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1. INTRODUCTION AND MOTIVATION 

 

The food substances entering a living organism gradually undergo 

biochemical changes during digestion and metabolic processes. It is 

characteristic for biochemical processes that enzymes play an 

important role as catalists. 

 

Biochemical processes involving enzymes can be effectively 

described mathematically by systems of nonlinear differential 

equations. The basic model of enzyme kinetics is proposed by 

Michaelis and Menten [3]. A substrate S converts into a product P in 

the presence of an enzyme E. Thereby S and E bind into an enzyme-

substrate complex C, which then dissolves into P and E. 

Schematically, 

 
1 2

1

k k

k

S E C P E
−

+ → +�  (1) 

 

where k1, k-1 and k2 are coefficients of proportionality. The first 

process – the binding of S and E into the complex C – is reversible, 

the production of P is irreversible. According to the Mass Action 

Law, the rate of a reaction is proportional to the product of the 
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concentrations of the reactants. The corresponding system of 

ordinary differential equations is, see e.g. [6]: 
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 (2) 

 

wherein s = [S], e = [E], c = [C], p = [P] are the concentrations 

involved and the initial conditions are 

 

( ) ( ) ( ) ( )0 0 0
0 , 0 , 0 , 0 0.s s c c e e p= = = =  (3) 

 

The equation for p is uncoupled, so we shall further concentrate on 

the system of the first three coupled equations. Using the following 

nondimensionalization, cf. [6], 

 

( ) ( ) ( ) ( )

( ) ( ) ( )
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−

= = =

= =

= + =

 (4) 

 

we obtain the system 

 

u uw

uw K

w uw K

λυ

ευ υ

ε υ

′ = − +

′ = −

′ = − +

 (5) 

 

with initial conditions 

 

( ) ( ) ( )0 1, 0 0, 0 1.u wυ= = =  (6) 

 

Typically we have 
7 2

10 ,10ε − − ∈   , which makes system (5) stiff. 

Namely, the substrate variable (u) changes near 0 much slower than 

the enzyme (υ) and complex variables (w) change. We can exclude 

one of the variables υ or w from system (5), reducing thus the 
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number of equations from 3 to 2. However, even the reduced system 

cannot be solved in a closed form, see [6]. Therefore we need to 

make use of numerical methods, see Figs. 1 and 2. 

 

Remark. As well-known, the solution for s in (2) can be 

approximated by the solution σ of the simple DE 

( )2 0 0
/ /d dt k e s kσ σ σ= + . However, we shall not be able to use 

such an approximation, as we shall need to supply (2) by additional 

nonlinear terms. 

 

In an organism the enzymes themselves are a product of biochemical 

reactions. This observation lies at the basis of the proposed models. 

The concentration of enzymes in the organism changes: namely the 

concentration diminishes because of a natural wash-out of enzymes 

and increases due to a reproduction of enzymes. The corresponding 

models are considered in Section 3. In Section 4 the results of 

numerical experiments with the proposed models are presented. 

 

2. ASSUMPTIONS OF THE MODEL 

 

In the present work we propose a global mathematical model of the 

metabolic processes in a living organism under the following 

assumptions, cf. [2]: 

 

1. All substances entering the organism (food, water, oxygen etc.) 

are considered as substrates, involved in subsequent processes 

catalized by the enzymes present in the organism. 

 

2. Theoretically all enzyme-catalytic reactions can be described 

mathematically using Michaelis-Menten equations involving specific 

parameters. However, the mathematical description of even a small 

number of reactions leads to a complex mathematical system of 

nonlinear differential equations, which cannot be solved analytically 

and whose numerical study is tedious. In order to keep the 

mathematical model as simple as possible, we unify the biochemical 

reactions in large groups under certain characteristic properties. For 

instance, in the model proposed no substantial distinction is made 

between catabolic and anabolic processes and between digestic and 

metabolic processes – all these processes are considered from the 

point of view of enzyme kinetic. 
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3. The role of enzymes in biochemical processes is twofold. From 

one side, enzymes are catalysts of these processes needed for the 

production of certain products. On the other side, enzymes are 

themselves products of the metabolism. As a consequence, the 

biochemical processes can be conditionally subdivided into two large 

groups. In the first one we classify catabolic enzyme-catalytic 

reactions which are not directly involved in the production of 

enzymes; typically here belong reactions, partaking in digestion and 

lower metabolic cycles. In the second group we classify anabolic 

reactions responsible for the production of new enzymes. 

 

4. For simplicity we can assume that catabolic reactions take place 

mainly in the extracellular part of the organism and that their main 

purpose is the breakdown of the nutrient substances up to amino 

acids. On the other side anabolic reactions occur mainly in the 

citoplasm of the cells leading to the synthesis of amino acids up to 

proteins. We can consider the extracellular and the intracellular parts 

of the organism as two separate compartments arriving thus to a two-

compartmental model. 

