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Summary: The Quasi-Steady-State Approximation (QSSA) theorem is considered as 
a basic approach for reduction of dimensionality of a dynamical model of microRNA 
target regulation. On the basis of previously determined parameters, seven ordinary 
differential equations of the model are written in a form appropriate to evaluate their 
terms for further reduction. In accordance with the terminology of the QSSA theorem, 
it is established that five of the system components are fast varying such that the 
corresponding kinetic equations form an attached system. The other two variables are 
slow varying and their kinetic equations form a degenerate system.  
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1. INTRODUCTION 

 
Mature microRNAs (miRNA) are small (21-25 nucleotide) non-
coding RNA molecules that influence messenger RNAs (mRNAs). 
They are estimated to comprise 1–5% of animal genes, making them 
one of the most abundant classes of regulators. Their widespread and 
important role in animals is highlighted by recent estimates that up to 
30% of an organism's protein-coding genes are subject to miRNA-
mediated control and is evidenced by their evolutionary 
conservation. MiRNAs play a central role in many biological 
processes, including developmental timing, cell proliferation, 
apoptosis, metabolism, cell differentiation, and morphogenesis. The 
mechanism by which miRNAs regulate gene expression is post-
transcriptional, possibly influencing the stability, 
compartmentalization and translation of mRNAs. Most 
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computational efforts to understand the post-transcriptional gene 
regulation by miRNAs have been focused on target prediction tools, 
as reviewed by Rajewsky [3], while quantitative kinetic modeling of 
gene regulation by miRNAs has still had a pioneer character. There 
are only some ODE-based models of gene regulation by miRNAs to 
this end [1, 2]. In this paper, firstly we modify a minimal ODE-based 
model for post-transcriptional gene regulation by miRNA, presented 
in [1]. Towards this end, we do scaling of the modified model 
mentioned above in order to derive its fast and slow variables in 
accordance with the QSSA theorem [4].  
 
2. QSSQ THEOREM 

 
In the common case, the mathematical modelling of biomolecular 
interactions with different time scales leads to dynamical system in 
the form: 
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where 10,, <<<∈∈ εnm RyRx rr . Furthermore, for such a system it 
is introduced the following terminology: The first part of equations, 
having ε in the numerator, is called an attached system, with respect 
to the other part of equations, which form a degenerate system. In 
this way, the variables of the attached system are called fast 
variables and these of the degenerate system are considered as slow 
ones. The set of both systems form a complete system. In accordance 
with this terminology, the Tichonov’s theorem [4] claims that: 

The solution of the complete system (2.1-2) tends to the solution of 
the degenerate system (2.2) at ε→ 0, if the following conditions are 
satisfied: 
 a) There is an isolated equilibrium (steady state) solution of the 

attached system (2.1) (i.e. there is not other solution in its 
neighbourhood). 

 b) The existing equilibrium solution of the attached system is 
stable one for every value of the slow variables yr . 

 c) The initial conditions (states) lie in a region of influence (a 
basin) of the equilibrium solution of the attached system. 

 d) The solutions of the complete and attached systems are 
single-valued and their right hand sides are continuous. 
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3. A MODIFIED DYNAMICAL MODEL OF miRNA 

MEDIATED TARGET REGULATION 
 
It is predicted that each miRNA regulates numerous (sometimes 
hundreds) different types target messenger RNAs. Therefore, in 
some cases the miRNA itself is likely to become a limiting factor 
and the potential competing binding sites on target mRNAs need to 
be taken into account. In this paper, we modify a minimal 
mathematical model presented in [1] in the case of two targets 

. According to Fig. 1 each type of mRNA is being produced 
with a transcription rate q

N
iim 1}{ =

i and decays with rate δi. The miRNA itself 
is being produced in the cell with rate pm and decays with rate δm. In 
addition, mRNA and miRNA (reversibly) make complexes, miRNA 
& mi, with a forward rate βi and a reverse rate −. The complex 
miRNA & mi decays with rate . Proteins,  degrade at rate 

 and are being translated at a rate λ

iβ
*
iδ
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iδ i from free mRNAs, (mi), and 

with a rate  from the complexes, miRNA & mi, which lead also to 
its decrease. MiRNA exerts its down-regulating effect on the targets 
by accelerating the degradation rate of the complexes or/and by 
slowing down the translation rate. The key parameters that are 
believed to influence the extent of miRNA-mediated target down-
regulation, are the fold-changes in mRNA degradation rate , 
and translation rate , that depend on specific target mRNA and 
miRNA base-pairing in and around the seed region. In contrast to 
investigation made in [1], here we assume that the translation rate 

