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Abstract: A type of a fuzzy neural network for mathematical modeling of the volumetric 
mass-transfer coefficient is presented in the paper. Performed investigations show that the 
presented fuzzy neural network can be successfully used for modeling of such a complex 
process, like mass-transfer. 
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Introduction 
The volumetric oxygen mass-transfer coefficient (KLa) defines the bioreactor effectiveness 
for aerobic biotechnological processes. The KLa magnitude depends on a considerable 
number of constructive and regime parameters, as well on physics-chemical parameters of 
culture medium. The increase of KLa value is a basic problem for the bioreactors design. 
 
Recently, an increasing number of publications concerned with artificial neural networks 
(ANN) and fuzziness have appeared [6, 9, 10]. Interesting and promising algorithms for 
training ANN were proposed by using paradigms of fuzzy sets theory [7, 11]. 
 
The main advantage of ANN, known as a “flexible” model, is that they allow modeling of 
complex and ill-defined objects. However, usually used learning algorithms 
(backpropagation, reinforcement learning etc.) are a lot of time consuming [4, 8, 12]. 
 
A simplified type of ANN, that consists of two layers, is considered in the paper. Transfer 
functions (somatic mapping) of every neuron from the second layer are considered to be 
piece-wise linear. 
 
The weights of the neurons the first layer are random chosen by between -1 and +1. The 
consideration of the transfer function as a crisp value is an idealization. A powerful tool for 
more "flexible" description, which can be considered as more appropriate and closely to the 
biological nature of the neurons action, are fuzzy relations [6]. 
 
We use fuzzy relation in order to achieve more adequate somatic mapping. Therefore, the 
training task is a fuzzy optimization problem. Applying new results in this field [1, 2] and 
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their possibilities for neural networks learning [3], a non-iterative algorithm for training of 
mentioned above type of ANN is proposed in the paper. Using a fuzzy neural network (FNN), 
which input signals are the constructive and regime bioreactor parameters, is an alternative 
approach for modeling and investigation their influence under the KLa. 
 
The aim of this paper is to be synthesized of a model of the volumetric mass-transfer 
coefficient using a fuzzy neural network. 
 
Structure of proposed FNN 
The structure of proposed FNN is shown on Fig. 1. 
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Fig. 1 Type of the FNN 

 
The transfer function at the first layer is sigmoidal: 
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where: xj-signal in j-th neuron in the hidden layer; "≅"-fuzzy relation represented by its 
membership function; ui-input signal; I-number of input signals; ai,j-weights of the connections 
i-th neuron in the first layer to j-th neuron in hidden layer, ai,j∈[-1,1]. 
 
The somatic mapping at the second layer is represented as a piece-wise linear function on the 
basis of the fuzzy equation: 
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where: yj-output signals; J-number of hidden signals; wj-weights of the neurons. 
The membership function of (1) is as follows: 
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Training of the proposed type of FNN 
The training task includes a determination of the weights which minimizes the total error: 
 

( )∑
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where: R-size of the training set, y-vector of the experimental outputs (from the training set), 

ni~m -denotes fuzzy minimization. 
 
In general, the training task is presented as follows: 
 

ni~mE →  (5) 
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This problem belongs to class of fuzzy mathematical programming problems and a theorem 
[1, 2] introduced recently can be here applied. As a result, the best possible weights could be 
found as a solution of the following linear equations [1, 2]: 
 

1JxJxJ R,R, ∈∈= BMBwM , (7) 
 
The elements of the matrixes M and B are determined by the following relations: 
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The best possible weights of the neurons in the second layer are obtained, received after the 
solving equation (7). As far as the number of neurons in the first layer is known (it is equal to 
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the number of input signals), then the number of neurons has to be determined. It will 
determined simultaneously with the training of the neural network. 
 
A simple non-iterative algorithm for training this FNN is developed by authors. 
 
Training algorithm 

1. The initial data (ur
i, yr, I, J, R) is inputted. The coefficients ai,j∈[-1, 1], R=J+1 are 

determined by randomization; 
2. The elements of the matrixes M and B are calculated; 
3. The matrix M is inverted (M-1); 
4. The weights vector is calculated from w=M-1B; 
5. The simulation of FNN is realized (yr are printed); 
6. Stop. 

 
On the basis of the propose algorithm a program on FORTRAN 77 v. 5.0 is developed. 
 
The proposed FNN will be used for modeling of the KLa in dependence on some constructive 
and regime parameters of the bioreactor. On the basis of a preliminary analysis of the factors 
and assessment of the conditions for realization of the experiment, (in this paper) the 
following constructive and regime parameters of the bioreactor are considered: 
 
 Name of the parameter Symbol Min. value Max. value 

Eccentricity of impeller toward 
its rotation axis u1 0.0 mm 1.5 mm; 

 Width of baffles u2 10.0 mm 14.0 mm; 
 Slope angle of stirrer’s blades u3 450 900; 
 Number of impeller u4 1 3 
 Impeller speed u5 2 s-1 20 s-1; 
 Gas flow rate u6 50 l/h 300 l/h. 

 
They are coded in the interval [-1, +1]. The coding is performed based on the equation: 
 

( ) ( )0,imax,i0,iii uu/uuu −−= , 
 
where: ( )max,imin,i0,i uu5.0u += , iu , ui,min, ui,max, ui,0 and ui are respectively the current, 
maximum, minimum and mean real values of the examined parameters. 
 