 

5. In an organism, the concentration of enzymes (both in bound and 

free form) undergoes changes. One reason is the outflow of enzymes 

with the excrements of the organism. We thus introduce a wash-out 

function γe in the equation for e as follows: 

 

( )

( )

1 1

1 1 2

1 1 2

2

/

/

/

/

ds dt k es k c

dc dt k es k k c

de dt k es k k c e

dp dt k c

γ

−

−

−

= − +

= − +

= − + + −

=

 (7) 

 

where the initial conditions are again (3) and γ ≥ 0 is a wash-out 

constant. 

 

Using formulae (4) together with ( )1 0
/ k sδ γ=  we obtain the system 

 

u uw

uw K

w uw K w

λυ

ευ υ

ε υ δ

′ = − +

′ = −

′ = − + −

 (8) 
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with initial conditions (6). Figs. 3 and 4 visualize the numerical 

solutions to (7), resp. (8).  

 

3. MODELS WITH TWO TYPES OF SUBSTRATES 

 

In what follows we mathematically describe the simultaneous 

transformation of two different types of nutrient substrates S and R. 

We assume that the enzyme E stands for the set of all enzymes 

necessary for the transformation of S and R and that E is partially 

reproduced from the substrates S, R in the sense that certain 

components of S and R are used for the production of new enzymes. 

The nutrients (substrates) are differentiated as follows: substrates S 

do not directly contribute to the formation of proteins, whereas 

substrates R are easily converted to proteins and effectively 

contribute to the reproduction of enzymes needed for the 

biochemical activity in the organism. Amino acids belong to group 

R. The corresponding enzyme-kinetic can be schematically described 

in two possible ways. 

 

Variant 1. Here it is assumed that the nutrients S and R are partially 

transformed into enzymes according to the following scheme 
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 (9) 

 

where 0 1α β≤ < ≤ . In particular, if α = 0, β = 1, (9) obtains the 

form 
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We shall assume that nutrients both of types S and R are entering the 

organism, which will be reflected by means of functions 

( )s s
U U t= , ( )r r

U U t= . 

 

The scheme (9) leads to the following system of differential 

equations: 

 

( )

( )

( )( )
( )( )
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1 1 2

3 3 4

/

/

/

/

/ 1

1
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r

ds dt k se k c U

dr dt k re k c U

dc dt k se k k c

dc dt k re k k c

de dt k se k k c

k re k k c e

α

β γ

−

−

−

−

−

−

= − + +

= − + +

= − +

= − +

= − + + + −

− + + + −

 (11) 

 

wherein s = [S], r = [R], e = [E], cs = [C], cr = [RE] are the 

concentrations of the corresponding substances in (9) and the 

functions ( )s s
U U t= , ( )r r

U U t=  present the (rate of) introduction 

of nutrients in the organism. The saturation of the enzyme E in the 

left-hand side of the equation for de/dt in (11) is limited again by the 

wash-out function γe. The initial conditions are 

 

( ) ( ) ( ) ( ) ( )0 0 0
0 , 0 , 0 0 0, 0 .

s r
s s r r c c e e= = = = =  

 

Numerical solutions to (11) are given on Figs. 5 and 6. 

 

Variant 2. Here we assume that the nutrient S is partially 

transformed into nutrient R and then R is partially transformed into 

enzyme. 
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This scheme leads to the following system of ODE's: 
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The meaning of the functions ( )s s
U U t= , ( )r r

U U t= , γe as well as 

the initial conditions are same in (11). Numerical solutions to (13) 

are visualized on Fig. 7 and Fig. 8. 

 

4. COMMENTS ON THE NUMERICAL EXPERIMENTS 

 

For the numerical solution we use an Euler method and a uniform 

mesh which is smaller in the boundary layer, e.g. the stepsize is h = 

0.007 for the first 150 points starting from 0, and then it becomes 

larger, h = 0.05. It has been shown [1, 5], that by means of such a 

simple mesh one can achieve same uniform error (accuracy) as more 

sophisticated meshes can produce. 

 

Fig. 1 presents the solution to (2) with the following values for the 

parameters and initial data: 

 

1 1 2 0 0
5, 1, 4, 10 / 3, 1.k k k s e−= = = = =  (14) 

 

Fig. 2 presents the solution to (5) corresponding to the above data 

transformed by (4). Figs. 3 and 4 visualize the solutions to (7) and 

(8) respectively using data (14) with γ = 0.5. The wash-out effect of 

the parameter γ (with respect to the enzyme) is clearly observed. 

