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Abstract: Optimal control of a nonisothermal fedbatch reactor with heat removal constraint 
is used as a test problem for comparing iterative dynamic programming (IDP) and Luus-
Jaakola (LJ) optimization procedure. Although there are only two control variables, the feed 
rate and the temperature, the heat production rate constraint makes the optimal control 
problem very difficult. Therefore, the problem is reformulated by using rate of heat 
production instead of temperature as the second control variable. To parametrize the 
optimal control problem, the time interval is divided into P  time stages of constant length, 
and piecewise constant control is used at each time stage. For small values of P , both 
optimization procedures are almost equivalent. However, when  is increased beyond 20, IDP 
becomes more efficient. 
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Introduction 
Development of suitable optimization procedures for biotechnological processes is important, 
since obtaining the global optimum may be very difficult [34]. Much effort has been directed 
towards establishing optimal control policies for fedbatch reactors. Even when the fedbatch 
reactor is isothermal, the difficulty in obtaining accurately the optimal control policy is due to 
the low sensitivity of the feed rate on the profit function and the existence of numerous local 
optima [3, 8, 13]. Nevertheless, successful results were obtained with iterative dynamic 
programming (IDP) [3, 13], and with the use of Luus-Jaakola (LJ) optimization procedure 
[19, 25] with three different models of fed-batch reactors by Luus and Hennessy [24]. 
 
LJ optimization procedure which uses random sampling points and region contraction to 
make the search more intensive as iterations proceed is easy to program and to use, as is 
shown in the listing of the entire computer program consisting of only 50 lines of FORTRAN 
code [7]. LJ optimization procedure was first shown to be a useful means of solving several 
difficult nonlinear optimal control problems [1]. Liao and Luus [5] compared the LJ 
optimization procedure to genetic algorithm (GA), and found that for typical chemical 
engineering problems, LJ optimization procedure performed considerably better than GA. 
 
Recently, Luus [16] introduced a line search into the LJ optimization procedure which 
improved the convergence rate substantially for typical optimization problems. Several 
studies have shown that, for numerous optimal control problems, iterative dynamic 
programming is considerably better than LJ optimization procedure [3, 14]. Now, with the 
improvements that have been recently made to the LJ optimization procedure [21, 22], it will 
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be most interesting to compare these methods for establishing the optimal control policy for a 
nonisothermal fedbatch reactor. 
 
Srinivasan et al. [33] introduced a model of a nonisothermal fedbatch reactor and provided a 
control policy which was thought to be optimal. However, Schlegel and Marquardt [32] 
showed that the control policy could be improved to provide a 2% increase in the reported 
yield. Their results were confirmed by Luus [20] by using IDP. The goal of this paper is to 
compare LJ optimization procedure and IDP in establishing the optimal control policy for this 
nonisothermal fedbatch reactor. 
 
Problem formulation 
The nonisothermal fedbatch reactor as modeled by Srinivasan et al. [33] involves the 

exothermic reaction DCBA
kk 21
→→+ . It is required to determine the optimal temperature 

profile and the feed rate to maximize the yield CVc , where V  denotes the volume and Cc  is 
the concentration of the desired species C , in a given batch time ft , so that the heat removal 
capacity of the reactor would not be exceeded. The equations describing the reactor are: 
 

Bcxk
dt
dx

11
1 = −  (1) 

)(= 212
2 xxk

dt
dx

−  (2) 

F
dt
dx =3  (3) 

where AVcx =1  moles of A , )(=2 CA ccVx +  moles of A  and C  combined, and Vx =3  is the 
volume (literes) of the liquid in the reactor, F  is the feed rate (l⋅h-1), and 

( ) 313 /28.831520= xxxcB −+  is the concentration of B  (mol⋅l-1). 
 
