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Abstract: This article deals with synthesis of dynamic unstructured model of variable 
volume fed-batch fermentation process with intensive droppings for L-valine production. The 
presented approach of the investigation includes the following main procedures: description 
of the process by generalized stoichiometric equations; preliminary data processing and 
calculation of specific rates for main kinetic variables; identification of the specific rates 
takes into account the dissolved oxygen tension; establishment and optimisation of dynamic 
model of the process; simulation researches. MATLAB is used as a research environment.  
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Introduction 
At present the processes for microbial production of amino acids are among the most 
important in terms of tonnage and economical value. Market development has been 
particularly dynamic for the flavor-enhancer glutamic acid and the animal feed amino acids 
L-lysine, L-threonine, and L-tryptophan. Significant increase of the production of branched 
chain amino acids and all other amino acid is observed during the past decade [5]. Bioprocess 
technologies for their production were significantly improved by application of more 
sophisticated feeding and automation strategies [4]. 
 
The synthesis of mathematical models for biotechnological processes in principal is known to 
be the major task for the application of modern control science for their optimization. The 
models normally involve two kinds of parameters: the yield coefficients, which rely on the 
structure of the generalised stoichiometric reactions and the kinetic rates, which rely on the 
specific metabolism pathways [1]. 
 
Some approaches for dynamic modelling of L-valine fed-batch fermentation process have 
been described in our previous articles [2, 3] including modelling of fed-batch fermentation 
process with droppings. This article aims to present an approach for development of dynamic 
unstructured model for L-valine fed-batch fermentation process with intensive droppings of 
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the culture broth as well as investigation of the specificity of the process and its reflection on 
the obtained mathematical model. This approach presents extended variant of generalized 
stoichiometric equations takes into account the dropping conditions by sequential reactions.  
The specific rates: growth rate (µ), substrate utilization rate (ν), production rate (ρ) and 
dissolved oxygen utilization rate (γ) are estimated by optimisation procedure take into account 
the real – life experimental data. 
 
Identification procedure, applied for estimation of the model structure and coefficients, taking 
in consideration the specificity concerning dropping procedure. The important stage of this 
procedure is the parametric optimisation of the model. The procedures for identification, 
optimisation and simulation researches are realized by MATLAB and STAGRAPHICS 
packages [6-9]. Main approaches and steps, used for development of mathematical models, 
are described in details in our previous articles [2, 3]. 
 
Materials and methods 
Experimental procedures and analysis 
The variable volume fed-batch fermentation process is carried out at laboratory scale 
fermentor with 7 l total volume. Corynebacterium glutamicum sp. B-023 is used as a 
producer. Analytical methods used for the characterisation of the process are as follows: 
biomass is measured as dry cell mass, [g⋅l-1]; sugar concentration – as reducible compounds, 
[g⋅l-1]; L-valine – by chromatographic method, [g⋅l-1]. During the process on-line 
measurement of differed physical-chemical variables are done by proper sensors. 
 
The experimental data are shown in Fig. 1. Dissolved oxygen concentration [mMol⋅l-1] is 
denoted as DO in Fig. 1. 
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Fig. 1 Time course of the experimental data 
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Primary data processing 
The primary data processing of the experimental data includes the following stages: 
transformation the different measurable units to unit [g⋅l-1] taking into account changes (as 
strict balance) of the working volume during the process; calculation of the specific rates: 
growth rate (µ), [h-1], substrate utilization rate (ν), [h-1], production rate (ρ), [h-1], dissolved 
oxygen utilization rate (γ), [h-1]. To reach the final aim of primary data processing – 
calculation of the specific rates – the appropriate optimal approximation of the experimental 
data is done by a spline functions. The derivatives of variables describing the process kinetics 
are also calculated. The specific growth rate, the rate of substrate utilisation, the specific 
production rates are calculated by the equations: 
 

. . .

