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Abstract: In this work a genetic algorithm is proposed with the purpose of the feeding 
trajectory optimization during a fed-batch fermentation of E. coli. The feed rate profiles are 
evaluated based on a number of objective functions. Optimization results obtained for 
different feeding trajectories demonstrate that the genetic algorithm works well and shows 
good computational performance. Developed optimal feed profiles meet the defined criteria. 
The ration of the substrate concentration and the difference between actual cell 
concentration and theoretical maximum cell concentration is defined as the most appropriate 
objective function. In this case the final cell concentration of 43 g·l-1 and final product 
concentration of 125 g·l-1 are achieved and there is not significant excess of substrate. 
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Introduction 
The problem of determining optimal controls for fed-batch fermentation processes has 
become an important field of interest in biotechnology that offers a sustainable production of 
existing and novel products. Today many proteins are produced by genetically modified 
microorganisms. One of the most used host organisms is the bacterium E. coli as it is a well 
studied and a well-known organism. To achieve a good productivity, high cell concentration 
and high cell productivity are desired and this is usually obtained from fed-batch cultivations. 
Fed-batch culture is advantageous in particular when nutrient concentrations strongly affect 
cell yield or productivity, as both overfeeding and underfeeding would result in growth 
repression and starvation to cells, respectively [12]. Development of a suitable feeding 
strategy is critical in fed-batch operation and review on the subject is given in [3]. 
 
Currently, the feed rate optimization problem is commonly solved by mathematical model 
based optimization methods. If an accurate model of the system is available optimization 
procedures can be used to calculate the feeding strategy [5, 9, 15, 16]. However, fermentation 
processes are typically very complex, involving different transport phenomena, microbial 
components and biochemical reactions. Furthermore, the nonlinear behavior and time-varying 
properties make processes difficult to control with traditional techniques. For simple 
mathematical models, the problem can be solved analytically, from the Hamiltonian function, 
by applying the minimum principle of Pontryagin [14, 17]. However, besides having a 
problem of singular control, those methodologies become too complex when the number of 
state variables increases. 
 
Lately the use of evolutionary algorithms (EA) for optimization has increased [1, 6, 10]. In 
the work [13], EA are used to achieve optimal feed-forward control in a recombinant bacterial 
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fed-batch fermentation process that aims at producing a bio-pharmaceutical product. Three 
different aspects are the target of the optimization procedure: the feeding trajectory, the 
duration of the fermentation and the initial conditions of the process. The intention of the 
work [2] is to use the most popular type of EA – genetic algorithms (GA) for identifying the 
parameters of a seventh-order nonlinear model of fed-batch culture of hybridoma cells, and 
determining the best feed rate control profiles for glucose and glutamine. Genetic algorithms 
proved to be a good alternative method for solving such problems. In the work [4] the optimal 
profile for the substrate feeding rate in a fed-batch culture of S. baicalensis g. is determined 
using a genetic algorithm. The experimental results showed that neurocontrol incorporated 
with a genetic algorithm improved the flavonoid production compared with a simple fuzzy 
logic control system. 
 
The main motivation of this paper is to develop a robust and reliable genetic algorithm in 
order to achieve optimal substrate feeding trajectory. An optimal state of microorganisms’ 
culture for biosynthesis of the desired product can be maintained by using appropriate feed 
rate profiles. A fed-batch fermentation process of E. coli strain BL21(DE3)pPhyt109 was 
studied [8]. The bacterium E. coli is the microorganism of choice for the production of the 
majority of the valuable biopharmaceuticals. E. coli usually grows under fed-batch mode due 
to the effect of acetic acid, which is produced when glucose is present above certain 
concentrations. The specific objective is to obtain the best feed rate profile for considered fed-
batch fermentation process based on a number of objective functions. 
 