The initial state is 

1]10[10=(0)Tx  (4) 
 
and the rate constants are 
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where T  is the temperature ( 0 C). The reactions are exothermic, where the heat produced (J/h) 
by the reaction is 
 

)(105103= 122
4

11
4 xxkcxkQ B −×+×  (7) 

 
The constraints are: 

10 ≤≤ F  (8) 
5020 ≤≤ T  (9) 
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1.1<0 3 ≤x  (10) 
5101.5×≤Q  (11) 

 
The optimal control problem is to choose F  and T  in the time interval 0 ≤ t < tf  to 
maximize, at the batch time 0.5=ft  h, the yield of the desired product (mol): 

)()(= 12 ff txtxI −  (12) 
 
Eq. (11) is a difficult inequality constraint since Q  is a function of both the state vector x and 
the control vector u. The problem, as stated, is very difficult to solve when the time interval is 
divided into P  time stages and piecewise constant control is used for the temperature. To 
simplify the establishment of optimal control let us reformulate the problem where heat 
generation instead of temperature is used for the second control variable, as suggested by 
Luus [20]. 
 
Thus, instead of choosing F  and T  as control variables, we choose as control variables: 
 

Fu =1  (13) 
Qu =2  (14) 

so that the upper constraint on Q  can be handled more simply by the clipping technique. The 
temperature T  is calculated readily by solving numerically Eq. (7) by Newton's method [11, 
13]. 
 
We divide the time interval [0, tf] into P  time stages each of equal length and use piecewise 
constant control at each time stage. Although stages of varying length provide more accurate 
switching and slightly better results, here, for simplicity, we keep all the stages the same 
length. For optimization, we wish to compare the use of IDP and LJ optimization procedure 
for different values of P. For clarity, here we outline the algorithms. 
 
Algorithm for IDP 
Let us consider the general problem, where we wish to choose the m-dimensional control 
vector u in the time interval [0, tf] to maximize the performance index I that is an explicit 
function of the n-dimensional state x at the final time x(tf ): 

))((= ftI xΦ  (15) 
 
subject to the mathematical model 

(0)),,(= xuxfx
dt
d  given (16) 

 
the constraints on the control variables 

mjbua jjj ,2,1,=, L≤≤  (17) 
 
and the general inequality constraints for state and control in the form 

kii ,2,1,=0,),( L≤uxψ  (18) 
 
for the entire time interval. 
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To deal with general inequality constraints on the state, we follow the penalty function 
approach [6], with a small change. Instead of difference equations, we use differential 
equations as suggested by Mekarapiruk and Luus [30] to construct the penalty functions. We 
therefore introduce k  state constraint variables through the differential equations   
 

⎩
⎨
⎧ ≤+

0>),(),(
0),(0

=
uxux
ux

ii

iin

if
if

dt
dx

ψψ
ψ

 (19) 

for i = 1, 2, …, k with the initial condition 
kix in ,2,1,=0,=(0) L+  (20) 

 
At the final time tf, )( fin tx +  therefore gives the total violation of the ith inequality constraint 
integrated over time. The advantage of using differential equations is that sometimes a 
violation may occur for a short time inside a time stage, and such a violation may go by 
unnoticed with the difference equation approach where the violations are checked only at the 
ends of the time stages. Now we choose the augmented performance index to be maximized 
as 
 

)(=
1=

fini

k

i
txIJ +∑− θ  (21) 

where 0>iθ  are penalty function factors for the inequality state constraints. 
 
The given time interval is divided into P  time stages of constant length, and we consider the 
case where the control is kept constant in each time interval. Although different control 
parametrizations, such as piecewise linear, could be used, if P  is sufficiently large, then good 
approximation can be obtained with the use of piecewise constant control [15]. The algorithm 
for IDP then becomes as follows: 
 

1. Choose the number of time stages P , the number of grid points N , the number of 
allowable values for control R  at each grid point, the region contraction factor γ  
used after every iteration, the region restoration factor η , initial values for the 
control, the initial region sizes, the number of iterations to be used in every pass, 
and the number of passes. Each time stage is of length =t∆ Pt f / . 

2. By choosing N  values for control around the best available control inside the 
allowed region, integrate Eqs. (16) and (19) from t = 0 to t = tf to generate N 
trajectories. The N  values for x at the beginning of each time stage make up the N 
grid points at each stage. 