ˆ ˆ ˆˆ , , ,t C Vt

t t t

X S L C

tX X X
µ ν ρ γ= = = =

X
 (1) 

 
where: Xt – total biomass produced at proper time expressed as [g⋅l-1], SC – total sugar 
consumed at proper time expressed as [g⋅l-1], LVt – total L-valine produced at proper time 
expressed as [g⋅l-1], C – dissolved oxygen concentration expressed as [mMol⋅l-1], and 

derivatives of these variables denotes as follows 
. . .

, , ,t C VtX S L C . The total biomass produced 
(Xt) in calculation of the specific dissolved oxygen utilization rate (γ) is expressed as 
[mMol⋅l-1]. 
 
The Eq. (1) presents an initial estimation of the values and shapes of specific rates. The 
specific rates must be calculated subject to initial and boundary conditions. These conditions 
are reflected to the inner behaviours of the kinetics variables. 
 
The dynamic model subject to material balance of the process could be described as follows: 
 

1 ˆ IN OUTF FdX K X X X
dt V V

µ= − −  (2) 

2 ˆC IN IN O
C IN

dS F F FK X S S S
dt V V V

ν= − + − UT
C  (3) 

3 ˆV IN OUT
V

dL F FK X L L
dt V V

ρ= − − V  (4) 

( )( *
4 ˆdC K X Q t C C

dt
γ= − + − )  (5) 

IN OUT
dV F F
dt

= −  (6) 

 
where: X – biomass concentration, [g⋅l-1]; LV – L-valine produced, [g⋅l-1]; V – total volume, [l]; 
FIN – feeding rate, [h-1]; FOUT – dropping rate, [h-1]; C* – initial oxygen saturation level; 
Q(t) – function of the KLа coefficient and the time (t) and K1, K2, K3, K4 are yield coefficients. 
 
The specific rate could be estimated by the non-linear least – squares optimization procedure 
based on experimental data and the initial values of the coefficients (Ki, i = 1 ), and specific 
rates (µ, ν, ρ, γ). Note that in this optimization problem variable θ represents one of the 

3÷
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le Y presents one of a pairs of the 
ectors [X V]T, [SC V]T, [L V]T, CT for each specific rate. 

µ), [h-1], substrate utilization rate (ν), [h-1] and 
roduction rate (ρ), [h-1] could be described  

 

specific rates (µ, ν, ρ, γ) as a vector with components θ(t)T = [θ(t0), θ(t1), ... , θ(tf)]T, where 
(t0 – tf) are moments of the taken samples. Also variab
v
 
Suppose that for the specific growth rate (
p

( )ˆˆ , IN OUT
i L L

dY K Y D Y D Y
dt

θ= − −L  (7) 

 

where IN IN
L

FD =
V

 – dilution level, [h ]; -1 OUT OUT
L

FD
V

=  – dilution level as a result of the 

roppings, [h-1] and L is a matrix as follows: 
 
d

( )
ˆˆ 0

ˆˆ
0 2

i

i IN

K
K F

V

θ
θ

⎡
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

L
⎤

 (8) 

ith notations for estimates of the parameters 
 

ˆˆ ,iK θ . w
 
Solution of the Eq. (7) is obtained by appropriate numerical method and could be describe as 

llows: 
 

L  (9) 

here I is a identity matrix. 

he solution of the dissolved oxygen is 
 

 (10) 

uppose that the objective function for estimation of the specific rates is  
 

 (11) 

here Yexp is a vector of the experimental data. 

he result of this optimization problem is estimation of the parameters 

fo

( ) ( )( )
0

0
ˆˆ, , ,

ft
IN OUT

i i i L
t

Y K t Y K D I D Ydtθ θ= + − −∫ L I

 
w
 
T

( ) ( ) ( )( )
0

*
4 0 4 ˆ, ,

ft

t

C K t C K X Q t C Q t C C dtγ γ= + − − +∫
 
S

( ) ( ) ( )( )
0

2

exp
[ , ]

, min , ,
f

n
i

t

i i
K R

t

F K Y t Y K t dt
θ

θ θ
∈

= −∫
 
w
 

ˆˆ ,iK θ . T
 
The specific growth rate and the specific substrate utilisation rate are shown in Fig. 2 and 
Fig. 3. 
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Fig. 2 Time course of the specific growth 

rates 
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Fig. 3 Time course of the specific sugar 
utilisation rates 

 
The notations are: SGR – specific growth rates, Est. SGR – specific growth rate estimated by 
optimization. SUR – specific sugar utilisation rate, Est. SUR – specific sugar utilisation rates 
estimated by optimisation. 
 
