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Summary: In this paper we have done sensitive analysis of a time delay model which 
describes the ERK and STAT5 interaction. The results show that the type of the 
equilibrium point of the model can be a compound saddle-focus or a compound 
saddle-knot. This means that the model is structurally unstable. From the biological 
point of view in case of interactions between ERK and STAT the proto-oncogenes 
may turn into oncogenes. 
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1. INTRODUCTION 
 
In cancer cells the signaling pathways controlling proliferation, 
differentiation and apoptosis are altered [3-5]. To understand key 
regulatory mechanisms and to predict targets for intervention at a 
cellular level mathematical models are used. Furthermore cross talk 
of signaling pathways has to be included since cells are usually 
stimulated by multiple factors and cell surface receptors that 
simultaneously activate multiple signaling pathways forming 
complex signaling networks [5, 6, 14, 20]. 
 
The Janus kinase / Signal transducer and activators of transcriptions 
(JAK/STAT) and Extracellular signal-regulated kinase (ERK) are 
essential intracellular signaling pathways which regulate gene 
expression by the phosphorylation of transcription factors. Both 
signaling cascades control the proliferation and differentiation of 
different cell types. The specific biological effects are crucially 
dependent on the amplitude and kinetics of STAT activity [2-4, 17-
20]. In the recent decades it has been established that these pathways 
can interact between each other, a phenomenon called cross talk. The 
dynamic models allow to be obtained more clear information about 
the mechanisms of interaction and regulation of the signaling 

mailto:kotev@mech.bas.bg


BIO

Autom
ati

on

Bioautomation, 2007, 8, Suppl. 1, 123 – 132        ISSN 1312 – 451X 
 

 124

pathways and networks and the response of cells respectively. The 
theory of non-linear dynamics allows defining behavior of the 
systems against perturbations or controlled reaction to stimulus. 
 
A time delay model for interaction between ERK and STAT5a in 
CHOA cells is proposed in the paper [9]. In the unstimulated cells 
STAT5a is complexed with inactive ERK that binds to STAT5a via 
its C-terminal substrate recognition domain to an unknown region on 
STAT5a. Then via its active site it binds to the C-terminal ERK 
recognition sequence in STAT5a. On the other hand, upon GH 
stimulation, MEK activates ERK through phosphorilation of specific 
threonine and tyrosine residues in ERK. The active ERK 
phosphorilates serine 780 in STAT5a, resulting in decreased affinity 
between the two proteins and dissociation of the complex. The time 
delay model interactions between ERK and STAT5 has the 
following form 
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The concentration variables  are denoting concentrations 
of ERK-inactive, ERK-active, STAT5-unphosphorylated and 
STAT5-phosphorylated respectively. Kinetic constants  and  
are proportional to the frequency of collisions of ERK and STAT5 
protein molecules and present rate constant of reactions of 
associations;  and are constants of exponential growths and 
disintegrations; I > 0 and A > 0 are inhibitor and activator sources 
respectively. The source I > 0 inhibits the inactivation of active 
ERK, and A activates the dephosphorylation of phosphorylated 
STAT5a. The terms I and A can be also considered as some effective 
(apparent) inhibitor and activator, under condition that they present 
really some in-flux and out-flux of the active ERK and 
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phosphorylated STAT5a respectively. A more concrete interpretation 
of the inhibitor I and activator A can be given in connection with the 
role of the SOCS proteins in linking JAK/STAT and MEK/ERK 
pathways. 
 
In the next section we present the sensitive analysis of the time delay 
model (1). The following two sections present analytical and 
numerical results which illustrate the influence of the different 
values of the bifurcation parameters on the model. In the final 
section we discuss and summarize our results. 
 
2. SENSITIVE ANALYSIS 
 
In this section we investigate the dynamical behavior of the time 
delay model (1). The system has two steady-states. One of them has 
positive values ( )1(

1s ) and the other – negative ones ( )2(
1s ). From a 

physiological point of view only the positive values are actual 
concentrations. Therefore it is denoted, that ),,,( 2121 sseeE >0 is 
equilibrium state (fix point) of the time delay system (1). In order to 
investigate the character of the fix point E , we consider small 
perturbations about the equilibrium level, i.e. 
 

xee += 11 , yee += 22 , zss += 11 , wss += 22 . (2) 
 
The system (1) in local coordinates takes a form 
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Linear stability analysis 
For small delay τ ( 1<τ ), the method of linear stability analysis is 
much convenient to investigate the qualitative behavior of system 
(3). For this purpose we develop the function 2e τχ− τχ2−e  in Taylor’s 
expansion and retain only linear term, then we have . χττχ 212 −≈−e
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After some transformations and algebraic operations the 
characteristic equation of (3) takes its final form 
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where 
 

)2( 11 τapp += , )2( 1111 τcabq +−= , )( 111 cdr −= , s = 0. 
 