The fed-batch fermentation process 
E. coli strain BL21(DE3)pPhyt109 is used for fermentation experiments. The experiments are 
performed in the Department of Fermentation Engineering, Faculty of Technology, University 
of Bielefeld. Plasmid pPhyt109, an expression vector derived from the multi copy plasmid 
pUC19, contains the gene for E. coli phytase under the constitutive promoter of the bglA gene 
of Bacillus amyloliquefaciens. In addition, the expression vector contained a secretion cassette 
of 2.5 kb providing the competence for the secretion of pythase into the culture medium based 
on the action of the Kil protein expressed under the control of the stationary-phase promoter 
of the fic gene [8]. 
 
Fermentation experiments are carried out in a bioreactor with a total volume of 7 l and a 
working volume of 5 l. The bioreactor is equipped with direct digital control (DDC) from 
MBR (Multiple Bioreactors and Sterile Plants, Zurich, Switzerland). Glucose mineral salt 
medium is used as growth medium. The pH is maintained at 6.9 by controlled addition of 4 N 
NaOH. Antifoam (PE8100, BASF, Germany) is added automatically when required. The 
temperature is kept at 37ºC. Air flow is kept constant at 10 l·min-1. The stirrer speed is kept 
constant at 500 rpm. 
 
The rates of cell growth, substrate consumption and phytase production in the E. coli fed-
batch fermentation are commonly described as follows: 

max
S

dX S F= X
dt k S V

µ −
+

X  (1) 

(max
/

1
in

S X S

dS S F= X +
dt Y k S V

µ−
+

)S S−  (2) 
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where: X is the biomass concentration, [g·l-1]; S – substrate (glucose) concentration, [g·l-1]; 
Ph – phytase concentration, [g·l-1]; F – feeding rate, [l·h-1]; V – bioreactor volume, [l]; 
Sin – substrate concentration in the feeding solution, [g·l-1]; maxµ – maximum growth rate, 
[h-1]; kS – saturation constant, [g·l-1]; and /S XY /Ph XY  – yield coefficients, [g·g-1]. 
 
The following assumptions are made in the model development of the fed-batch fermentation 
of E. coli BL21(DE3)pPhyt109: 

• The bioreactor is completely mixed. 
• Potential mixing effects of the highly concentrated feeds with the fermentation 

medium are neglected for the sake of the model simplicity. 
• The suspension viscosity in the reactor remains constant during the experiment. 
• The substrate (glucose) is consumed mainly oxidatively. 
• Variations in the growth rate and phytase production, as well as in substrate 

consumption do not significantly change the elemental composition of biomass, thus 
balanced growth conditions are only assumed. 

• The phytase production is regarded as a one-step enzymatic reaction. 
• Parameters, e.g. pH and temperature, are controlled to certain acceptable constant 

values during the process. 
 
The numerical values of the model parameters used in simulations are presented in Table 1. 
 

 Table 1. Model parameters 
Parameter maxµ , [h-1] Sk , [g·l-1] /S XY , [g·g-1] /Ph XY , [g·g-1] 

Value 0.74 0.03 1.47  1.54 
 
Genetic algorithms for feeding trajectory optimization 
During the fed-batch fermentation of E. coli BL21(DE3)pPhyt109 the system states change 
considerably, from a low initial to a very high biomass and product concentration. This 
dynamic behavior motivates the development of optimization methods to find the optimal 
input feeding trajectories in order to improve the process. An appropriate approach for 
optimizing the feeding trajectory comes from the use of Evolutionary algorithms. 
 
EA are a very popular class of methods based on the ideas of biological evolution, which is 
driven by the mechanisms of reproduction, mutation, and the principle of survival of the 
fittest. EA differ from more traditional optimization techniques in that they involve a search 
from a “population” of solutions, not from a single point. Each iteration involves a 
competitive selection that weeds out poor solutions. Similarly to biological evolution, 
evolutionary computing methods generate better and better solutions by iteratively creating 
new “generations” by means of those mechanisms in numerical form.  
 