The specific production rate and dissolved oxygen utilisation rate are shown in Figs. 4 and 5 
respectively. 
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Fig. 4 Time course of the specific production 

rate 
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Fig. 5 Time course of the specific DO 

utilisation rate 
 
The notations are: SPR – specific production rate, Est. SPR – specific production rate 
estimated by optimisation, SDOR – specific DO utilisation rate, Est. SDOR – specific DO 
utilisation rate estimated by optimisation. 
 
Results and discussion 
The identification procedure includes the following main stages: determination of the set of 
generalized stoichiometric equations; identification of the specific rates; description of the 
dynamic model subject to dropping conditions; parametric optimisation of the obtained model 
and simulation. 
 
Generalized stoichiometric equations  
The fermentation processes could be described by the following scheme of generalized 
stoichiometric equations: 
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0

X

G OUT

S OUT

LV OUT

OUTF

C

C

R C C

C V

f

S X

C + S X X

S S S

C + S + X L L

V V V

ϕ

ϕ ϕ

ϕ ϕ

ϕ ϕ

ϕϕ

⎯⎯→

⎯⎯→ ⎯⎯⎯→

⎯⎯→ ⎯⎯⎯→

⎯⎯→ ⎯⎯⎯→

⎯⎯→ ⎯⎯⎯→

 (12) 

 
where: , , , , ,

VX G S L F OUTϕ ϕ ϕ ϕ ϕ ϕ  are rates of the generalized stoichiometric reactions,  
[g⋅l-1⋅h-1], V0 – initial volume of  the culture broth, Vf – final volume of the culture broth, [l]; 
X – biomass concentration, [g⋅l-1]; S – substrate concentration as a sugar remain concentration 
– SR or sugar consumed concentration – SC, [g⋅l-1]; LV – L-valine concentration, [g⋅l-1]; 
C – dissolved oxygen concentration (DO), [mMol⋅l-1]. 
 
The hypotheses concerning the specific rates of the amino acids biosynthesis are utilised as 
follows: 
 

( ) ( ) ( ) ( )ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ, , , , , , , ,CS C X X X Cµ µ ν ν µ ρ ρ µ γ γ µ= = = =  (13) 
 
The proposed hypothesises are discussed below. It could be seen (Fig. 2 – Fig. 5) that some of 
the fundamental kinetic relations, for example Monod law, are not performed for the obtained 
specific rates. On the other hand the fundamental relations such a Monod law reveals the 
approach to reach new relations. The Monod law has the following properties: hidden linear 
structure (the reciprocal transformation reveals this structure); hidden exponential structure if 
the Monod law is divided by the substrate concentration (S) the result reveals Pade’ 
approximant of the function exp(–KS/S). The second hidden property of the Monod law gives 
an argument for the exponential structure investigation of the specific rates under hypotheses 
(13). 
 
Dynamic model of the fed-batch process with dropping 
The dynamic model subject to material balance of the process could be describe as follows 
 

( ) IN OUT
L

d D F D
dt L
ξ ϕ ξ ξ= − + −K ξ  (14) 

y ξ= P  
 
where ξT = [X, SR, SC, LV, C, V]T – state space vector; ϕT = [ , , , , ,

VX G S L F OUTϕ ϕ ϕ ϕ ϕ ϕ ]T – 
vector of reaction’s rates; FT = [0, 0, f1, 0, f2, 0]T – vector of input streams with elements 
f1 = DL