The chosen constructive and regime parameters of the bioreactor ui=u[u1,…,uI], I=6 are the 
input signals of the FNN. The output signal from the FNN is y=KLa (Fig. 1). 
 
Experimental investigations 
The experiments are carried out in a laboratory bioreactor 2L-M with a magnetic coupling 
with maximal volume 2 L. The bioreactor is included in an automatic control system (ACS). 
The ACS has been developed by а scientific team from Centre of Biomedical Engineering. It 
gives a possibility for control of two bioreactors. The scheme of the experimental is presented 
in [5]. 
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In order to compare the results, all experiments are performed at constant conditions (Table 
1). The measurement of the KLa is realized based on the method of degasation in pattern 
medium – distillated water [5]. 

 
Table 1. Basic measurement and conditions for experiment investigations 

 
Basic measurement and conditions for experiment investigations Value 

Vessels diameter, D 120.0 mm 
Impeller diameter, d 58.0 mm 
Width of paddle impeller, b 14.0 mm 
High of paddle impeller, h 12.0 mm 
Distance between vessel bottom and impeller, h1 58.0 mm 
Distance between two impellers, h2 58.0 mm 
Diameter of aerator, Da 50.0 mm 
Number of baffle assembly 3 
Number of perforation of aeration 120 
Height of liquid in the bioreactor, L 120.0 mm 
Volume of liquid in the bioreactor, V 1.2 l 
Temperature, T 250C 

 
The obtained experimental results are shown in Table 2. 

 
Table 2. Experimental investigations 

 
N0 u1 u2 u3 u4 u5 u6 KLa, h-1 N0 u1 u2 u3 u4 u5 u6 KLa, h-1 

1 -1 -1 -1 -1 -1 -1 103.0 24 1 1 1 -1 1 -1 104.0
2 1 -1 -1 -1 -1 1 121.6 25 -1 -1 -1 1 1 -1 101.0
3 -1 1 -1 -1 -1 1 113.1 26 1 -1 -1 1 1 1 114.1
4 1 1 -1 -1 -1 -1 94.8 27 -1 1 -1 1 1 1 131.5
5 -1 -1 1 -1 -1 1 83.7 28 1 1 -1 1 1 -1 139.1
6 1 -1 1 -1 -1 -1 91.0 29 -1 -1 1 1 1 1 140.9
7 -1 1 1 -1 -1 -1 103.4 30 1 -1 1 1 1 -1 142.5
8 1 1 1 -1 -1 1 107.1 31 -1 1 1 1 1 1 137.2
9 -1 -1 -1 1 -1 -1 110.1 32 1 1 1 1 1 1 121.5

10 1 -1 -1 1 -1 -1 120.1 33 -1 0 0 0 0 0 117.7
11 -1 1 -1 1 -1 -1 123.7 34 1 0 0 0 0 0 139.3
12 1 1 -1 1 -1 1 110.0 35 0 -1 0 0 0 0 139.5
13 -1 -1 1 1 -1 -1 100.1 36 0 1 0 0 0 0 98.6
14 1 -1 1 1 -1 1 112.0 37 0 0 -1 0 0 0 105.0
15 -1 1 1 1 -1 1 117.6 38 0 0 1 0 0 0 107.0
16 1 1 1 1 -1 -1 92.5 39 0 0 0 -1 0 0 147.5
17 -1 -1 -1 -1 1 1 69.6 40 0 0 0 1 0 0 148.2
18 1 -1 -1 -1 1 -1 81.1 41 0 0 0 0 -1 0 171.9
19 -1 1 -1 -1 1 -1 100.0 42 0 0 0 0 1 0 44.8
20 1 1 -1 -1 1 1 96.0 43 0 0 0 0 0 -1 172.4
21 -1 -1 1 -1 1 -1 87.6 44 0 0 0 0 0 1 109.6
22 1 -1 1 -1 1 1 96.4 45 1 1 1 1 1 1 229.6
23 -1 1 1 -1 1 1 107.4 - - - - - - - -
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Training of FNN and analysis of results 
The training of FNN is realized on the basis of the developed algorithm and program. After 
the training of the network, the following values for the number of the neurons in the second 
layer and their weights are obtained: 
 
J=8;w1=11.97,  w2=-2.94, w3=3.53, w4=-10.77, w5=-14.76, w6=12.84, w7=-0.49, w8=1.06, 
 
i.o. for only the first eight experiments, listed in Table 2, are used for training of FNN. 
 
The experimental results and the prediction after the training of the FNN are shown on Fig. 2. 
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Fig. 2 Experimental data and obtained results by ANN 

 
A statistical analysis of the obtained results is performed. It gave the following results: an 
experimental correlation coefficient R2=0.983, a theoretical correlation coefficient R2

T=0.325 
at degree of freedom ν=35 and a level of notability β=±5%. The experimental and the 
theoretical Fisher quotients are: FE=1.01 and FT=2.11. 
 
Fig. 2 and obtained results shows that FNN describes very well the experimental data. The 
model is adequate and this network can be used for modeling of the volumetric oxygen mass-
transfer coefficient. 
 
Conclusions 
1. The performed investigations show that the proposed type FNN can be successfully used 

for modeling of the volumetric oxygen mass-transfer coefficient in dependence on the 
constructive and regime parameters of the bioreactor. 
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2. Using of neural network is the advisable for description of such a complex process like 
mass-transfer. Therefore the necessity of solving of complex nonlinear differential 
equations and further parameter identification, that needs more experimental data in 
comparison with the training of the neural network, drops off. 
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