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Summary: A mathematical methodology that gives assistance to design of fed-batch 
stabilization and control is presented. The methodology is based both on Utility theory 
and optimal Control theory. The Utility theory deals with the expressed subjective 
preferences and allows for the expert preferences to be taken in consideration in 
complex biotechnological systems as criteria for control and optimization. The 
Control theory is used for parameters stabilization of a fed-batch cultivation process. 
The control is written based on information of the growth rate. The simulations show 
good efficiency of the control laws.  
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1. INTRODUCTION 
 
Mathematical models are used by engineers to gain advantage 
through applications of model based process design, control and 
optimization. Thus, building mathematically motivated and validated 
models is a key activity in bioprocesses engineering.  
 
The specific growth rate is one of the most important parameter in 
biotechnological cultivation process. The relationships between the 
rate of growth, substrate concentration and product formation are 
crucial for monitoring, controlling and optimizing these processes. 
Therefore it is of importance to be able to model and control the 
specific growth rate as a function of the biomass and substrates and 
“vice versa” [7]. It is the opinion of some scientists that with optimal 
control theory can be shown a fed-batch process is likely to 
outperform both a continuous process and a batch process. The 
problem is then the determination of the best feed rate of substrate in 
the bioreactor as a function of the specific growth rate (and/or the 
best temperature (to) and the best acidity (pH)) [7, 10]. And since the 
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quality of the product usually deteriorates within several hours after 
substrate depletion it is hence of importance to harvest in time.  
 
The meaning of best varies from problem to problem [5, 7]. The 
complexity of the biotechnological cultivation processes, due to the 
inherent time variant properties and the lack of precise measurement 
make difficult the determination of the optimal (the best) process 
parameters. The incomplete information is compensated, some times, 
with participation of imprecise human estimations. The necessity of a 
merger of empirical knowledge with mathematical exactness causes 
difficulties. Possible approach for solution of these problems is the 
stochastic programming and the Utility theory [3, 5]. The Utility 
theory deals with the expressed subjective preferences. Possible 
criteria for “the meaning of best” can be an expert (decision maker-
DM) utility function [3, 5, 9].  
 
The aim of this investigation is to demonstrate an optimization 
technique and the possibility to control optimally the specific growth 
rate of a biotechnological cultivation process. The control design is 
based on Monod-Wang model in Brunovsky normal form. The 
classical Monod form is a singular form of this model [11, 12]. 
 
2. MODELS OF THE FED-BATCH FERMENTATION PROCESS 
 
Unstructured models take cell mass as a uniform quality without 
internal dynamic. The reaction rates depend only upon the 
macroscopic conditions in the liquid phase of the bioreactor. 
Unstructured models fail only when intracellular dynamics must be 
considered. Mathematical unstructured models of fed-batch process 
can be written based on mass balance equations [10]: 
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where X presents the concentration of biomass, [g/l]; S – the 
concentration of substrate (glucose), [g/l]; V - bioreactor volume, [l]; 
F – substrate feed rate, [h-1]; S0 – substrate concentration in the feed, 
[g/l]; µmax - maximum specific growth rate, [h-1]; KS – saturation 
constant, [g/l]; k, k2 – yield coefficients, [g/g], m – rate coefficient [-]; 
E – the concentration of ethanol, [g/l]. We preserve the notation U(.) 
for the DM utility function (the criteria for optimization). The system 
parameters are as follows: µm = 0.59 [h-1], KS = 0.045 [g/l], 
m = 3 [–], S0 = 100 [g/l], k = 2 [–], k2 = 3.79 [–], Fmax = 0.19 [h-1], 
Vmax= 1.5 [l]. The dynamics of µ in the so called Monod-Wang 
model is modeled as a first order lag process with rate constant m, in 
response to the deviation in µ. The fifth equation describes the 
production of ethanol (E). This equation is equivalent dynamically to 
the first one. The demonstration is easy. We implement a simple 
transformation in the first equation:  
 .1

2

E
k

X = (2) 
 
After that the first and the fifth equations become equivalent. The 
new form of the non-linear kinetic model is: 
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(3) 
 
 
 
 
 
We shall use this form of the non-linear fed-batch kinetic model in 
the rest of the paper. The initial values of the state variables are: 
Xi(0) = 0.99; Si(0) = 0.01; µi(0) = 0.1; Vi(0) = 0.5. 
 
3. UTILITY FUNCTION AND DETERMINATION OF THE 
“BEST” GROWTH RATE 
 
The complexity of the biotechnological fermentation processes 
makes difficult the determination of the optimal process parameters. 
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The incomplete information usually is compensated with the 
participation of imprecise human estimations. Our experience is that 
the human estimation of the process parameters of a cultivation 
process contains uncertainty at the rate of [10, 25] %. Here is used a 
mathematical approach for elimination of the uncertainty in the 
DM’s preferences based both on the Utility theory and on the 
Stochastic programming [9]. The algorithmic approach permits 
evaluation of the optimal specific growth rate of the fed-batch 
cultivation process according to the DM point of view.  
 