Several different types of evolutionary search methods were developed independently. These 
include: genetic programming, which evolve programs; evolutionary programming, which 
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focuses on optimizing continuous functions without recombination; evolutionary strategies, 
which focuses on optimizing continuous functions with recombination; and genetic 
algorithms [7], which focuses on optimizing general combinatorial problems.  
 
Genetic algorithms 
Genetic algorithms are a class of non-gradient methods. The basic idea of GA is the 
mechanics of natural selection. Each optimization parameter, (xn), is coded into a gene as for 
example a real number or string of bits. The corresponding genes for all parameters, x1, …, xn, 
form a chromosome, which describes each individual. A chromosome could be an array of 
real numbers, a binary string, a list of components in a database, all depending on the specific 
problem. Each individual represents a possible solution, and a set of individuals form a 
population. In a population, the fittest are selected for mating. Mating is performed by 
combining genes from different parents to produce a child, called a crossover. Solutions are 
also “mutated” by making a small change to a single element of the solution. Finally the 
children are inserted into the population and the procedure starts over again. The optimization 
continues until the population has converged or the maximum number of generations has been 
reached. 
 
Proposed GA is based on the Genetic Algorithm Toolbox for Matlab [11]. Outline of the 
algorithm could be presented as: 

1. [Start] Generate random population of n chromosomes 
2. [Fitness] Evaluate the fitness f(x) of each chromosome x in the population 
3. [New population] Create a new population by repeating following steps until the new 

population is complete 
1. [Selection] Select two parent chromosomes from a population according to 

their fitness 
2. [Crossover] With a crossover probability cross over the parents to form new 

offspring 
3. [Mutation] With a mutation probability mutate new offspring at each locus 
4. [Accepting] Place new offspring in the new population 

4. [Replace] Use new generated population for a further run of the algorithm 
5. [Test] If the end condition is satisfied, stop, and return the best solution in current 

population  
6. [Loop] Go to step 2 

 
The parameters of a GA significantly affect the speed of convergence to the near optimal 
solution, and the accuracy of the solution itself. Therefore, there is a need to investigate the 
effects of the different GA parameters on the outcome of the GA enhanced simulation. 
 
Results and discussion 
Configuration of the genetic algorithm 
Since GA are stochastic, their performance usually varies from generation to generation. 
Extensive simulation tests have been conducted on the GA to test the effectiveness of the 
algorithm, using the model (1) – (4). A first set of experiments was carrying out in order to 
find the best set of genetic operators to tackle the feed rate optimization problem. Each run of 
the GA is stopped after 100 iterations and the results are given in terms of the mean of 25 
runs, with the associated 95% confidence intervals. Moreover, there was performed a lot of 
tests to choose the appropriate GA parameters for considered here problem. The tests 
performed held most elements of GA constant while one element was changed. The chosen 
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GA operators and parameters are summarized in Table 2. All experiments reported were run 
on a PC with a Pentium IV 3.2 GHz processor.  
 Table 2. Genetic algorithm elements 

Operator Type Parameter Value 
encoding binary generation gap 0.97 
crossover double point crossover rate 0.70 
mutation bit inversion mutation rate 0.05 

selection roulette wheel 
selection 

precision of binary 
representation 20 

fitness function linear ranking number of individuals 50 
- - number of generations 100 

 
A binary 20 bit encoding is considered. Binary representation is the most common one, 
mainly because of its relative simplicity. The best known selection mechanism, roulette wheel 
selection, is used in the proposed GA.  
 
The genetic operators used in this GA are namely, reproduction, crossover and mutation. 
Offspring are normally different from parents due to the genetic information exchange 
process, e.g. chromosome crossover. However, in GA, the reproduction process is merely a 
simple coping activity which passes the parent’s genetic information to the offspring. The 
reproduction process usually acts as a complementary process of crossover activity and the 
offspring are either created by reproduction or crossover. 
 
