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Abstract: The well-known global biotechnological models are non-linear and non-

stationary. In addition the process variables are difficult to measure, the model parameters 

are time varying, the measurement noise and measurement delay increase the control 

problems, etc. One possible way to solve some of these problems is to determine the most 

simple and easy for use equivalent models.  The differential geometric approach [DGA] and 

especially the exact linearization permit an easy application of the optimal control. The 

approach and its application in the control of the biotechnological process are discussed in 

the paper. The optimization technique is used for fed-batch and continuos biotechnological 

processes when the specific growth rate is described by the Monod kinetics.   

Keywords: Biotechnological process, Exact linearization, Pontryagin maximum principle, 

Brunovsky normal form. 
 

Introduction 
The control systems are already implemented in modern bioreactors. From biotechnological 

point of view the straightforward way of improving the economics is to invest in process 

optimization and control. 
 

The fermentation processes are complex ones and the well-known biotechnological models 

are non-linear and non-stationary. They are attractive and difficult objects for control, 

particularly when for the control variable is accepted the dilution rate. Many mathematical 

models have been proposed but just few have been used successfully because of the 

peculiarities of the bioprocesses. The conventional linear systems of control and the 

conventional control methods are used extensively but not in all cases with success [10, 11, 

13]. In addition the process variables are difficult to measure and the model parameters are 

time varying. The measurement noise and the parameters identification delay increase the 

control problems. The realization of the biotechnological processes for production needs is 
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impossible without automatic measurement and control. Any real control scheme must take 

these factors into consideration. Control design methodologies, which take into accounts the 

robustness properties of the control design, appear highly attractive for control of 

biotechnological process. Consequently the elaboration and the design of new control systems 

in the field of biotechnology is an open automation problem. 
 

The mentioned above determines the biotechnological systems and controls like a specific 

domain of investigations with specific problems and tasks. Very promising in this field is the 

exact linearization approach that based on the DGA and the GS algorithm [4]. Such approach 

permits successful utilization of the maximum principle for the determination of the optimal 

control [1, 2, 3, 4]. 
 

Problem statement 
The aim of the paper is to demonstrate the possibilities of an integral approach for control 

determination that include the DGA exact linearization and the Pontryagin maximum 

principle. 
 

Mathematical models – continuous process 
The continuous biotechnological process is a continuously operated bioreactor with one 

substrate in the feed. The bacterial biomass consumes the substrate to produce more biomass, 

and the biomass is harvested as the desired end product.  The state variables are the biomass 

(bacterial cell mass) and the substrate concentrations in the bioreactor as a function of the 

time. The modelling approach in [11, 12, 13, 14] is analysed as a feasible base for control 

design. In this model Stephanopoulos and San introduced a state variable (colour noise) to aid 

the convergence of the specific growth rate in the model. After linearization the linear model 

was not controllable, that is why Wang and all proposed a modification of the dynamic model 

for the specific growth rate in which are included the maximum growth rate, the Mihaelis-

Menten constant and a white noise process. The so defined model is: 

 

(1) 
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-S is the substrate concentration,  

-µ is the specific growth rate, 

-Ks is a saturation coefficient (the Mihaelis-Menten constant), 

-ν is a white noise process, 

-S0 is the substrate concentration in the feed, 

-m is a constant determining the dynamic of the growth rate, 

-D is the dilution rate, 

-µm (T, pH) is the maximum growth rate  (as a function of the temperature and the acidity of 

the bioreactor medium pH), 

-y biomass yield with respect to substrate. 

This model with the third equation is an extension of the well-known Mono model.  

The system set point is given by the next expression: 

 

(2) 

 

 

where 

-X10 is the biomass concentration in the set point, 

- Se ≡ (x20) is the substrate concentration in the set point,  

-µ30 is the specific growth rate in the set point, 

-De is the dilution rate in the set point. 

The system operation conditions were fixed by the following set of values: µm=0.5 h-1, 

Ks=0.05 g.l-1, m=3, Se=0.2625 g.l-1, S0=9 g.l-1, y=0.5 g.g-1, De=0.42 h-1.  

The noise was taken 0%. The performance of the system without control is shown in Fig. 1.  

 

 

 

 

 

 

 

Fig.1 Model (1) - without control              Fig.2 Models (1) and (8) – without control 

 

e

e

e

e

SS
y

X
SK

Sµ

D

−=

+
=

=

0
10

s
m30

30

µ

µ

 

0 1 2 3 4 5 6 7
0 
1 
2 
3 
4 
5 
6 
7 

 time [h] 

X [g/l]  

S [g/l]  

 µ  

0 1 2 3 4 5 6 7 -2

-1

0

1

2

3

4

5

6

7

time [h]

X [g/l]  

 S [g/l]  

 µ  Y3 

Y1 

Y2 



Bioautomation, 2004, vol. 1, pp. 42-56 

  45

A complication is that the diffeomorphism defining the equivalent nonlinear transformation 

from the nonlinear system (1) to the Brunovsky normal linear form is non-regular in the 

equilibrium point [2, 8]. In the limits the two models (the nonlinear model and the Brunovsky 

model) converge to the equilibrium points. From computing point of view in the limits arise 

rounding problems. We escape in parts this problem, taking in account that some evaluations 

of the state vector coordinates around the set point are influenced faintly. This fact forces a 

new model determination, in which the third differential equation has a polynomial form (3) 

where c=0.42, m1=0.0286, m2=0.713  [7, 11, 13]. 