3. Starting at stage P , corresponding to the time tt f ∆− , for each grid point generate 
R  sets of values for control: 

)()(=)( * PPP jj rDuu +  (22) 

where D  is an mm×  diagonal matrix with different random numbers between 1−  
and +1 along the diagonal; )(* Pju  is the best value for control obtained for that 
particular grid point in the previous iteration. Integrate Eq. (16) and (19) from 

ttt f ∆−=  to ftt =  once with each of the R  allowable values for control to yield 
)( ftx  so that the performance index can be evaluated. Compare the R  values of the 
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augmented performance index and choose the control which gives the maximum 
value. The corresponding control and stage length are stored for use in step 4. 

4. Step back to stage 1−P , corresponding to time ttt f ∆− 2= . For each grid point 
generate R  allowable sets of control. Integrate Eqs. (16) and (19) from ttt f ∆− 2=  
to ttt f ∆−=  once with each of the R  sets. To continue integration, choose the 
control from step 3 that corresponds to the grid point that is closest to the x at 

ttt f ∆−= . Now compare the R  values of the augmented performance index and 
store in memory the control policy that yields the maximum value. 

5. Step back to stage 2−P , and continue the procedure in the previous step. Continue 
this stage-by-stage process until stage 1 corresponding to 0=t  with the given 
initial state as the grid point is reached. Make the comparison of the R  values of 
the augmented performance index to give the best control for this stage. We now 
have the best control policy for each stage in the sense of maximizing the 
performance index from the allowable choices. 

6. In preparation for the next iteration, reduce the size of the allowable regions 

Pkkk jj ,...2,1,=),(=)(1 rr γ+  (23) 

where γ  is the region reduction factor and j  is the iteration index. Use the best 
control policy from step 5 as the midpoint for the next iteration. 

7. Increment the iteration index j  by 1 and go to step 2 to generate another set of grid 
points. Continue for the specified number of iterations. 

8. Increment the pass number index by 1, set the iteration index j  to 1, and restore the 
region sizes to η  times the region sizes used at the beginning of the pass, or choose 
the region sizes from the amount that the corresponding variables have changed, 
and go to step 2. Continue for the specified number of passes, and examine the 
results. 

 
Clipping technique is used to handle the control constraints given in Eq. (17): If jj au < , then 

ju  is put equal to ja ; if jj bu > , then ju  is put equal to jb . In step 2, in generating the grid 
points, the suggestion in [2, 31] is used where the values for control are generated at random 
inside the region. This method has been found to be especially useful for the optimal control 
of fedbatch reactors [17]. Although IDP cannot guarantee obtaining the global optimum from 
any starting value for control [23], it has been found especially useful in the study of 
oscillatory systems [18]. For some systems the computations can be carried out fast enough to 
enable its use for on-line control [18, 27]. 
 
Algorithm for LJ optimization procedure with line search 
The search is carried out in mP-dimensional space, where m  is the number of control 
variables and P  is the number of time stages. The suggested algorithm for LJ optimization 
procedure consists of the following steps: 
 

1. Choose a number of random sets of points R  in the mP-dimensional space and 
calculate 
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Pkkkk j ,...1,=),()(=)( )(* Druu +  (24) 

where )(* ku  is the best value (or initial value at start) of )(ku , )()( kjr  is the region 
size vector at the j th iteration ( 1=j  at start) at time step k  and D  is a diagonal 
matrix with diagonal elements chosen at random between –1 and +1. 

2. The feasibility of each point with respect to Equation (17) is ensured by using the 
clipping technique. The feasibility with respect to Equation (18) is handled by 
penalty functions as with IDP by using the augmented performance index. After 
testing R  points, replace u* by the best value of u. 

3. An iteration is defined by Steps 1 and 2. At the end of iteration j  reduce the size of 
the region r  by a factor γ  through   

Pkkk jj ,...1,=),(=)( )(1)( rr γ+  (25) 

where γ  is the region reduction factor such as 0.95. This procedure is continued for 
N  iterations which make up a pass. 

4. For the next few passes restore the region size to a fraction η  (such as 0.90) of its 
value at the beginning of the previous pass. 

5. After a few passes, at the beginning of pass 1+q , use the region size as determined 
from the amount that the variable has changed as suggested by Luus [10]: 

mikukukr q
i

q
ii ...,1,2,=|,)()(=|)( )*(1)*( −−  (26) 

If the value of )(kri  is less than ε  then )(kri  is replaced by ε  to prevent the region 
from collapsing. Initially ε  is chosen to be of reasonable size, such as 310− . 