INSIN and f2 = Q(t) (C* – C) + (DL
IN + DL

OUT)C; P – matrix; y – measurable output from 
sensors; SIN – concentration of the feeding solution, [g⋅l-1], K – matrix of yield coefficients as 
follows: 
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0 0 0 0

k k k k
k

k k k k k
=

k k
k k

k k

− ±⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥− − − ±
⎢ ⎥±⎢ ⎥
⎢ ⎥− −
⎢ ⎥
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K
0 0 0 0 1 0

=
0 0 0 0 0 1

11 12 14 16

23

31 32 33 34 36

44 46

52 54

65 66

0 0
0 0 0 0 0

0
0 0 0 0
0 0 0 0

, 
⎡ ⎤
⎢ ⎥
⎣ ⎦

ϕ ϕ ϕ µ+ − = 23 0k

P  

 
Identification procedure includes the following stages: 

• Model structure identification. 
• Estimation of the coefficients, which is expressed as yield and reaction rate 

coefficients, as a real numbers. 
 
The model structure identification is obtained by reduction of the state space vector by one 
variable SR and the following substitutions: 
 

( )11 12 14 1 ,
VX G Lk k k K S C X ; =  

( )31 32 33 34 2 ,
VX G S Lk k k k K Xϕ ϕ ϕ ϕ ν µ− − + − = X

X

X

V

 

( )44 3 ,
VLk K Xϕ ρ µ=  (15) 

( )52 54 4 , ,
VG Lk k K X Cϕ ϕ γ µ− − = −  

65 2 IN
F Lk Dϕ =  

 
The rates of the generalized stoichiometric reactions are reviled by the specific rates as it is 
shown by the equalities (15). The models of the specific rates are discussed below. 
 
Dropping conditions 
It is assumed that at the discrete time moments of the dropping the derivatives of the kinetic 
variables are equal to zero. The dropping conditions subject to model (2) – (6) are satisfied as 
follows: 
 
• Dropping conditions for growth 
 

( )1OUT k INF K V t Fµ= −  (16) 
 
• Dropping conditions for L-lysine production 
 

( )
( ) ( )3

k
OUT k IN

k

X t
F K V t F

L t
ρ= −  (17) 

 
• Dropping conditions for substrate utilization 
 

( )
( ) ( ) ( )

( )2
k IN

OUT k IN
k C

C k

k

X t S S
F K V t F

S t S t
ν

⎛ −
= + ⎜⎜

⎝ ⎠

t ⎞
⎟⎟
 (18) 
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The comparison of the expressions (17) – (18) obtains the equality 
 

( )
( )

( )
( ) ( )3 2

k k IN IN

k C k C

X t X t F SK K
L t S t V S t

ρ ν
⎛ ⎞ ⎛

= +⎜ ⎟ ⎜⎜ ⎟ ⎜
⎝ ⎠ ⎝ ⎠k

⎞
⎟⎟

 (19) 

 
It could be emphasized that these conditions are satisfied at the discrete time moments. 
 
Models of the specific rates 
The identification procedure of the specific rates includes the following steps: 

• Application of linear regression for selection of suitable set of predictors and initial 
estimates of the parameters. 

• Non-linear regression application for final parameter estimation. 
• Simulation in MATLAB environmental (Figs. 6 – 9). 

 
The results of the identification procedure are derived by STATGRAPHICS facilities as 
follows. 
 

Table 1. Models of the specific rates 
Model R2

( )
( ) ( ) ( )

2 2 3
0 1 2 3 4 5 6

2 3 3
7 8 9

ˆ exp
C C c

c c c

a a S a S a C a C a C a S C

a S C a S C a S C
µ

⎛ ⎞+ + + + + + +
⎜ ⎟=
⎜ ⎟+ + +⎝ ⎠

2

 R2 = 0.74 (20) 

2 3 2 3
0 1 2 3 4 5 6 7ˆ exp( )b b b b b X b X b X b X 4ν µ µ µ= + + + + + + +  R2 = 0.80 (21) 