Crossover is an extremely important component in GA as it is responsible for searching 
through the solution space. Crossover can be quite complicated and depends (as well as the 
technique of mutation) mainly on the encoding of chromosomes. Here, double point crossover 
is employed. After a crossover is performed, mutation takes place. Mutation reintroduces 
diversity into the population. In accepted encoding here a bit inversion mutation is used. This 
prevents the solution from converging to some local optimal solutions; thereby the global 
optimal solution can be obtained. 
 
Particularly important parameters of GA are the population size (number of individuals) and 
number of generations. If there is too low number of chromosomes, GA has a few 
possibilities to perform crossover and only a small part of search space is explored. On the 
other hand, if there are too many chromosomes, GA slows down. Using the proposed GA, 
initial genetic parameters are set according Table 2. 
 
Representation of chromosomes is a critical part of GA application. In this work, each 
chromosome of the population represents a feed rate profile as a sequence of feed rate values. 
The simplest way to represent it was using a piecewise approximation of the feed rate profile. 
The profile is divided into equal intervals of 20 minutes and the feed rate values at the 
breakpoints are registered. The sequence of numbers obtained is considered a chromosome 
and each gene represented the feed rate after 20 minutes. In this case, every gene is coded in 
range 0 – 0.05 l·h-1 [8]. 
 
An evaluation function plays a role similar to that which the environment pays in natural 
evolution and it rates chromosome in terms of fitness. The objective functions (OF) utilized 
here, for the simulation tests, are presented as follows: 
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 1. OF1 = f(XActual, XTheory)  4. OF4 = f(PhActual, PhTheory) 
 2. OF2 = f(XActual) 5. OF5 =  f(XActual, XTheory, S) 
 3. OF3 = f(S)  6. OF6 = f(PhActual) 
 
The first objective function (OF1) considers the difference between the actual cell 
concentration (XActual) and theoretical maximum cell concentration (XTheory). The second 
objective function (OF2) considers only the cell concentration over the fermentation period. 
The third objective function (OF3) considers only the substrate concentration (S) over the 
fermentation period. The fourth objective function (OF4) considers the difference between the 
actual phytase concentration (PhActual) and theoretical maximum phytase concentration 
(PhTheory). The fifth objective function (OF5) considers the ratio of the substrate concentration 
and the difference between XActual and XTheory. The final objective function (OF6) considers 
only the phytase concentration over the fermentation period. 
 
Since the evaluation of fitness is a measurement of the individual’s suitability to survive in 
the population, the higher the fitness value, the higher the chance for the individual to survive. 
However, the dominating effect of some extraordinary individuals in the early generations 
should be suppressed. In order to maintain the selection pressure throughout the whole 
evolution process and to help the population to diversify in the early evolution process, 
dynamic linear scaling is employed. This technique adjusts the fitness value of all the 
individuals such that only an expected number of offspring will generated from the best 
individual. Hence, this prevents the dominance of the extraordinary individuals. 
 
Feeding trajectory optimization 
All six problems (six OF) are running 25 executions with the proposed GA. Average values 
of best results at a certain evaluation are calculated and presented on the Table 3 and Fig. 1 – 
Fig. 6. Computational performance of the GA is presented in Table 3. 
 

 Table 3. Computational performance 
Objective 
function OF1 OF2 OF3 OF4 OF5 OF6

CPU time (sec) 84.7190 85.3280 75.1250 75.3750 76.5470 82.1880 

floating point 
operations 45263528 45990118 45078526 45177170 45131382 46097830

 
The feeding trajectory obtained based on OF1, as well as the biomass, substrate and phytase 
concentrations are depicted in Fig. 1. The developed feed profile is acceptable for the whole 
fermentation period, with an excess substrate in the broth for the first two hours of the fed-
batch mode. The cell and the product concentrations have an ideal increase for the complete 
fermentation period, achieving the values, respectively of 43 g·l-1 and 125 g·l-1. 
 