, i.e  the translation rate of the proteins from the 
complexes miRNA & mRNAs  is sufficiently slower than the 
translation rate from free mRNAs. MiRNA returns to the cytoplasm 
pool with the rate 

*
iλ

ii δδ /*

ii λλ /*

001,0/* ≤ii λλ

∑ =

N

i iq
1

*δ miRNA & mi, where q is the miRNA 

turnover rate. In this investigation we consider the case when q=1 in 
the model, i.e. here the degradation of the microRNA mRNA 
complex always results in the miRNA returning to the pool. 
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Fig. 1 Graphical representation of microRNA target regulation 

 
According to Figure 1 for two targets, N = 2, the model takes the 
form: 
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where m1 and m2 are two different types of mRNA molecules, targets 
of miRNA, p1 and p2 are  proteins, produced by m1 and m2, and 
miRNA & m1

 and miRNA & m2 are complexes between miRNA and  
m1 and m2, respectively. 
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In [1] the effect of , and ptotalm1 ))&(( 111 mmiRNAmmtotal += 1

 levels are 
simulated as functions of transcription rate of the second target q2, 
for three production rates for miRNA (pm = 5, 10, 15). For the 
simulations made in [1] the following numerical values of 
coefficients of the original form of (3.1) are given: 
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Taking into account the last numerical values of the coefficients 
numerical simulations of the system (3.1) at pm = 5 show that there is 
complete coincidence between graphics of m1 and m2, p1 and p2, 
(miRNA & m1) and (miRNA & m2), respectively. This result supposes 
that difference between numerical values of the system coefficients, 
denoted by one and the same letters exists. In fact, from a biological 
point of view it is not possible the corresponding rate constants of 
two different mRNAs, the proteins, produced by them, and their 
complexes to have equal numerical values. By this reason we assume 
that the coefficients, denoted by one and the same letters have 
different numerical values but they are with one and the same order. 
According to data given in [1] and our assumptions the numerical 
values of coefficients of the system (3.1) are as it follows: 
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On the basis of the last values numerical simulation of the model 
(3.1) is made. Dynamics of mRNAs, proteins, miRNA and 
miRNA&mRNAs is presented in Fig. 2. 
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Fig. 2 Graphs of all components of the complete system solution 

 
From Fig. 2, we select the values near the settled (steady state) ones 
in order to use them as characteristic values of state variables. 
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The parameters and concentrations values presented above are given 
here without units in view of the fact that we do not intend to 
compare them. What is of interest for us further is to compare neither 
parameters (some of them having different units) nor concentrations, 
but the terms in the equations (3.1). 
 
4. SCALING OF THE DYNAMICAL MODEL OF miRNA 

TARGET REGULATION 
 

In accordance with the scaling procedure, each term in the right hand 
sides of the system equations mentioned must have an order of 1. For 
this purpose we introduce scaling substitutions for the model 
variables in the following manner: 
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where the small parameter ε = 0.1. Here the new variables xi 
(i=1, 2,..., 7) are not dimensionless. Neverthelessр they have an 
order of 1 (i.e. they change in the interval between 0.1 and 1). The 
same approach is applied for scaling the model coefficients. The 
corresponding parameter substitutions have the following form: 
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Here the new coefficients αi (i = 1, 2,…, 18) have the same order, 
i.e. they chance from 0.1 to 1. After replacing the variable and 
parameter transformation forms (4.1, 4.2) in (3.1) we obtain the 
following system: 
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The presence of a small parameter ε in a part of system equations 
determines its order. This means in accordance with the terminology 
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of QSSA theorem we can say that the five equations (4.3), (4.5), 
(4.7), (4.8) and (4.9) form an attached system, and the other two 
form a degenerate one. In the next part of this paper, we investigate 
some properties of the attached, degenerate and complete systems 
following from the QSSA theorem. 
 
5. CONCLUSION 
 
The main conclusion from the considerations made in this part of the 
paper is that time hierarchy exists in the modified by us dynamical 
model of miRNA target regulation. The separation of fast and slow 
system variables, made here is needed for further application of the 
QSSA theorem, presented in the next part of this article. 
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