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Summary: In the present study we used the concept of Pareto for solving multiple 
objective optimisation of the mass transfer in a stirred tank bioreactor. The model of 
the mass transfer is formulated as a general multiple objective optimization problem. 
By using an assigned membership function for each of the objectives, the general 
multiple objective optimization problem can be converted into a maximizing decision 
problem. In order to obtain a global solution, a Price method is introduced to solve the 
maximizing decision problem. The policy consists of constructive and regime 
bioreactor parameters. After this multiple optimization, the performance of the mass 
transfer, aeration and mixing are improved. 
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1. INTRODUCTION 
 
Multiple objective optimization is a natural extension of the 
traditional optimization of a single objective function. If the multiple 
objective functions are commensurate, minimizing single objective 
function, it is possible to minimize all criteria and the problem can 
be solved using traditional optimization techniques. On the other 
hand, if the objective functions are incommensurate, or competing, 
then the minimization of one objective function requires a 
compromise with another objective function. The competition 
between multiple objective functions is a key distinction between 
multiple objective optimization and traditional single-objective 
optimization [2, 11, 13, 14]. 
 
In previous investigations for the optimisation of the mass-transfer, 
aeration and mixing in the bioreactor was used single optimisation of 
the volumetric oxygen mass-transfer coefficients and gas-liquid 
transition [4, 5]. For solving the single objective optimization 
                                                           
∗ Corresponding author 

 173

mailto:mpetrov@clbme.bas.bg


 BIOAUTOMATION, 2009, 13 (4), 173-184 

 
problem the theory of fuzzy sets and combined algorithm combines 
the method of random search and method of the theory of fuzzy sets 
have been used [7, 8]. 
 
In this study, a fuzzy procedure has been used for finding the optimal 
values of the design and regime parameters of a bioreactor to 
improve the performance of the mass-transfer, aeration and agitation. 
 
2. MATERIALS AND METHODS 
 
2.1. Model of mass-transfer in the stirred tank bioreactor 
 
The model is based on the following assumptions [3]: the change of 
the gas phase (GP) concentration CG is described by a diffusion 
model at a steady-state condition; the change the liquid phase (LP) 
concentration CL is described by a perfectly mixed model; the 
balance of the oxygen concentration C* is determined as an average 
value in liquid height into the bioreactor. 
 
The decision model in dimensionless variables has the look [7, 8]: 
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where: X(η, t) – dimensionless oxygen concentration in GP, 

; X0/),(),( GG CtzCtX =η *(t) – dimensionless balance of the oxygen 
concentration, ; Y(t) – dimensionless oxygen 
concentration in LP, ; m

0** /)()( GCtCtX =
0/)()( GLL CmtCtY = L – Henry law constants; 

η – dimensionless coordinate, η = z/u8; u8 – level of liquid in the 
bioreactor, m; z – stirrer distance from bottom of bioreactor;  

 – oxygen concentration in the air,  kg⋅m0
GC 24.00 ≅GC -3. 

 
The initial and boundary conditions for the dimensionless variables 
are given as follows: 
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The constants in the model are determined by the following relat-
ions: , 030 BaA = 040420 1,)exp( BaCataB −=−= , where [5, 7, 8]:  
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where Pe – Peclet number, [–]; εG and εL – volume fraction of gas 
and liquid in the bioreactor, [vol. %]; kla – volumetric mass transfer 
coefficient, [s-1]; DL – dispersion coefficient, [m2·s-1]; WG – reduce 
gas flow rate, [m·s-1]; PG – power input with aeration, [W]; PL – 
power input without aeration, [W]; Re – Reynolds number, [–]; ν – 
liquid dynamic viscosity, [Pa.s]; ρ – liquid density, [kg⋅m-3]; V – 
volume, [m3]; D – bioreactor diameter, [m]; ρG – gas density, ρG = 
1.141 [kg⋅m-3]; u2 – eccentricity of impeller, [m]; u5 – impeller 
diameter, [m]; u6 – rotation speed, [s-1]; u7 – gas flow rate, [m3⋅s-1]; 
u8 – level of liquid in the bioreactor, [m]. 
 
The volumetric coefficient kla is determined by the following 
regression model [4-7]: 
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2.2. System Constraints 
 
Nearly all engineering processes will have physical constraints. The 
dimensionless oxygen concentration in GP, the dimensionless mean 
concentration, and the dimensionless oxygen concentration in LP 
must be positive for all time; otherwise, an unrealistic solution in the 
optimization problem would be obtained, that can described with: 
 

0),(1 ≤−= tXg η  (5) 
0)(*

2 ≤−= tXg  (6) 
0)(3 ≤−= tYg  (7) 

 
If the constraints in (5)–(7) are not included in the optimization 
problem, unrealistic predicted values may be found. 
 