6. If the performance index has not been improved by more than ε  in 3 passes, then 
ε  is reduced in size by a factor such as 0.9. 

7. Once ε  reaches a very low value such as 1110− , or if the maximum number of 
passes has been reached, the iterations are stopped and the results are analyzed. 

 
To incorporate the line search, after q  passes, we carry out the search in the direction 
 

Pkkkk qq ...,1,=),()(=)( 1)*()*( −−uud  (27) 
to provide the best u* for the subsequent pass. Further details on the use of line search is 
available elsewhere [16, 21, 22]. 
 
Numerical results 
All computations were done in double precision using WATCOM Fortran 77 compiler 
version 9.5 on an AMD Athlon/3800 (2.4 GHz) personal computer, which is about 1.5 times 
faster than Pentium 4/2.4GHz computer. To obtain accurate integration, the IMSL subroutine 
DVERK [4] was used with a local error tolerance of 810− . 
 
For each value of Qu =2 , Eq. (7) is solved numerically to yield T  very accurately inside the 
integration subroutine by using Newton's method [11, 13]. This approach of solving algebraic 
equations has been found very useful in optimization [12, 28]. However, the resulting T  may 
violate the temperature constraint in Eq. (9). Thus, we introduce the state variable 4x  which is 



 BIOAUTOMATION, 2009, 13 (3), 1-14 
 

 7

initially chosen to be zero, and 

⎪
⎩

⎪
⎨

⎧

≤≤
−
−

5020if0
20<if20
50>if50

=4

T
TT
TT

dt
dx  (28) 

 
If there is no constraint violation, then 4x  remains zero and whenever the temperature 
constraint is violated, then a positive value is assigned to the derivative causing 4x  to become 
positive. Then )(4 ftx  is incorporated as a penalty into an augmented performance index in 
efforts to drive it to zero. The value of )(4 ftx  shows the extent to which the constraint has 
been violated, and methods can be used to reduce the violation to a negligible amount. This 
method has been found to be effective in dealing with state constraints [30]. 
 
It is expected that for maximum yield, the volume should be at its maximum value, so the 
upper limit in Eq. (10) is treated as an equality constraint at the final time t = tf. This 
assumption is later verified through sensitivity analysis. We therefore choose the augmented 
performance index to be maximized as 

)(])1.1)([()]()([= 42
2

13112 ffff txstxtxtxJ θθ −−−−−  (29) 
 
The penalty function factors 1θ  and 2θ  are positive and sufficiently large to provide 
convergence and avoid constraint violation; the shifting term 1s  is put equal to zero initially, 
unless refined runs are made, and is updated after every pass according to 
 

1.1))((= 31
1

1 −−+
f

qq txss  (30) 
where q  is the pass number. 
 
The use of shifting terms to deal with equality constraints in optimization was first proposed 
in [9] for steady state optimization and used successfully in IDP [29], and is discussed in 
some detail in [13, 26, 29]. An interesting aspect of the shifting term is that, upon 
convergence, it gives the sensitivity information. At the final converged value, 12θ− 1s  gives 
the sensitivity of the performance index to the violation of the volume constraint. Thus if 1s  is 
negative, then increasing the volume beyond 1.1 liters will increase the performance index, 
and will confirm our expectation of getting the maximum yield when the volume reaches its 
maximum allowed value. 
 
For a large range of problems that have been tried, it has been found that there is a wide range 
over which the penalty function factors may be chosen, so here each penalty function factor 
was assigned a value of 1000. For a fair comparison, the conditions for both IDP and LJ 
optimization procedure were chosen to be the same. The initial values for the control variables 
for each time stage were taken in the middle of the constraints, namely 0.5 and 5100.75× , 
respectively. The initial region sizes were taken as 0.2 and 5100.2× , respectively. The region 
contraction factor 0.95=γ  was used with the region restoration factor of .0.90=η  For each 
pass, 10 iterations were used, and a maximum of 100 passes were allowed. 
 