( ) ( )
2 3 4 2 3

0 1 2 3 4 5 6 7

4 2 2
8 9 10

ˆ exp
c c c c c c X c X c X

c X c X c X

µ µ µ µ
ρ

µ µ

⎛ ⎞+ + + + + + + +
⎜ ⎟=
⎜ ⎟+ + +⎝ ⎠

 R2 = 0.995 (22) 

2 3 2 3
0 1 2 3 4 5 6 7

2 3
8 9

ˆ exp(

)

f f f f f X f X f X f C

f C f C

γ µ µ µ= + + + + + + +

+ + +

+
 R2 = 0.991 (23) 

 
The acceptation of the specific rate models is based on the value of the determination 
coefficient (R2) obtained by non-linear regression. Investigation of the residuals shows that 
the majority parts of them are normally distributed but the serial correlation could be seen. 
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Fig. 6 Time course of the specific growth 

rate 
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Fig. 7 Time course of the specific substrate 

utilisation rate 
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Fig. 8 Time course of the specific production 

rate 
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Fig. 9 Time course of the specific DO 

utilisation rate 
 
Optimization and simulation 
The second stage of this procedure is connected with the parametric optimization of the 
model. The Levenberg-Marquardt and trust-region algorithms with least squares objective 
function are used for optimization. The results are shown in Table 2. 
 
 Table 2. Estimated parameters 

K1 =        1.0999987654 K3 =          0.8763091125 
a0 =   –945.6313156906 c0 =         –0.1573747250 
a1 =         6.8934528346 c1 =     –139.9591620725 
a2 =       –0.0126724764 c2 =     3438.7037377048 
a3 =   2035.6832209990 c3 = –16288.1457419416 
a4 = –1094.4874073790 c4 =   23118.3024186340 
a5 =       –9.7524792850 c5 =         –2.0049940020 
a6 =       –0.3824799380 c6 =           0.2306981150 
a7 =         0.0153188510 c7 =         –0.0087843638 
a8 =         2.8974402983 c8 =           0.0001077039 
a9 =       –1.9005626754x10-5 c9 =           0.0943875759 
K2 =         0.5500000000 c10 =     –55.3316752540 
b0 =       –4.0056815196 K4 =          3.7963175785 
b1 =       –9.3625487787 f0 =            2.9473564641 
b2 =       60.8258709465 f1 =            5.6083794871 
b3 =     –77.8933745419 f2 =        –44.8301170577 
b4 =         1.5038299288 f3 =          76.1872394356 
b5 =       –0.1763699123 f4 =          –0.0676848582 
b6 =         0.0073331117 f5 =            9.6803613194x10-5

b7 =       –0.0001077569 f6 =            5.9881726627x10-7

f7 =          –0.1369818332 
f8 =            0.0095522004 

 

f9 =          –0.0001947541 
 
During the parametric optimization the experimentally established optimal modes of the 
feeding rate and oxygen saturation are applied. The concentration SIN as a function is also 
obtained by an optimization based on the experimental data. The results are shown below 
(Fig. 10). 
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Fig. 10 Time course of the experimental data and model for main kinetic variables 

 
Conclusions 
The following consideration and conclusions can be derived from the investigation, connected 
with development of mathematical model of the discussed process. 
 
1. The trend and values of the specific rates are estimated based on the experimental data and 

material balance followed by additional data processing by optimization procedure 
(see Figs. 2 – 5). 

2. The models of the specific rates are obtained by linear and non-linear regression. These 
procedures permit investigation of the model structure and estimation of the initial 
parameters. Additional simulation shows the properties of the derived models 
(see Figs. 6 – 9) 

3. The final stage of the investigation is connected with the parametric optimisation of the 
model through the non-linear optimisation procedure under the confidence intervals of the 
parameters using Optimisation Toolbox. The Levenberg-Maquardt and trust-region 
algorithms with least squares objective function are used for optimisation. 

4. The mathematical model describes the trend of the investigated experimental data and 
specific rates of the main kinetic variables. 
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