3. MULTIPLE OBJECTIVE OPTIMISATION PROBLEM 
 
3.1. Formulation of the multiple objective optimisation problem 
 
The multiple objective optimisation problem (MOOP) is to find 
optimal angle of the blades of the impeller – u1, eccentricity of 
impeller – u2, number of impeller – u3, width of the baffle assembly 
– u4, impeller diameter – u5, rotation speed – u6, gas flow rate – u7, 
level of liquid in the bioreactor – u8, final time – u9, and u10 – stirrer 
distance from bottom of bioreactor such that the mass transfer, 
aeration and mixing processes are greater than or equal to a threshold 
value. 
 
The control variables u1 ÷ u4 are coded in the intervals from –1 to 
+1. The rest variables are satisfied in the following intervals: 
 
(40 ≤ u5 ≤   60) [mm], (200 ≤ u6 ≤ 1200) [min-1], 
(50 ≤ u7 ≤ 300) [l⋅h-1], (100 ≤ u8 ≤   175) [mm]. 
 
The mass transfer, aeration and mixing processes have been charact-
erised by the following based indexes [3]: 
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 (10) 

where: tf  – final time, [s]. 
 
The first objective function corresponds to the index characterized 
mass transfer gas-liquid. The second objective function corresponds 
to the volume fraction of the liquid in the bioreactor. The last 
objective function corresponds to the summary relative power inputs. 
 
3.2. Solution of the MOOP 
 
Assume that the decision making (DM) has fuzzy goals for each of 
the objective functions in (8)-(10). The MOOP (8)-(10) is now 
extended to the general multiple objective optimization problem 
(GMOOP) given as: 
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The membership function of (11) and (12) has the type 
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where Jk

L or Jk
U represents the value of Jk, such that the grade of the 

membership function µ(Jk) varies from 0 to 1. 
 
The membership function for minimizing goals of (13) is expressed 
as: 
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where J3

L or J3
U represents the value of J3 such that the grade of the 

membership function µ(J3) is from 1 to 0. 
 
As a result, the DM considers the fuzzy objective function such as J1 
and J2 should be substan-
tially greater than or equal 
to a threshold interval 

, k = 1, 2. The third 
and four, goals should be 
substantially less than or 
equal to the assigned 
threshold interval . 
The membership function 
for each of the objective 
functions is described in 
Fig. 1. 
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Fig. 1 Assigned membership function 

for each of the objective functions 
 
Having elicited the membership functions for each of the objective 
functions, the GMOOP (11)-(13) can be converted into the fuzzy 
multiple objective optimization problem (FMOOP) by [13]: 
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By introducing a general aggregation function µD(Jk), a fuzzy 
multiple objective decision making problem (FMODMP) or maxim-
izing decision problem can be defined by 
 

Dµ
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Several aggregation functions have been used in the standard fuzzy 
nonlinear programming [10]. In this study, the fuzzy decision or 
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minimum operator of Bellman and Zadeh [1] is selected as the 
aggregation function by: 

( ){ }4...,,1,min == kJ kkkD µµ  

Fundamental to the MOOP in (8)-(10) is the Pareto optimal concept, 
and thus the DM must select a compromise solution from many 
Pareto optimal solutions. The relationships between the optimal 
solutions of the FMODMP and the Pareto optimal concept of the 
MOOP can be characterized by the following theorem [13]: 
 
Theorem 1. If u* is a unique optimal solution to the FMODMP in 
(17), then u* is a Pareto optimal solution to the MOOP in (8)-(10). 
 
This theorem serves to guarantee that the unique optimal solution of 
the FMODMP is a Pareto solution to the crisp MOOP (8)-(10). The 
statement of this theorem does not guarantee that the unique optimal 
solution to (17) is a Pareto solution to the GMOOP (11)-(13). 
 
Definition 1. If u* ∈ Ω is said to be an M-Pareto optimal solution to 
GMOOP if and only if no other u ∈ Ω exists there, such that 

 for all k and  for at 
least one j. 

))(())(( *uu kkkk JJ µµ ≥ ))(())(( *uu kjjj JJ µµ ≠

 
Note that the set of Pareto optimal solutions is a subset of the set of 
M-Pareto optimal solutions, as observed from Definitions 1 and (14)-
(15). Here M refers to membership. Using the concept of M-Pareto 
optimality, the fuzzy version of Theorem 1 can be obtained under 
slightly different conditions. 
 
Theorem 2. If u* is a unique optimal solution to the FMODMP (17), 
then u* is an M-Pareto optimal solution to the GMOOP (11)-(13). 
 
Theorem 2 is used to guarantee that the unique optimal solution of 
the maximizing decision problem (17) is an M-Pareto optimal 
solution of the fuzzy problems (11)-(13). The key point for using this 
theorem is to find a unique optimal solution of the problem (17). A 
global optimization method must be employed to determine such a 
unique solution. 
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An interactive programming algorithm is introduced in this study 
and it is listed below to find a satisfactory solution to the GMOOP: 
 

1. Assign the threshold intervals [ ] rU
k

L
k JJ . 