In order to investigate the stability of equilibrium point E  we use 
Routh-Hurwitz conditions [1,7,8,13]. Here these conditions are 
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s = 0, (8) 

( )
.0)().2.(

].2[
2

1320320132132130121

131120321011

>−+++

+++++=

skkkskkkekkkkkskkekk

ekkskkkkskekR

τ

τ
 (9) 

 
It is seen that in our case conditions (5) - (7) and (9) are always 
valid, but (8) is equal to zero, i.e. is not bigger than zero. In this case 
the type of equilibrium state is a compound saddle-focus or a 
compound saddle-knot [10, 13]. Whether we will have the first or the 
second type depends on the roots of the characteristic equation (4). 
In order to determine the type of the roots we should examine them 
on the border of the area of stability. According to [1] the border of 
the area of stability are R = 0 and s = 0. In our case, it is examined 
the type of equilibrium state of the system on the border s = 0. On 
this border the characteristic equation (4) has one root equal to zero, 
and the type of the other roots is determined by the expression: 
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From (10) follows that 
 a) if the conditions 0<Ω , 0R0,s  ,0r  ,0q  ,0 111 >=>>>p  
are satisfied, then the equation (4) has one root equal to zero and 
three negative real roots. 
 b) when 0>Ω , 0R0,s  ,0r  ,0q  ,0 111 >=>>>p , then the 
equation (4) besides one zero root also has a negative real root and 
two complex conjugate roots with negative real parts. 
 
The theory of dynamics systems considers various aspects of 
stability in critical cases, as well as the bifurcation phenomena 
accompanying the loss of stability at equilibrium states [1, 7, 8, 13]. 
Here, we mention only the two most common and simple cases 
[11, 13] where the characteristic equation (4) (i) has one zero root 
and (ii) has a pair of complex-conjugated roots on the imaginary 
axis.  
 
The first case is determined by the condition 
 
s = 0 and , k = 1, 2, 3, (11) 0>∆ k

 
where  is the Routh-Hurwitz determinant. Recall that 

, where A is the matrix of the linearized system at the 
equilibrium state. In view of this condition, the equilibrium states 
associated with the first critical case are also called degenerate. Thus, 
a transition through the stability boundary in the first critical case 
may result in the disappearance of the equilibrium state. In this case 
the system is structurally unstable and through bifurcation it will lose 
its stability non-reversely. Generally the stability of cell signaling 
pathways could, from a biological point of view, be connected to 
homeostasis. This is achieved by a system of feedback control loops. 
In other words, for the stability of cell signaling processes it is 
essential that the cell maintains a stable condition where in fact a 
constant flux of molecules occurs [12, 20]. However, in case of 
crosstalk between ERK and STAT5 pathways, the homeostasis is 
disturbed. Studies have shown that such interaction has been 
observed in cancer disease which classifies this type of crosstalk as 
disruptive and causing disease [3, 5, 17, 18]. 
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3. NUMERICAL ANALYSIS 
 
In this section we shall illustrate numerically some analytical results 
which were obtained in the previous section for system (1). In view 
of the lack of quantities data for parameters of cross talk between 
ERK and STAT5 pathways we assign the intervals within which the 
parameters change on the basis of data about the JAK-STAT and 
MAPK pathways [2, 6, 19, 20] in accordance with biochemical 
kinetics. For the numerical simulations we assume the following 
intervals of the parameters 
 

]4  ,5.0[0 ∈k min-1, ]4  ,7.0[1∈k min-1, min]4  ,1.0[2 ∈k -1, 

min]0.6  ,2.0[3 ∈k -1, ]1  ,1.0[∈τ sec,  (12) ]1.10 ,10.1[ -23
0

−∈e

]1.10 ,10.1[ -23
0

−∈e mM, mM, ]1.10 ,10.1[ -12
0

−∈s

]1.10 ,10.1[ -34−∈I mM, mM. ]1.10 ,10.1[ -45−∈A
 
We examine the influence of all parameters (12) on the dynamic 
behavior of the system (1). To do this we vary one parameter at a 
time while the other parameters are fixed. Based on the qualitative 
theory of the differential equations, the parameter that varies is 
bifurcation one. Firstly, as bifurcation parameter the kinetic constant 
k0 is chosen. In the Fig. 1 it is shown the type of the roots of (4) 
beside of zeros root as function of the k0. It is seen that the Ω can be 
negative and positive. In this case the type of steady state changes 
from compound-knot to saddle-focus by bifurcation. The system has 
the same type of equilibrium state when  and 0e τ  vary in their 
intervals. 
 
When parameters , , are varied, the type of the equilibrium 
state is compound saddle-focus (Fig. 2). Ω is always positive and the 
roots of Eq. (4) are: one real negative and two complex conjugated 
ones with a negative real part in the whole interval, respectively. 
Therefore, according to [1, 10] the equilibrium points are from 
compound saddle-focus type. In this case subsiding oscillations will 
arise around this unstable equilibrium state. Finally when we vary 
the parameters k

0s 2k 3k

1, I, A in their intervals, Ω is negative and the 
characteristic Eq. (4) has three negative real roots. Here the character 
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of the equilibrium point is a compound saddle-knot. It is depicted in 
Fig. 3, where parameter I is chosen for a variable parameter. 
 

 
Fig. 1. The real parts of the roots as function of k0. 

 
 

 
Fig. 2. The real parts of the roots as function of s0. 
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Fig. 3. The real parts of the roots as function of I. 

 
4. CONCLUSION 
 
The sensitive analysis of the time delay model of interaction between 
ERK and STAT shows that the model has one unstable equilibrium 
point whose type can be either compound-knot or saddle-focus. The 
type of the equilibrium state depends on the parameters of the model. 
Moreover the system can change its phase portrait by bifurcation 
when definite parameters are varied. This means that the system is 
structurally unstable. From the biological point of view in case of 
interactions between ERK and STAT the proto-oncogenes may turn 
into oncogenes in the cells. 
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