 

The next two vectors determine the affine space of the new nonlinear system. The vectors f0 

and f1 determine the appropriate linear space: 

  

 

(3) 

 

 

 

Where c, m1 and m3 are constants that determined the evaluation of the model around the set 

point (dz/dt=f0+f1.U, where U =D is the control input and z=(X,S,µ). 

 

Mathematical models – fed batch process 
The well-known non-linear model [5, 6, 11, 13] describes the fed batch process: 

 

 

(1*) 

 

 

 

 

Where F is the substrate-floating rate and Vo is the volume of the bioreactor. In the paper the 

DGA is used for the model (3) and model (1*). The DGA demonstrated in the paper is 

completely applicable for the model (1) too. The inputs of these models are the dilution rate 

and the substrate-floating rate. 
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Brunovsky normal form and exact linearization - continuos process 
There are difficulties with the linear systems. In some case of the classical linearization the 

correspondence between the biotechnological process and it linear model is lost. The reason is 

in the strong non-linearity of the models (1, 1*). In addition the optimization methods like 

Pontryagin maximum principle are difficult for direct use [3]. Here is proposed a DGA for 

exact linearization that is a consequence from a non-linear diffeomorphic transformation.  

Consider the continuous process described by the non-linear model (1). The system operation 

conditions are fixed by the following set of values: µm=0.5 h-1, Ks=0.05 g.l-1, m=3, Se=0.2625 

g.l-1, S0=9 g.l-1, y=0.5 g.g-1, De=0.42 h-1, we determined the basis of the appropriate affine 

space:  

  

 

 

 

 

 

The control input is the dilution rate D. Taking in account the common integral of the field f1 

the model (1) is transformed with the next diffeomorphic transformation: 

 

 

where z=(X,S,µ) is the state vector of model (1).  The affine model has the next basis: 

 

 

(4) 

 

 

 

 

In what follows in this paragraph the vector z=(X, S, µ) is the state vector of the model (1) and 

the vector x=(x1, x2, x3) is the state vector of the model (4). The t-differential forms 

corresponding to the model (4) defined by f0 and f1 are the next [2]: 

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
−

−
=

⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

−
+

−=
0

m

1
01

3

0 SS
X

)x
SK

Sm(

X
y

X

S

ff

µµ

µ

µ

µ=
−

=

=

3

0
2

1

),tionTransforma(,

x
SS

Xx

Xx

K



Bioautomation, 2004, vol. 1, pp. 42-56 

  47

Vy

yy

yy

=

=

=

3

32

21

.

.

.

 

(5) 

 

 

 

 

According the denotations and the notions in [2] the dual co-distribution (dual vector space) 

range is: 

(6) 

The set K0={w1, w2}, K1={w1} and K2=∅: 

(7) 

Considering the dual range (6) the equivalent system has the next Brunovsky normal form: 

 

 

(8) 

 
 

All regular conditions are fulfilled excepting in the set point (equilibrium). The diffeomorphic 

transformation from system (4) to system (8) is a consequence from the dual range (6) [2, 8]: 

 

 

 

 

 

 

 

Therefor the nonlinear transformation has the form [2]: 
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The comparison of the model (1) and the model (8) evaluations is shown in Fig. 2. There are 

computer-rounding problems with model (8) because of the fact that the set point is non-

regular. A new model (3) of polynomial form has been proposed (c=0.42, m1=0.0286, 

m2=0.713). The affine representation of this model is [7, 8]:  

 

 

 

 

 

 

 

It overcomes in parts the computer-rounding problems. The equivalent non-linear 

transformation from the model (3) to the Brunovsky normal form (8) is: 

 

 

(9) 

 

 

The control V of the Brunovsky model is linked with the control U=D of the model (1, 3) 

with the formulae: 
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The control input U of the model (1) is in fact the dilution rate D. Evaluations of the model 
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Direct application of the Brunovsky model is the analytical determination of the optimal 

control in order to reach the set point for minimal time. The Hamilton function has the form: 
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0]2, 

where x1
0=4.37, where x1 is the first variable in the model (3). The formulae x1(y1, y2, y3) has 

the next huge form: 

1

3

2
11

2

12
11

3
12

2
11

22
11

2
2

3
1

1

)1()1(

1)23(
)1(

1
m
m

y
y

y

y
m
c

y
y

ym
y

y
y

y
y

y
y

y

yy
m

x
+

+−
+⎥

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

++
+

−=  

Finally the optimal control has the next functional form (11) (max (H)): 

