Here X is the biomass, t the time, max
Sµ  the maximal specific growth rate of the Monod model 

with respect to the substrate glucose S, KS the corresponding Monod constant, max
Eµ  the 

maximal specific growth rate of the Monod model with respect to the substrate ethanol E, KE 

is the corresponding Monod constant, YXS is the yield factor of biomass with respect to glu-

cose, YES is the yield factor of ethanol with respect to glucose and YXE is the yield factor of 

biomass with respect to ethanol.  

 

For the numerical integration of the differential equations the 4th order Runge-Kutta method 

has been applied. As a measurement model for the Kalman filter the following equation has 

been applied:  

EcScXcvv EsxUS +++= 0                (4) 
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Here vUS is the ultrasonic velocity, v0 is the constant factor of the multi-linear regression 

model, and cX, cS, and cE are the regression coefficient with respect to biomass, the substrate 

glucose and ethanol, respectively. The continuous-discrete extended Kalman filter was im-

plemented by using Borland Delphi (Version 4).  

 

For the calculation of the mean error of prediction the following equation is used:  
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Here MEPx is the mean error of prediction with respect to the variable x, N the number of 

measurements of the variable x, m
ix  the ith measurement of x, and ix̂  is the corresponding es-

timated value.  

 

Results 
The ultrasonic measurement system has been applied during several cultivations. A typical 

signal of the cyclic measurement mode, which has been used throughout all experiments, can 

be seen in Fig. 2. After the flow in the measurement chamber has been stopped (marked by A 

in the Figure) the ultrasonic velocity decreases from vUS=1532 m/s to vUS=1520 m/s. At the 

same time also the temperature in the measurement chamber was decreasing for about ∆T=1 

°C. This temperature change influences also the ultrasonic velocity. A temperature difference 

of 1 °C will cause a decrease in ultrasonic velocity by roughly ∆vUS=2 m/s. However, the 

used ultrasonic measurement system compensates such temperature changes by itself auto-

matically. Therefore the change in the ultrasonic velocity ∆vUS=12 m/s is mainly caused by 

the bubbles, which are leaving the measurement regime after the flow has stopped. The stop 

of flow has been performed for just 40 s, so that the residence time of the cells in the by-pass 

was not too high and therefore the oxygen limitation not too long.  
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Fig. 2 The ultrasonic measurement signals during flow and stop-flow phases 

 

In Fig. 3 all ultrasonic measurements of one batch cultivation are presented compared to the 

carbon dioxide concentration in the exhaust gas. One can clearly distinguish the ultrasonic 

measurements during the flow phase (higher values) and the stop-flow phase (lower values). 

The typical three phases of such a cultivation can be seen in the ultrasonic measurements. 

During the consumption of glucose and the ethanol production phase until 9 h cultivation time 

(Fig. 4), the ultrasonic velocity is almost constant. Here the decrease of the velocity due to 

decreasing glucose concentration is compensated by the increase of the velocity due to in-

creasing biomass and ethanol concentration. During the ethanol consumption phase the de-

crease of the ultrasonic velocity can not be compensated by the biomass production and the 

values slowly decrease. Immediately after all ethanol is consumed the third phase starts and 

the cells begin to metabolize acetate, here the velocity rises sharply.  
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Fig. 3 The ultrasonic velocity and the carbon dioxide concentration during the  

Saccharomyces cerevisiae cultivation A 
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Fig. 4 Off-line measurements of biomass, glucose and ethanol during the cultivation 

of Saccharomyces cerevisiae B 
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To evaluate the ultrasonic measurements a multi-linear regression model was calculated from 

equation (4) by using the measurements from biomass, glucose and ethanol. However, due to 

the fact that not many off-line measurements have been available and to reduce the measure-

ment noise the measurement values were not used directly. Instead simulated values have 

been applied, which were obtained from the bioprocess model (1) – (3), whose parameters 

were determined by the measurements of cultivation A. The higher number of values im-

proved the regression model significantly. The simulated process variables as well as its cor-

responding measurements are presented in Fig. 5. The obtained regression coefficients are as 

follows: v0=1457.6 m/s, cX=5.7 mL/sg, cS=2.0 mL/sg, cE=2.7 mL/sg. The multi-linear regres-

sion model can be used to predict the ultrasonic measurements of new process runs. The re-

sults are presented in Fig. 6 for the cultivation B. Here the estimated velocity is calculated by 

using simulated values of the process variables. The mean error of prediction is MEPus=1.6 

m/s.  
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Fig. 5 Simulated and measured bioprocess variables of the Saccharomyces cerevisiae  

cultivation B (the parameter estimation of the model has been performed with measurements 

of process run A) 
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Fig. 6 Measured and predicted ultrasonic velocity of the  

Saccharomyces cerevisiae cultivation B 

The multi-linear regression model can also be used to predict one of the three process vari-

ables by using the simulated values of the other two as well as the ultrasonic measurements. 

