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Summary: Although recently the properties of a single somite cell oscillator have been 
intensively investigated, the system-level nature of the segmentation clock remains 
largely unknown. To elaborate qualitatively this question, we examine the possibility to 
transform a well-known time delay somite cell oscillator to dynamical system of 
differential equations allowing qualitative analysis.  
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1. INTRODUCTION 
 
As it can be seen from the literature [1], the mechanism of “cell to 
cell” interaction is coupling-like, instead of free Brownian motion. 
This study addresses the molecular mechanism of the somitogenesis 
in the context of reaction-diffusion modelling firstly proposed in [2], 
but not related to gene expression factors being unknown in that 
time. In the earlier paper [3], such named “clock and wave-front” 
model has been proposed to explain segmentation. Later 
modifications of this approach are related with some contradictions 
noted in paper [4]. For example, in the models [5, 6] it is assumed 
that clock and FGF-8 wave-front are independent, but in another 
paper [7] it is shown not to be the case. In accordance with this 
understanding, recently two mathematical works devoted on clock 
and wave-front mechanism for somite formation have been 
published [8, 9]. We are inspired from the valuable mathematical 
approach accepted in [8, 9] to elaborate more concrete model of type 
“clock and wave-front”, where all variables involved have a sense of 
concrete molecular concentrations of the somite cell oscillator. For 
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this purpose, besides some results of paper [1], we take also into 
account numerical data from paper [10] as well as the basic time 
delay model of somite oscillator from [11]. 
 
2. TRANSFORMING A TIME DELAY SOMITE CELL 
OSCILLATOR TO SIMPLE ORDINARY DIFFERENTIAL 
EQUATION  
 
We consider the system of two time delay differential equations, 
taken from Lewis paper [11] and presenting a somite cell oscillator: 
 

[ ]

. ( ) .

( ) .

p

m

dp a m t T b p
dt
dm f p t T c m
dt

= − −

= − −
 (2.1) 

 
where the protein molecular concentration p and mRNA molecular 
concentration m are unknown functions of a time t, f is a known 
function, a, b, c are constant parameters and Tp, Tm are constant time 
delays. Following [11], the brief qualitative description of this 
oscillator consists in the assertion that it presents a simple negative 
feedback loop with a timing delay. In paper [11] as well as in paper 
[10], it is shown numerically the existence of self-oscillatory 
solutions of (2.1) and other solutions asymptotically converging to 
selfoscillations. In accordance with the well-known trajectory 
classification [13], that means the corresponding phase trajectories 
(p(t), m(t)) of all these solutions are a simple and regular plane curve. 
(It is known from the differential geometry that simple curve is not 
self-intersected and regular one has no steady state point on itself). In 
the authors paper [14] it is proved a general theorem for existence of 
dynamical system having solution in the form of a given simple and 
regular curve. For our purposes here, a two-dimensional formulation 
of the theorem can be used in the following form: 
 

Theorem Let p(t) and m(t) be real-valued analytic functions, 
defined on interval (t1, tN), such that for 1( , )Nt t t∀ ∈  the curve 

 is simple and regular. Then there exist real-

valued analytic functions 
(( ) ( ), ( )c t p t m t=

r )
( ),F p m  and , such that( , )G p m ( )c tr  is a 

solution of the system 
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( )

( )

,

,

dp F p m
dt
dm G p m
dt

=

=
 (2.2) 

 
If the system (2.2) has self-oscillatory behaviour [11, 10], it can be 
transformed in the form 
 

( )

dx y
dt
dy e f y x
dt

ω

ω ω

=

= −
 (2.3) 

 
by substituting appropriate changes of variables  
[15].  

( , ) ( , )p m x y→

 
The system (2.3) presents some approximation of (2.1) and should 
have some of their properties concerning self-oscillatory behaviour. 
That is why it is of interest to investigate the qualitative behaviour of 
(2.3). The variables x(t) and y(t) are considered as deviations from 
the steady state values p and m of (2.2). If the dimensionless 
parameter e is small the self-oscillations are quasi-harmonic and are 
small too (with respect to p  and m ). 
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Fig. 1    Fig. 2 
 

The main isoclines of system (2.3) are: the isocline of vertical 
tangents and isocline of horizontal tangents. Their equations are 
 

0=y   and   ( )x e f y= . 