For comparison, we chose three different values of .P  For each value of P, with IDP we 
performed 15 runs by using grid points: N = 1, 3, 5, 7, 9 for different number of random 
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points: 15, 25, and 35. For LJ optimization procedure we performed 15 runs by using 3 
numbers of random points and five different seed numbers for random number generation. 
 
The results with 10=P  time stages are shown for IDP in Table 1, and for LJ in Table 2. 
 

Table 1. Performance index I  as a function of the number of grid points N  
and the number of random points R  used at each time stage obtained by IDP 

with P = 10 time stages of equal length 
Performance index, I  Number of grid points, N  R = 15 R = 25 R = 35 

1 1.78614 1.93035 1.83790 
3 2.03402 2.04404 2.04723 
5 2.04014 2.04526 2.04722 
7 2.04737 2.04889 2.04686 
9 2.04702 2.04736 2.04903 

 
Table 2. Performance index I  as a function of the number of random points R  

used at each time stage obtained by LJ optimization with P = 10 time stages 
of equal length for 5 different seed numbers for random numbers 

Performance index, I  Case number R = 200 R = 500 R = 1000 
1 1.74588 1.95912 2.04686 
2 1.98646 1.96182 2.04944 
3 1.92026 2.04350 2.04903 
4 1.72800 1.93686 2.04834 
5 1.84723 2.04245 2.04895 

 
It is noted that with IDP, there is not much difference whether 25 or 35 random points are 
used, but it is necessary to use more than one grid point at each stage to get a reasonable value 
for the performance index. The best value of the performance index obtained is 2.0490=I  
and in 11 instances values greater than 2.04 were obtained. With LJ the results are dependent 
on the number of random points and the seed number used for generation of random numbers. 
However, the use of 1000 points gives a very consistent result with different seed numbers. 
The best value obtained is 2.0494=I , which is marginally better than obtained with IDP. In 
7 instances values greater than 2.04 were obtained. It is interesting to note that when fewer 
than 1000 random points were used, the results were dependent very much on the seed used 
for the random number generator. Here only 100 passes were allowed, so complete 
convergence was not obtained in some cases. The effect of the choice of seeds for the random 
number generator have been analyzed in greater detail elsewhere [22]. The shifting term 1s  
was not obtained accurately, but was always negative and in the range – 0.0036 to – 0.0057. 
The negative value shows that the use of equality constraint for 3x  at ft  was justified. The 
total computation time for Table 1 was 55 min and for Table 2, 38 min, so less computational 
effort was used with LJ optimization procedure than with IDP. 
 
The results with P = 20  time stages are shown in Tables 3 and 4. 
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Table 3. Performance index I  as a function of the number of grid points N  
and the number of random points R  used at each time stage obtained by IDP 

with 20=P  time stages of equal length 
Performance index, I  Number of grid points, N  R = 15 R = 25 R = 35 

1 1.81185 1.88378 1.82034 
3 2.02905 2.02172 2.01745 
5 2.01719 2.04376 2.04422 
7 2.04715 2.04835 2.04735 
9 2.03784 2.04909 2.04656 

 
Table 4. Performance index I  as a function of the number of random points R  

used at each time stage obtained by LJ optimization with 20=P  time stages 
of equal length for 5 different seed numbers for random numbers 

Performance index, I  Case number R = 1000 R = 2000 R = 4000 
1 1.91351 1.94502 1.91245 
2 1.97800 1.66239 1.82326 
3 2.04672 1.97529 2.05006 
4 1.81121 2.00742 1.84335 
5 1.77972 2.01556 2.04722 

 
Again, it is noted that with IDP, there is not much difference whether 15 or 35 random points 
are used, but it is necessary to use more than a single grid point at each stage. The best value 
of the performance index obtained is 2.0491=I  and in 7 instances values greater than 2.04 
were obtained. With LJ the use of 4000 points gives better results than the use of fewer 
random points. The best value obtained is 2.0501=I , which is again marginally better than 
that obtained with IDP. However, in only three instances a value greater than 2.04 was 
obtained. The total computation time for Table 3 was 1.9 h and for Table 4, 3.9 h, so less 
computational effort was needed with IDP. 
 