The results obtained based on OF2 are presented in Fig. 2. The developed feed profile is 
somewhat high for the whole fermentation period and does exhibit a general increase over 
time. In this instance a consequential excess substrate in the broth is obtained. The cell and 
the product concentrations have a high increase, achieving the values, respectively of 82 g·l-1 
and 240 g·l-1. 
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Fig. 1 f(XActual, XTheory) 
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Fig. 2 f(XActual) 

 
In the case of OF3, the feed profile has a higher rate than the first test (Fig. 3). While there are 
periods of excess substrate in the broth, basically the substrate is kept to a minimum. 
However, the final cell concentration is much reduced – 36 g·l-1. The final phytase 
concentration achieves the value of 105 g·l-1. 
 
The results obtained based on OF4 are depicted in Fig. 4. The general level of the feed profile 
is similar to that for first test. The cell concentration increases over the fermentation period, 
although its final value is smaller compared to the results obtained based on OF2. The 
obtained values are less than these for rest tests – 33 g·l-1 for final cell concentration and 
90 g·l-1 for final phytase concentration. 
 

 7



 BIOAUTOMATION, 2009, 12, 1-12 
 

 
In case of OF5 the results are similar to these for first test (Fig. 5). The substrate is kept to a 
minimum with small periods of excess substrate in the broth. The cell and the product 
concentrations have increase during the fermentation, achieving the identical to the first test 
values, respectively of 43 g·l-1 and 125 g·l-1. 
 
The feed profile obtained based on OF6 is the higher than that for the rest tests. This results in 
a significant amount of excess substrate in the broth, as well as in case of OF2. The results are 
presented in Fig. 6. In this instance the maximum of final cell and product concentrations are 
achieved – 88 g·l-1 for final cell concentration and 260 g·l-1 for final phytase concentration. 
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Fig. 3 f(S) 
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Fig. 4 f(PhActual, PhTheory) 
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Fig. 5 f(XActual, XTheory, S) 
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Fig. 6 f(PhActual) 

 
For genetic algorithm applied to each test, it is clear that the required objective function has 
been achieved. GA has advantage over other methods in that it does not require any 
unrealistic assumptions on the objective functions, such as linearity, convexity and 
differentiability. In addition the problem decision can be reached in a relatively short time 
running on a PC (Table 3). The proposed approach is found to be an effective and efficient 
method for solving the optimal feed rate profile problem. However the results seem to 
indicate that the feed profile formed by the OF5, considers the ratio of the substrate 
concentration and the difference between XActual and XTheory, is superior to rest of the feeding 
trajectories. The OF5 gives generally higher final cell and product concentrations and level 
lower of the excess substrate. This is the fundamental requirement of the fermentation system 
due to effect economies and process effectiveness. 
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Conclusion 
In this work a genetic algorithm was proposed in order to optimize the feeding trajectory in an 
E. coli BL21(DE3)pPhyt109 fermentation process. Technique such as GA is inspired by 
nature, and has proved themselves to be effective solutions to optimization problems. 
However, this technique is not a panacea, despite its apparent robustness. There are a lot of 
parameters involved in the algorithm. In general, some form of trial-and-error tuning is 
necessary for each particular instance of optimization problem. The appropriate setting of 
these parameters is a key point for success. 
 
The results, although based on a simulation model, show that the GA is capable of 
simultaneously optimizing feed rate profile for a given objective function. The main problem 
in implementation lies in the selection of an appropriate objective function, then once the 
control parameters have been tuned GA can produce a result. 
 
For all tests the required objective function has been achieved. The results show that the feed 
profile formed by the objective function considers the ratio of the substrate concentration and 
the difference between actual cell concentration and theoretical maximum cell concentration 
is superior to rest of the feed rate profiles. Generally the final cell concentration is higher and 
the excess substrate level is lower which is the fundamental requirement of the fermentation 
system. The obtained results of the GA are quite encouraging and its application to these 
kinds of bioprocesses highly recommended.  
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