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Summary: The QSSA theorem is applied to the dynamical model of microRNA 
target regulation after special selection of model variables, presented in Part І of this 
article. On the basis of this theorem the complete model, represented as a system of 
seven nonlinear ordinary differential equations, is reduced to a degenerate one, 
comprising only two ordinary differential equations. As a result it is proved that the 
proteins, produced by miRNAs are identified to play a driving role of the dynamical 
behaviour of the genetic process investigated, but in post-initial (or quasi-stationary) 
stage. 
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1. INTRODUCTION 
 
The term Quasi-Steady-State Approximation (QSSA) is a 
mathematical method, shortly introduced in Section 2 of this paper. 
We use it in a sense explained in the work of Schneider and Wilhelm 
[7]. The method find vast applications in many areas of systems 
biology, including studies related to cell proliferation, differentiation 
and the cell cycle [5]. A classical example of dimensionality 
reduction for nonlinear dynamic systems is the application to 
Michaelis–Menten type enzyme kinetics [4]. Examples of reversible 
enzyme catalytic reactions that are well described by reversible 
kinetic scheme can be found in the literature [1, 3, 8]. An application 
of QSSA to the reversible case is presented in the work of Tzafriri 
and Edelman [10]. There, a QSSA for the reversible Michaelis–
Menten equation is derived and its validity domain is delineated. In 
fact, this work presents a more general approach to a QSSA, based 
on corresponding theorem proved in the work of Tichonov [9]. Our 
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aim is to demonstrate that the last theorem in its original form can 
been also applied to the genetic processes, and especially to a 
dynamical model of microRNA (miRNA) target regulation. Some 
initial ideas of the present approach were introduced in the work of 
Petrov et al. [6].  

 
2. APPLYING QSSA THEOREM TO A DYNAMICAL MODEL 

OF miRNA TARGET REGULATION 
 
We consider the attached system of equations (4.3), (4.5), (4.7), (4.8) 
and (4.9), presented in the first part of this paper, under condition 
that only the variables x1, x3, x5, x6, x7 are unknown function of time. 
The system has a stationary (steady state) solution in the form 
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In order to analyze stability of the steady state (2.1) we introduce the 
substitutions 
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in the attached system of equations (4.3), (4.5), (4.7), (4.8) and (4.9) 
from Part І. As a result the following variation equations are 
obtained: 
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In order to analyze stability of the last system the corresponding 
characteristic equation has been written in the following form: 
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It can be proved that the Routh-Hurwitz coefficients: 
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will have positive signs. In this way according to the well-known 
Routh-Hurwitz theorem [2] the steady-state solution (2.1) will be 
stable, which allows us to apply the QSSA theorem. In accordance 
with this theorem we replace the formulas (2.1) in the equations (4.4) 
and (4.6) of the degenerate system presented in the previous part of 
this paper. As a result the system of two independent equations is 
derived: 
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Further, we replace the substitutions (4.1-4.2) from Part І in (2.11). 
In this way an original form of the quasi-steady stationary approx-
imation of the system (3.1) presented in Part І takes the form: 
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Finally the simulations of the complete and reduced systems are 
made. As it can see from Fig. 1 there is complete coincidence 
between both systems after third point from the beginning of the 
process. 

 
Fig. 1 Coincidence of the graphs of complete (--) and reduced (o) 

system variables 
 
3. A NEW RELATIONSHIP IN THE DYNAMICAL MODEL 

OF miRNA TARGET REGULATION NEAR TO ITS 
QUASI-STATIONARY STATE 

 
From the equations of the reduced system we can derive the 
following basic relationship: The rates of protein production 
evidently will decrease with the increasing constant rate production 
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pm of miRNA, what is not explicitly apparent in the kinetic system of 
equations (3.1), presented in Part І. The above formulated 
relationship is apparently demonstrated in the next Fig. 2 and 3, 
where numerical simulations of protein dynamics are made at three 
different values of pm. 

 
Fig. 2 The behaviour of p1 at three different values of pm

 
Fig. 2 and 3 show the rate of change of the concentrations of proteins 
p1 and p2, respectively at pm = 10, 15, 20. It is evident that the 
protein concentrations essentially decrease with the increasing 
constant rate production pm of miRNA, which confirms the 
theoretical conclusion made above. Moreover, as it can see from the 
Figure 2 at pm = 20 the concentration of p1 approaches zero values 
(about the 10-th time unit after beginning of the process). The last fact 
supposes that at such a value the miRNA target regulation will be the 
most successful. 
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Fig. 3 The behaviour of p2 at three different values of pm

 
4. CONCLUSION 
 
In this part of the paper, the QSSA theorem for quasi-stationary 
approximation is applied to the scaling dynamical model of miRNA 
target regulation, presented in Part І. As a result, the proteins 
produced by miRNAs are identified to play a driving role on the 
dynamical behaviour of the miRNA target regulation, but in post-
initial (or quasi-stationary) stage as it was explained above. This 
driving role of protein synthesis, however, is parametrically 
controlled by the production rate of miRNAs in accordance with a 
basic relationship: the rates of protein synthesis evidently decrease 
with the increasing constant rate production pm of miRNA.  
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