(11) 

 

The function g(.) in formulae (11) connect the optimal control V with the optimal control U in 

formulae (10). Taking in account the conditions for optimal control we found that the 

constants C1 and C2 have the forms: 

 

 

 

 

 

 

The constant C3 presents the similar huge formulae like C1. The constants A and B were 
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       Fig.3 Models (3) and (8) – optimal control                       Fig.4 Brunovsky model (8) 

 

The constants C1, C2 and C3 were calculated at the moment t1. If the optimal control is 

calculated by iterations from [ti, ti+1] and these intervals are relatively small, we find the 

formulae for V.  The optimal evaluations of the models (3 and 8) are shown in Fig. 3.  The 

deviations of the Brunovsky model with this control are shown on Fig. 4.  

 

Brunovsky normal form and exact linearization  - fed-batch process 
The well-known non-linear model [1, 2] describes the fed batch process: 

 

 

(1*) 

 

 

 

 

Here X is the biomass concentration, S is the substrate concentration, µ is the specific growth 

rate, Vo is the volume of the bioreactor. The maximum growth rate is noted as µm and KS is a 

saturation coefficient and k=1/y where y=0.5 [11, 12, 13, 14]. 

 

The growth dynamics are modelled by the third equation according Stephanopulos. The 

control input is F. The basis of the appropriate affine space is [2]:  
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(12) 

 
 

 

 

The next step is a simplification of the basis of the affine model space. We transform the state 

vector x=(X, S, µ, Vo) of the model  (1*) with the use of the common integrals of the field f1.  

The transformation is: 

 

(13) 

 

 

 

 

The new affine model has the next basis: 
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The new affine model has the form du/dt=f0+f1F, were u=(u1, u2, u3, u4), x=(x1, x2, x3, x4)= 

=(X, S, µ, Vo).  The t-differential forms corresponding to the model (14) affine space defined 

by f0 and f1 are the next: 
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After the denotations and notions in [2] the dual co-distribution (dual vector space) range is: 
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From the dual range (1) the equivalent diffeomorph model has the form: 
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All regular conditions are fulfilled excepting in the points where the denominator of the 

differential form dw2 is zero. The diffeomorphism from the model (14) to the model (18) is a 

consequence from the dual range [2, 5, 6]: 
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From the formulae (19) follows the next diffeomorphism: 
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The new equivalent model has the form: 

 

 

(22) 

 

 

 

The main ideas, mathematical formulations and results used in the paper could be seen in the 

origins [1, 2, 4]. The optimal process is determined by optimization of the criterion 

Jp=f(Fopt)=x1(T)x4(T), t∈[0,T] [11, 13]. It is evidently that F∈[0, Fmax]. The Hamiltonian H(.) 

of the model (22) is: 

 

(23) 

The model (22) is a linear and stationary model. That is why the determination of H(.) is easy. 

We optimise Jp=f(Fopt)= x1(T)x4(T)  for a period of 10 hours ( KS=0.1 gl-1, µmax=0.3, S0=200  

gl-1 ).  The bioreactor volume V0 increases from 5 l. to 8 l. 

 

 

 

 

 

 

 

 

 

Fig. 5 Optimal system: F=0.0523;(o) F=0.123           Fig. 6 Substrate concentration F=0.0123 

 

From the Hamiltonian H(.) follows that the Fopt  is maximum in the period [0 ÷ Т] hours (max 

H). The control V of the model (22) is linked with F with the next formula: 
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(24) 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7 Substrate concentration F=0.123                    Fig. 8 Specific growth rate µ - F=0.0123 

 

For model (1*) the optimal control is very simple F=Fmax   (Fig 8, 9). 

 

 

 

 

 

 

 

 

 

 

       Fig. 9 Specific growth rate µ, F=0.223                                     Fig.10 Volume F=0.223 

 

Direct application of the model (18) is the determination of some optimal control conditions 

in order to reach the maximum Y4(T)=log(x1(T)x4(T)) in the end of the fed-batch process.  
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(25) 

 

The x3 is the specific growth rate. The maximum Y4(T) needs continuously maximum of the µ 

in the process period [0, T]. 

 

Conclusions 
The Brunovsky normal form of the biotechnological models is very simple and the models are 

linear with stationary coefficients. This form is convenient for optimization with the 

Pontryagin maximum principle. Here all linear control theory is possible to be used without 

restrictions. An advantage is the analytical determination of the optimal control laws like 

functions of the parameters and the system state vectors. The main disadvantages of the 

utilized approach are the complex formulas of the state vector Y, of the control V(U,x1,x2,x3) 

and the difficult biotechnological interpretation. 

 

The models (8 and 22) are linear and stationary. The diffeomorphic model (18) is simplified. 

The tree first differentials equations are linear and stationary. This is of benefit to the control 

practice.  
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