 

To visualize the solutions to the next two models (11) and (13) we 

use the following values for the parameters and the initial data: 
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1 1 2 3

3 4

0 0 0

5, 1, 4, 5,

1, 4, 0.2, 0.5,

0.3, 10 / 3, 2, 1.

k k k k

k k

s r e

α β

γ

−

−

= = = =

= = = =

= = = =

 (15) 

 

Fig. 5 presents graphically the solutions of (11) within 

( ) ( ) 0
s r

U t U t= = . The next Fig. 6 visualizes the outputs to (11) 

with  

 

( ) { }

( ) { }

3, 4 5; 0, otherwise ;

2, 2 3; 0, otherwise .

s

r

U t t

U t t

= ≤ ≤

= ≤ ≤
 (16) 

 

Figs. 7 and 8 present the solutions to (13) using data (15); on Fig. 7 

we have ( ) ( ) 0
s r

U t U t= = , Fig. 8 uses ( )s
U t  and ( )r

U t  from 

(16). A possible purpose of any nutrition regime (diet) could be to 

keep the enzyme concentration above a certain limit. Thus the 

substrate intake function ( )s
U t  plays the role of control variable. 

We may formulate various optimization or control problems like 

keeping e above a certain level, minimizing the quantity of food (the 

integral of ( )s
U t ). 

 

 
Fig. 1. Solution to (2) using data (14) 
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Fig. 2. Solution to (5) using data (14) 

 

 

 
Fig. 3. Solution to (7) using data (14) and γ = 0.5 

 

 

 
Fig. 4. Solution to (8) using data (14) and γ = 0.5 



B
IO

A
uto

m
atio

n

Bioautomation, 2007, 8, Suppl. 1, 1 – 12              ISSN 1312 – 451X 

 

 10

 
Fig. 5. Solution to (11) using data (15) within α = 0.2, 

β = 0.5, γ = 0.3 and ( ) ( ) 0
s r

U t U t= =  

 

 
Fig. 6. Solution to (11) using data (15) within α = 0.2, 

β = 0.5, γ = 0.3 and ( )s
U t , ( )r

U t  from (16) 

 

 
Fig. 7. Solution to (13) using data (15) within α = 0.2, 

β = 0.5, γ = 0.3 and ( ) ( ) 0
s r

U t U t= =  
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Fig. 8. Solution to (13) using data (15) within α = 0.2, 

β = 0.5, γ = 0.3 and ( )s
U t , ( )r

U t  from (16) 

 

5. CONCLUSION 

 

We present and numerically study two enzyme-kinetic models with 

the purpose to model basic metabolic activity of an organism. It is 

observed that different types of substrates contribute differently to 

the (re)production of enzymes. 

 

There is a strong feedback expressed in a stimulating effect on the 

concentration of enzymes when the substrate exhibits a restoration 

quality (α close to 1), or in an inhibiting effect whenever the 

substrate does not possess such qualities (α close to 0). The 

effectiveness of the above mentioned feedback is checked in the 

proposed model by the numerical simulation of various types of diets 

(that is various regimes of nutrition and fasting). It is well-known 

that well-expressed symptomatic phenomena can be observed under 

various types of diets, such as a slow restoration of the metabolic 

activity of the organism after a prolonged fasting, a possibility for 

poisoning when consuming certain types of food after fasting, etc. 

The inability of the metabolic system to process the nutrient 

substrates can be interpreted as poisoning of the organism due to the 

lack of suitable enzymes needed to catabolize the incoming nutrients. 

 

The numerical experiments with the proposed models suggest that 

they can be used for checking various hypotheses related to dieting, 

for an alternative model see [4]. We hope that on the base of the 

above models more sophisticated models involving certain specific 

metabolic circles can be developed. 



B
IO

A
uto

m
atio

n

Bioautomation, 2007, 8, Suppl. 1, 1 – 12              ISSN 1312 – 451X 

 

 12

REFERENCES 

 

1. Doolan E. P., J. J. H. Miller, W. H. A. Schilders, Uniform 

Numerical Methods for Problems with Initial and Boundary 

Layers, Boole Press, 1980. 

2. Markov S., P. Zlateva, M. Candev, Mathematical Model of 

Bioconversion Processes in Living Organisms, Proc. IFIP 

Congress, Praga, 1995, 168-171. 

3. Michaelis L., M. Menten, Die Kinetik der Invertinwirkung, 

Biochem., 1913, 49, 333-369. 

4. Micken R. E., D. N. Brewley, M. L. Russell, A Model of 

Dieting, SIAM Rev., 1998, 40(3), 667-672. 

5. Miller, J. J. H., E. O'Riordan, G. I. Shishkin, Fitted Numerical 

Methods for Singular Perturbation Problems, World Scientific, 

1996. 

6. Murray J., Mathematical Biology, Springer, 1993. 