The results with 30=P  time stages are shown in Tables 5 and 6. With IDP, again there is not 
much effect on the number of random points used. The best value of the performance index 
obtained is 2.0476=I  and in 7 instances values greater than 2.04 were obtained. With LJ the 
use of 10,000 points and 20,000 points did not give any value above 2.03. Since the use of 

20,000=R  required 16.2 h of computation time for the 5 different seeds, higher values of R  
were not attempted. However, the total computation time for IDP to produce Table 5 was only 
3.2 h. 

 
Table 5. Performance index I  as a function of the number of grid points N  

and the number of random points R  used at each time stage obtained by IDP 
with 30=P  time stages of equal length 

Performance index, I  Number of grid points, N  R = 15 R = 25 R = 35 
1 1.78371 1.78146 1.82252 
3 2.01664 2.00375 2.03511 
5 2.04127 2.04643 2.02063 
7 2.04539 2.04683 2.04408 
9 2.02132 2.04762 2.04379 
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Table 6. Performance index I  as a function of the number of random points R  
used at each time stage obtained by LJ optimization with 30=P  time stages 

of equal length for 5 different seed numbers for random numbers 
Performance index, I  Case number R = 10000 R = 20000 

1 2.02505 2.00530 
2 1.86531 1.74982 
3 1.95178 1.81786 
4 1.97720 1.81047 
5 1.97572 1.94522 

 
By using the control policy giving the best result from Table 5, with the corresponding 
shifting term 0.00436=1 −s  as an initial value, a refined run was made with IDP with 25=R . 
 
The best value for the performance index 2.05223=I  was obtained with P  = 30. The 
optimal control policies are shown in Fig. 1 and Fig. 2, and the corresponding temperature 
profile is shown in Fig. 3. It is interesting to note the jagged portion of the temperature profile 
after 0.3=t  h. The jags are due to temperature rise during the short time intervals in which 
the heat generation is kept constant. 
 
The best control policy for 30=P  and the shifting term were used as initial values for a run 
with 60=P  time stages. The performance index is improved slightly to 2.05243=I . The 
resulting optimal control policies are shown in Fig. 4 and Fig. 5. The corresponding 
temperature profile in Fig. 6 shows smaller jags because the time intervals when the heat 
generation is constant after 0.34=t  h are smaller. The use of 120=P  time stages yields 

2.05253=I  and reduces the size of the jags even further as is shown in Fig. 7 and Fig. 8. 
This value of the performance index is very close to the optimal value 2.0527 reported in the 
literature [20, 32]. 

 
Fig. 1 Optimal feed rate policy with the use 

of 30=P  time stages of equal length; 
2.05223=I  

 
Fig. 2 Optimal heat generation with 30=P  

time stages of equal length; 2.05223=I  
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Fig. 3 Optimal temperature profile with 
the use of 30=P  time stages of equal 

length; 2.05223=I  

 
Fig. 4 Optimal feed rate policy with the use of 

60=P  time stages of equal length; 
2.05243=I  

 
 

 
Fig. 5 Optimal heat generation with 60=P  

time stages of equal length; 2.05243=I  

 
Fig. 6 Optimal temperature profile with the 
use of 60=P  time stages of equal length; 

2.05243=I  
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Fig. 7 Optimal heat generation with 120=P  

time stages of equal length; 2.05253=I  

 
Fig. 8 Optimal temperature profile with the 
use of 120=P  time stages of equal length; 

2.05253=I  
 
Conclusions 
LJ optimization procedure compares very well to IDP in solving the nonisothermal fedbatch 
optimal control problem. As the number of time stages P  is increased, the LJ optimization 
procedure requires the use of a larger number of random points. However, with IDP the 
number of random points can be kept small since the search remains in a 2-dimensional space. 
When the number of time stages is increased to 30, IDP becomes considerably more useful in 
establishing the optimal control policy. From the jags in the temperature profiles, it is seen 
that the use of piecewise constant control for heat generation may not be most appropriate, 
and better results could be obtained by using piecewise linear control for heat generation and 
piecewise constant control for the feed rate. Since LJ optimization procedure is very easy to 
program, it is well suited for this type of parametrization. 
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