We need some mathematical formulations. Standard description of 
the utility function application is presented by Fig. 1. There are a 
variety of final results that are consequence of the expert or DM’s 
choice and activity. 
 

 
Fig. 1. Utility function application 

 
This activity is motivated by a DM objective which possibly includes 
economical, social, ecological or other important process 
characteristics. A utility function U(.) assesses each of this final 
results (µi, i = 1 ÷ n). The DM judgment of the process behavior 
based of the DM choice is measured quantitatively by the following 
formula [3, 5]: 
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We denote with pi subjective or objective probabilities which reflect 
the uncertainty of the final result. Let Z be the set of alternatives  
(Z = {specific growth rates} = [0, 0.6]) and P be a convex subset of 
discrete probability distributions over Z (Fig. 1). The expert 
“preference” relation over P is expressed through (⎬) and this is also 
true for those over Z (Z ⊆ P). We know that the utility function is 
defined in the interval scale (in the proposed conditions) [3, 9]. A 
decision support system for subjective utility U(.) evaluation is used 
(Fig. 2). The subjective utility function U(.) is shown on Fig. 3. The 
utility U(.) is approximated by a polynomial: 

 

(5) 
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The polynomial representation permits analytical determination of 
the derivative of the utility function and easy implementation in the 
optimization and control. The utility function in this investigation is 
evaluated with 64 learning DM’s answers, sufficient for a primary 
orientation in the problem [9]. 
 

 
Fig. 2. Decision support system 



BIO

Autom
ati

on

Bioautomation, 2007, 8, Suppl. 1, 13 – 26           ISSN 1312 – 451X 
 

 18 
 

 
Fig. 3. Utility versus Growth rate 

 
This utility evaluation mathematical approach is discussed in details 
in [9].  
 
4. BRUNOVSKY NORMAL FORM OF MONOD-WANG 
MODEL, TIME MINIMIZATION CONTROL AND 
STABILIZATION OF THE GROWTH RATE  
 
We preserve the notation U(.) for the DM utility. The control design 
of the fed-batch process is based on the next subsidiary optimal 
control problem: Max(U(µ(Tint))), where the variable µ is the 
specific growth rate, (µ∈[0, µmax], D∈[0, Dmax]). Here U(µ) is an 
aggregation objective function (the utility function – Fig. 3) and D 
is the control input (the dilution rate):  
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When Tint is sufficiently small the optimization is in fact “time 
minimization”. The differential equation in (6) describes 
a continuous fermentation process. The model permits exact 
linearization to the next Brunovsky normal form (Goursat, as regard 
to the differential forms) [1, 8]:  
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Here W denotes the control input of the model (7). The new state 
vector (Y1, Y2, Y3) is: 
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(8) 
 
 
 
 

 
 
The derivative of the function Y3 determines the interconnection 
between W-model (7) and D-model (6). The control design is a 
design based on the Brunovsky normal form and application of the 
Pontrjagin’s maximum principle step by step for sufficiently small 
time periods T [6, 8]. The optimal control law has the analytical form 
[9]: 
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The time interval T can be the step of discretization of the differential 
equation solver. The sum in Eq. (10) is the derivative of the utility 
function U(µ). It is clear that the “time-minimization” control is 
determined from the sign of the utility derivative. Thus, the control 
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input is D = Dmax or D = 0. The solution is a “time-minimization” 
control (if the time period T is sufficiently small). The control brings 
the system back to the set point for minimal time in any case of 
specific growth rate deviations. The demonstration is shown in [8]. 
 
The previous solution permits easy determination of the control 
stabilization of the fed-batch process. The control law is based on 
the solution of the next optimization problem: Max(U(µ(Tint))), 
where the variable µ is the specific growth rate, (µ∈[0, µmax], 
F∈[0, Fmax]). Here U(µ) is the utility function in Fig. 3 and F is the 
control input (the substrate feed rate):  
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The control law of the fed-batch process has the same form (9) 
because D(t) is replaced with F(t)/V(t) in the fed-batch model. Thus, 
the feeding rate F(t) takes F(t) = Fmax or F(t)=0, depending on D(t) 
which takes D = Dmax or D = 0.  
 
We conclude that the control law (9) bring the system to the optimal 
point (optimal growth rate) with a” time minimization” control, 
starting from any deviation point of the specific growth rate (Fig. 4). 
Thus, we design the next control law: 

1. At the interval [0, t1] the control is “time-minimization” 
control (9), where µ(t1) = (x30-ε), ε > 0, x30 = max(U(µ) (D is 
replaced with F = γFmax, 1≥γ>0, when D = Dmax, The choice 
of γ depends on the step of the equation solver and is not a 
part of the optimization (here γ = 0.123); 

2. At the interval [t1, t2] the control is F = 0 (µ(t1)=(x30-ε), 
µ(t2) = x30 - to be escaped an overregulation); 
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3. After this moment the control is the control (9) with 
F = γFmax, when D = Dmax (chattering control with 1≥γ>0).  