BIO

Autom
ati

on

Bioautomation, 2007, 8, Suppl. 1, 95 – 104          ISSN 1312 – 451X 
 

 98

y (t) 

0
 b 

t 

 

C D 

B 

 S

 0 X 

N 

M 

Y 

Q 

 P
A 

 
Fig. 3    Fig. 4 

 
In order to consider oscillatory behaviour of (2.3) we accept that the 
function  has a form similar to that shown in Fig. 4 (the curve 
PQOMN). For e > 0 the steady state (0,0) presents an unstable focus. 
If e << 1, the system (2.3) has a limit cycle near to ellipse and x(t) 
and y(t) vary along harmonic law (i.e. quasi-harmonic oscillations). 
If e >> 1, the limit cycle is near the rectangle MNQP. In a particular 
case, when PQ||CD||MN, the limit cycle is a rectangle. The 
corresponding dynamical system having rectangular solution is 

( )e f y

 
dxy
dt

= = ±b , (2.4) 

 
where b is the magnitude of oscillations of y(t). The magnitude of 
x(t) is A (as it is shown in Fig. 1 and Fig. 2. The oscillations x(t) are 
triangle (see Fig. 2) and those of y(t) are rectangular (see Fig. 3). The 
sign plus is taken during the change of x from x A= −  to x A= +  
along the top of the rectangle. The sign minus is taken along the 
bottom of rectangle. The half of the period T of the triangle 
oscillations is equal to the time of variable change from P to Q. Thus 
the frequency is 
 

/ /T bπ πΩ = = 2A . 
 
For relaxant oscillations we can show that the system (2.3) is 
reducible to (2.4) in the following way: Let us introduce a new time 

 and new coordinate z by substituting 't '/t e t ω=  and x e z=  in 
(2.3). Then we obtain the system (2.3) in the form 
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2

1 ( )

dz y
dt

dy z f y
dte

=

= − +
 (2.5) 

 
where “prime” of t is missed. Following the well-known Tichonov’s 
theorem of quasi-steady-state approximation [16], we can replace the 
second equation of (2.5) by the algebraic one 
 

)( yfz = . (2.6) 
 
The function f(y) can be replaced by segments of PQ and MN. Then 
(2.6) takes the form ( )z y b tg γ= m . The sign minus can be taken 
during the movement along PQ, and the sign plus – along NM. The 
angle γ and b  are shown in Fig. 4. OS=
 
At the end, in order to receive the simple ordinary differential 
equation (2.4) presenting a rectangular limit cycle, we apply the 
transition / 2γ π→ . Then PQMN tends to the rectangle, and 

. By replacing these values in the first equation of (2.5) we 
obtain the equation (2.4). 
y → mb

 
This result means that there is no qualitative difference (in sense of 
the theory of differential equations) between (2.3) and (2.4). Thus in 
all further considerations we can consider simple equations of type 
(2.4) instead of more complex systems (2.3) and to apply the 
obtained conclusions for (2.3) to systems of type (2.1) too. More in 
detail we will analyse the question for synchronisation of two and 
more oscillators of these types. 
 
3. REACTION-DIFFUSION MODEL OF SPATIALLY 
DISTRIBUTED SOMITE CELL OSCILLATORS 
 
To modelling clock and wave front mechanism of somitogenesis we 
need to construct reaction-diffusion dynamical system principally 
based on experimentally derived somite oscillator of type proposed 
in [11]. As it is shown in Section 2 of this paper similar oscillator is 
qualitatively equivalent to selfoscillatory system of type (2.3). That’s 
why we model somitogenesis as a large number of coupled 
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1)+

oscillators (i.e. somite cells) of type (2.3) are spatially distributed on 
the axis r with sufficiently large density (i.e. number of cells per unit 
length on x). We concretise the type of relaxant oscillators by using 
the well-known Van der Pol differential equations. In this way we 
conserve the qualitative equivalence [17] of our models and their 
applicability to somitogenesis process. It can be proven 
mathematically, that if we introduce a coupling term of type 

in the first equation of every i-th oscillator of 
Van der Pol type, then after such named continualization, the system 
of large number spatially distributed oscillators can be presented in 
the following form 

2
1( 2i i ima x x x− − +

 

,)1(

,

2

2
22

12

2
2

r
ynaxye

dt
yd

r
xmay

dt
xd

∂
∂

+−−=

−
∂
∂

+= λξ  (3.1) 

 
where ( , )x x r t=  and ( , )y y r t=  are protein and mRNA variables 
respectively, ξ is untunung (dissonance) between neighbour somite 
cells, m and n are coefficients of protein and mRNA diffusion-like 
coupling, e is a large parameter, 1λ  is activation parameter, a is 
average distance between two neighbour somite cells (oscillators), t 
is the time. In this section the system (3.1) will be investigated for 
possible inhomogeneous effects in the context of clock and 
wavefront mechanism of somitogenesis. 
 
Let us firstly analyse parametrically the homogeneous solution of 
(3.1). For this purpose we make the following substitutions 
 

( , ) ( , )
( , ) ( , )

x t r x t r
y t r y t r

α ω µ
β ω µ

=
=

. 

 
Then the system (3.1) takes the form 

2 2
1

2 2 2 2
1

( / ) ( / ) / ,

( / ) ( / ) ( / ) (1 ) ,
t rr

t rr

x y ma x

y x na y e y

βξ αω µ ω λ αω

α βω µ ω ω β

= + −

= − + − − y
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where , , ,t t rr rrx y x y  are corresponding derivatives with respect to t 
and r. Choosing 
 

1/ 2 1/ 2 2
1

1/ 2 1/ 4 1/ 2
1

1, , / , / ,

/ , , / ,

e e c m n

an

β ω ξ ξ

λ λ ξ α ξ µ ξ

= = = =

= = =
 

 
as a result we obtain 

2

2

,

(1 ) .
t rr

t rr

x y c x

y x y ey y

λ= + −

= − + + −
 (3.2) 

 
This system has an unique fixed point 2(1 ),eλ λ λ⎡ ⎤−⎣ ⎦ .  
 