In Fig. 7 the predicted process variables as well as the corresponding simulated variables are 

presented. As one can see, the simulated as well as the estimated values fit quite well. The 

mean error of prediction with respect to the off-line measurements for the process variables 

are MEPX=0.7 g/L for biomass, MEPS=5.1 g/L for glucose and MEPE=1.8 g/L for ethanol es-

timation. In Table 1 the mean errors of prediction of all cultivations are presented.  

 

Table 1 Mean error of prediction off the bioprocess variables calculated with the multi-linear 

regression model, ultrasonic measurements and the corresponding process variables 

Cultivation Purpose MEPX [g/L] MEPS [g/L] MEPE [g/L] 

A model building 0.3 0.7 0.6 

B model validation 0.7 5.1 1.8 

C model validation 0.6 1.1 1.8 

D model validation 0.6 0.7 0.8 

Mean value of model validation 0.6 2.3 1.5 
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Fig. 7 Off-line measurement values of the process variables, its prediction using the multi-

linear regression model as well as simulated values of  

 a Saccharomyces cerevisiae cultivation B 

 

To improve the estimation of the bioprocess variables by using the ultrasonic velocity meas-

urements a Kalman filter was applied. As process model the equation (1) – (3) are used, as 

measurement model the equation (4) was applied. The measurement data for the cultivation A 

have been used to calculate the parameters of the process model. During simulations the pa-

rameters of the Kalman filter were determined. The parameter values are presented in Table 2. 

 

The off-line measurements and the simulated data of cultivation A can be seen in Fig. 8. Fig. 

9 presents off-line measurement and estimated values from the process variables of cultiva-

tion B. The mean errors of estimation for the process variables of all cultivations are pre-

sented in Table 3.  
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Table 2 The determined parameters of the 

process model and the Kalman filter 

Parameter Value 
max
Sµ  [1/h] 0.3 

max
Eµ  [1/h] 0.06 

S
mK  [g/L] 0.4 
E
mK  [1/h] 0.005 

XSY  0.12 

ESY  0.4 

XEY  3.6 
R [m²/s²] 0.17 

Q [1,1] [g²/L²s] 0.00001 
Q [2,2] [g²/L²s] 0.000085 
Q [3,3] [g²/L²s] 0.0001 
[ ],
i j

Q i j
≠

 [g²/L²s] 0 
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Fig. 8 Measurement data and predicted data by the Kalman filter of cultivation A 
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Table 3 The mean errors of prediction by the Kalman filter 

Cultivation Purpose MEPX [g/L] MEPS [g/L] MEPE [g/L] 
A model building 0.3 0.5 0.6 
B model validation 0.6 1.5 2.0 
C model validation 0.7 3.8 2.0 
D model validation 0.6 0.2 0.8 

Mean value of model validation 0.6 1.8 1.6 
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Fig. 9 Measurement data and predicted data by the Kalman filter of cultivation B 

 

Discussion 
The measurements presented show, that the ultrasonic measurements can be used to identify 

the different phases of the Saccharomyces cerevisiae cultivation. During the glucose phase 

the velocity signals were almost constant, after glucose depletion the signals began to de-

crease. About 13 m/s the velocity was reduced during ethanol consumption. When all the 

ethanol is consumed, a skip in the measurements can be recognised, which indicate the start 

of using acetate as substrate. Therefore, by the ultrasonic measurements themselves the dif-

ferent phases of the cultivation can be identified.  

 

The evaluation of ultrasonic velocity measurements is presented by a multi-linear regression 

model. Here the ultrasonic signals can be used to predict one of the three bioprocess variables 

biomass, glucose and ethanol concentration, if the other two variables are known. The errors 
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are acceptable; however measurement errors of the two process variables will directly influ-

ence the prediction quality.  

If no further measurements are available, then extra process information must be used such as 

process information in form of a Kalman filter. Here all three variables can be predicted. But 

as typical for the Kalman filter, it depends heavily on the quality of the mathematical model 

behind the Kalman filter. If the model is not valid, the estimation will be wrong. Therefore, its 

application is restricted to cultivations, for which a precise model is available.  

 

Conclusion 
The investigation shows that valuable information about the yeast cultivation can be obtained 

by the ultrasonic velocity measurements. Using the multi-linear regression model by itself 

important bioprocess variables can be determined; however other measurements are required. 

A Kalman filter enables the prediction of biomass, glucose and ethanol concentration simul-

taneously, without any further measurement and is, therefore, top quality.  
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