2. Elicit a membership function µ(Jk) from the DM for each of 
the objective functions. 

3. Solve the maximizing decision problem (17). Let 
 be the M-Pareto optimal solution to the 

GMOOP. 
( )(, k

r
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4. If the DM is satisfied with the current levels of µ k
r(Jk), the 

current M-Pareto optimal solution ( ))(, k
r
k

r Jµu  is the 
satisfactory solution for the DM. Otherwise, classify the 
objectives into three groups based on the DM’s preference, 
including: 

 
(a) class of the objectives that the DM wants to improve, 
(b) a class of the objectives that the DM may possibly 

agree to relax, and 
(c) a class of the objectives that the DM accepts. 

 
The index set of each class [13] is represented by Ir, Rr, and 
Ar, respectively. The new threshold intervals [ ] 1+rU

k
L
k JJ  are 
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Here, it should be emphasized that any improvement for one of the 
objective functions can be achieved only at the expense of at least 
one of the other objective functions. 
 
4. RESULTS AND DISCUSSION 
 
Now, the maximizing decision problem (17) can be solved by Price 
method for searching of global extremum [9]. 
 
Since the physical constraints in (5)-(7) are included in the 
optimization problem, the penalty function method is used to handle 
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the system constraints in fuzzy optimizations. The general function 
used in fuzzy optimizations is, therefore, defined as 
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The integration of the square penalty functions in (18) is used to 
cover the state variables on the whole time domain. 
 
The Price method is well known from the literature [12]. The 
algorithm of Price method was written in FORTRAN 77. All 
computations were performed on an Intel 1.8 GHz computer using 
Microsoft Windows XP Pro Edition operating system. 
 
The obtained initial and optimal values of the control variables and 
criteria are shown in Table 1, for mL = 33.0, DL = 52.08×10-6 
[m2·s-1], η = 0.5, and tf = 30 [s]. 

 
Table 1. Optimisation results 

u1 u2 u3 u4 u5 u6 u7 u8 D Variables 
0 mm num. mm mm min-1 l⋅h-1 mm mm 

Initial values 90 0.0 1 12 57 600 60 114 
Optimized values 86 1.0 2 13 43 276 53 162 

114 

WG PL PG kla Pe V J1 J2 J3Variables 
mm⋅s-1 W W h-1 - l  Vol. % W⋅l-1

Initial values 1.63 1.8 1.50 80 3.6 1.2 4.9 93.4 2.83 
Optimized values 1.44 1.2 0.90 130 4.5 1.7 8.4 96.2 1.30 
 
The obtained results (Table 1) show a significant increase of the 
values of J1 and J2. The index characterized mass transfer gas-liquid 
has increased with more than 70% (J1 = 4.9 – before and J1 = 8.4 
after optimization). The index characterized volume fraction of the 
liquid in the bioreactor has increased with more than 2.9% 
(J2 = 93.4% – before and J2 = 96.2 after optimization). 
 
The summary relative power (Table 1) has decreased with more than 
110% (J3 = 2.83 – before and J3 = 1.3 – after optimisation). 
 
Basic mass transfer index kla has increased its value (Table 1) with 
more than 60% (kla = 80 h-1 – before and kla = 130 h-1 – after 
optimisation). 
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The developed optimisation of the gas-liquid transition (criteria J1) 
in dependence on the considered constructive and regime bioreactor 
parameters, maximises the efficiency of the apparatus, applied to 
aerobic bioprecesses. 
 
5. CONCLUSIONS 
 
1. This study discusses a multiple objective optimization of the 

mass transfer in the stirred tank bioreactor planning problem. 
Many of the multiple objective optimization problems in the 
real world take place in an environment in which the goals, the 
constraints, and the consequences of possible actions are not 
precisely known. To quantitatively deal with imprecision, the 
problem in a fuzzy environment is introduced in this study to 
handle these imprecise goals and constraints. Such fuzzy 
multiple objective optimal control problems are converted into a 
maximizing decision problem through the subjective member-
ship functions for each of the objective functions. The optimal 
solution for each of the membership functions is denoted as the 
degree of satisfaction with the assigned threshold requirements. 

2. A simple guideline is presented in the interactive programming 
procedures in order to find a satisfactory solution to the general 
multiple objective optimization problem. In order to obtain a 
global optimal solution, a Price method is introduced to solve 
the maximizing decision problem. 

3. The general conclusion after optimisation of the constructive 
bioreactor parameters is that the impeller with fewer diameters 
should be used (Table 1, parameter u5). It will reduce the 
diameter of the impeller shaft. The rest parameters do not cause 
any appreciable change in the equipment. 

4. The determined optimal values of the constructive parameters 
show that the offered laboratory bioreactor with sliding bearings 
and disc magnetic coupling demonstrates a good mass-transfer, 
aeration and agitation indexes. 
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