In homogeneous case the parameters are identical in every point of 
the volume occupied by the somite cells. Then the model with 
distributed parameters (3.2) transforms to the model with 
concentrated parameters. That is possible in the following cases: 

• At first, when the coefficients m and n are equal to zero, the 
neighbour cells do not interact and propagation of a wave-
front does not occur. 

• Secondly, when m is sufficiently large, the velocity c of 
wave-front is essentially larger than the velocity of diffusion 
between the cells. In this way a wave-front propagation can 
be observed. Evidently, this is the case we are interesting in.  

 
To investigate the solutions of the system 
 

2

, ( /
(1 ) ( / / )

/ )x y x x t
y x ey y y y t dy dt

dx dtλ= − = ∂ ∂ =

= − + − = ∂ ∂ =

& &

& &
 (3.3) 

 
we linearize it near the fixed point (steady state) 
 

2' (1 ), 'x x ey y y ,λ λ= + − = +  
 
and obtain the fixed point is 
 (i) stable node for  2(1 3 ) 2e λ− < − ; 
 (ii) stable focus for 22 (1 3 ) 0e λ− < − < ; 
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 (iii) unstable focus for 20 (1 3 ) 2e λ< − < ; 
 (iv) unstable node for 22 (1 3e )λ< − . 
 
The equilibrium state corresponding to the fixed point is unstable for 

 and stable for . It can be shown that at 
transition of the parameter 

1/ 20 (1/ 3)λ< < 1/ 2(1/ 3)λ >

λ  through the value  a stable 
limit cycle emerges (Andronov-Hopf bifurcation). 

1/ 2(1/ 3)λ =

 
Now we are ready to analyse the wavefront solutions of the 
distributed model (3.2). After translating the steady state point 

2(1 ),eλ λ λ⎡ −⎣ ⎤⎦  at the origin (0,0) and for ( 0, 0, 0e cλ> > > ) we 
obtain the system 
 

2 2[ (1 3 ) 3 ]t rr t rr
2 3x y c x y x y e y y y yλ= + = − + + − − −  (3.4) 

 
By substituting ( ), ( )x x r t y y r tω ω= − = −  in the last system we 
obtain the following system of ordinary differential equations 
 

.0)331(''',0''' 222 =−−−+−+=++ yyeyxyyyxxc λλωω  (3.5) 
 
Further we apply the Hopf theorem to investigate the existence of 
periodic solution of (3.5) in a neighbourhood of the fixed point (0,0). 
By putting 2(1 3 )eδ λ= −  the Routh-Hurwitz criteria for the 
characteristic equation of (3.5) 
 

2 4 2 3 2 2 2(1 ) ( ) 1 0c c cα ω α ω δ α ωδα+ + + + + + =  (3.6) 
 
takes the form 
 

2
2

2 4 2 1/ 2

2(1 )0,
( 4 )

c denote
c

ω δ
ω ω

+
> >

+ +
∆ . (3.7) 

Let us now consider the case 0ω = , i.e. we exclude the standing 
wavefronts. With a substitution t t⇔ −  we can do 0ω > . In this 
case the conditions (3.7) show, that the steady state is stable at 

 and unstable at 2δ > ∆ 2δ < ∆ . When 2δ = ∆ , (3.6) has a couple 
conjugated roots 
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)2 1/ 2, /(1ik k cα = ± = ∆ + . 
 
The other two roots of (3.6) can be determined by the equation 
 

2 2 2 2(1 ) 1/ 0c c kα ω α+ + + = . 
 
These roots have a negative real part. If we put in (3.6) 

2( )δ δ µ µ= = ∆ − , and denote by ( )α µ  the corresponding roots, 
then we have 
 

2 2 4

0 2 2 2 2 2 2 2 2 2

( 2 )Re( / ) 0 ,
2[ ( 1) ( ( 1) ]

k cd d
k c c k cµ

ω ωα µ
ω ω=

+
= >

+ + + −
 

 
for the root with (0) ikα = . Thus at the transition of δ through the 
critical value 2∆  a limit cycle vanishes or emerges, i.e. a bifurcation 
takes place. To define what of two possibilities realizes, we calculate 
the first Lyapunov value L1 for (3.5) at 2δ = ∆ . In the case when 
L1 > 0, the cycle is subcritical and unstable and for L1 < 0 it is 
supercritical and stable. 
 
The considerations in this section show that the transition from stable 
to unstable behaviour of the model (3.5) is possible for linear and 
nonlinear processes. That means the corresponding wave-front can 
be stable or unstable depending on the diffusive coefficients m and n. 
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