 
The deviation of the fed-batch process with this control is shown on 
Fig. 4. 
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Fig. 4. Stabilization of the fed-batch process 
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Fig. 5. Substrate concentration in the bioreactor 
 
After the stabilization the process can be maintained around the 
optimal parameters with control in sliding mode (Figs. 4-5). Possible 
solution in sliding mode is alternation of µm (as a function of the 
temperature and the acidity in the bioreactor) or alternation of F [2].  
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5. OPTIMAL PROFILE AND DETERMINATION OF MOMENT t1 
AND MOMENT t2
 
The solution described in the previous chapter is a chattering control. 
In this chapter we determine a smooth control solution for 
determination of the interval [t1, t2] - determination of the moments t1 
and t2. Here is supposed that µi(0)<µe, S(0)<Se where: 
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The optimization problem is: 
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A supplementary condition is “elimination of any 
overregulation” of µ. The optimal control law, according the 
previous solution is: 

1. At the time interval [0, t1] the control is F(t) = γFmax. This is 
proved in [8], (γ = 0.123, this parameter is not a part of the 
optimization);  

2. At the interval [t1, t2] the control is F = 0 (to be escaped any 
overregulation). The growth rate changes from µn to µe 
where µ(t1) = µn, (µ(t2)∧S(t2) = Se) and µn<µe. We effect this 
by determination of a manifold on the base of the problem 
(12) (Eq. 14). When the state vector across over this 
manifold the control becomes F(t1) = 0. The moment t2 is 
the moment of over crossing the manifold 
(µ = µe )∩(dµ/dt=0);  
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3. After the moment t2 the control is F(t) = (kX(t)µ(t)V(t)/(So-
Se), where X(.) is the quantity of biomass in the bioreactor 
(if F(t)>Fmax we pose F = Fmax, and here γ = 1). 

 
The determination of moment t1 and moment t2 is based on the next 
optimal control problem: 
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Here is supposed that µ(0)<µe. We propose the next numerical 
solution for determination of an approximation of moment t1: 

- If S(0)>Sn t1 is equals to zero (t1 = 0). In this case the initial 
conditions are equivalent to these of model (3). An 
overregulation is possible, because the process is 
uncontrollable from moment 0 to moment t2;  

- If S(0)<Sn and µ(0)<µe; the moment t1 is the moment at 
which the state vector of the differential Eq. (13) across 
over the next manifold:  

 
 
 
 
 
 

,0))(exp(1)(
)(
)(ln

))((
)()(

)())(exp(),,,,(

2
1

2
121

1

1
1

11

=⎥⎦
⎤

⎢⎣
⎡ −

+
−

−⎥
⎦

⎤
⎢
⎣

⎡
+
+

−
+

+−+−=

m
tf

m
tmfm

SKs
tSKs

tSS
tKsftfm

ttfKsSX

m
ee

m

ee

µµ

Manifold µµµµ

+

(14) 
 

.

)(
)(ln)(

))(()
)(

)()(ln())((

)(
1

1

1
1

111

1

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

+
+

+−

−⎥
⎦

⎤
⎢
⎣

⎡ −+
+

−

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

e
em

e
ee

SKs
tSKsKstSS

tSS
tX

StStX
m

t

tf
 
 
 
where

µ

µµ



BIO

Autom
ati

on

Bioautomation, 2007, 8, Suppl. 1, 13 – 26           ISSN 1312 – 451X 
 

 24 
 

The moment t2 is determined approximately as follows t2 = t1+f(t1). 
The solution is shown on Fig. 6.  
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Fig. 6. Optimal profile with the manifold (14) 
 
The optimal profile of the fed-batch cultivation, during the whole 
time period is shown on Fig. 7. This control law determines the same 
optimal solution as the chattering control (9). 
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Fig. 7. Optimal profile of the growth rate 
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The manifold (14) is determined on the base of the optimization 
problems (12 and 13) with some simplification and approximation of 
the integral. This is a numeric solution. The moment t2 is determined 
approximately. If the process do not reaches the value µe at the 
calculated time t2 (this is a numerical solution) the step is repeated 
iteratively. 
 
6. CONCLUSIONS 
 
In the paper is presented a control design based both on the 
Brunovsky normal form of the Monod-Wang kinetics model and on a 
chattering optimal control design. The optimal profile is determined 
providing against the overregulation of the specific growth rate. The 
simulation confirms the fact that the sliding optimal solutions are 
robust solutions.  
 
The evaluation of the expert utility criteria is an iterative process. 
This characteristic permits an iterative engineer control design and 
easy correction of the control law in agreement with some new 
changes in the technological conditions.  
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