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1. INTRODUCTION 
 
This article deals with an investigation of Monod-Wang kinetic 
models. The mathematical investigation is based on both the 
differential geometry and the sliding mode control [7, 13]. This 
approach permits new control solutions for stabilization of 
continuous and fed-batch cultivation processes. 
 
Complicated structure and non-linearity of the comportment 
characterize the cultivation processes. A possible way out of these 
difficulties is the functional state modeling approach [10, 11]. After 
this approach the cultivation process is decomposed into operation 
regimes. Simpler mathematical models in these regimes dynamically 
describe the process performances [5, 10, 11]. The control problems 
are decomposed into subproblems that could be described and solved 
separately in more limited process state conditions. 
 
This paper presents a control design for stabilization of cultivation 
processes described by Monod kinetic. The control design is based 
on both the equivalent transformations to Brunovsky normal form of 
an enlarged Monod-Wang-Yerusalimsky model, and a chattering 
optimal control and sliding mode (SM) control solutions. 
 
The simpler Monod and Monod-Wang models used in the 
operational regimes are restricted forms of Monod-Wang-
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Yerusalimsky model. This is why the Monod-Wang-Yerusalimsky 
kinetic model could be accepted as a common model in the different 
regimes [5, 8]. 
 
The objective of this paper is to present comfortable tools and 
mathematical methodology that permits control stabilization of 
biotechnological processes with synchronized utilization of different 
mathematical approaches.  
 
2. DESCRIPTION OF MONOD-WANG-YERUSALIMSKY 
    MODEL 
 
Unstructured biotechnological models take cell mass as a uniform 
quality without internal dynamic. The reaction rates depend only on 
the macroscopic conditions in the liquid phase of the bioreactor. 
Mathematical unstructured models of fed-batch process can be 
written, based on mass balance equation [9, 11, 12, 14]. Below, we 
investigate an enlarged form of the Yerusalimsky kinetic model 
(Monod-Wang-Yerusalimsky model [5, 8, 15]): 
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where X is the concentration of biomass, [g⋅l-1]; S – the concentration 
of substrate (glucose), [g⋅l-1]; V – bioreactor volume, [l]; F – 
substrate feed rate, [h-1]; S0 – substrate concentration in the feed, 
[g⋅l-1]; µmax – maximum specific growth rate, [h-1]; KS – saturation 
constant, [g⋅l-1]; k, k2 , k3 and kE – constant, [g⋅g-1]; m – coefficient [-]; 
E – the concentration of ethanol, [g⋅l-1]; A – the concentration of 
acetate [g⋅l-1]. 
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The parameters are as follows: µm = 0.59 [h-1], KS = 0.045 [g⋅l-1], 
m = 3 [–], S0=100 [g⋅l-1], k=2 [–], k2=3.79 [–], k3=1/71 [–], kE=50 [–], 
Fmax= 0.19 [h-1], Vmax = 1.5 [l]. The dynamics of µ is modeled as a 
first order lag process with rate constant m, in response to the 
deviation in µ. The 5th equation describes the production of ethanol 
(E). The last equation describes the production of acetate (A). The 
first and the last equations become dynamically equivalent with a 
simple transformation (X=(1/k3)A). The new non-linear kinetic model 
is: 
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The initial values of the state variables are: Xi(0)=0.99; Si(0)=0.01; 
µi(0)=0.1; EI(0)=0.1; Vi(0)=0.5. The parameters are taken from 
different sources [10, 11]. 
 
The following mathematical condition (kE → ∞) determines the 
Wang-Monod model as a restricted form of the Wang-Monod-
Yerusalimsky model (1). The Monod model is a singular form of 
Wang-Monod model obtained by omission of the third equation and 
application of the simple Monod kinetic. That is why the Monod-
Wang-Yerusalimsky model is a more general model form. 
Interesting moment is that all models are dynamically equivalent to 
the following Brunovsky normal form: 
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Here by W is noted the control input. This model is linear. The non-
linearity of model (1) is transformed and included in the input 
function W [3, 6, 7]. The input function W depends from the space 
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vector of model (1) and that has to be underlined because this is a 
limitation of the application of the maximum principle. 
 
Different diffeomorfic transformations of the Monod, Wang and 
Yerusalimsky models are analyzed in details in the following papers 
[4, 5, 6, 8]. The Brunovsky form is a linear model and permits easy 
optimal control solutions with application of the Pontryagin’s 
maximum principle [7]. 
 
3. MATHEMATICAL PROBLEMS ARISING FROM 
 THE APPLICATIONS OF SLIDING MODE CONTROL 
 
A common manifestation in sliding mode control is some over-
regulation of the biotechnological process. Such overregulation is 
shown in Figures 1 and 2: 
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Fig. 1 Continuous process – overregulation of the biomass 
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Fig. 2 Fed batch process – overregulation of the growth rate 
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If the sliding mode starts in system conditions different from the so 
called “equivalent sliding mode control” conditions then the 
cultivation process arrives in some over regulation situations. 
 
That is why have to be solved some new control problems for the 
resolution of these restrictions [4, 5, 8]. It is needed control solutions 
that fix the system vector state in “equivalent control” position 
staring from any different initial positions. Such control solutions are 
showed in figures (3 and 4). 
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Fig. 3 Continuous process - Fixation of the biomass 
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Fig. 4 Fed batch process – Chattering fixation of the growth rate: 

1 – growth rate; 2 – control 
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Detailed descriptions of these control solutions are shown in the 
following papers [4, 5, 6, 8]. These control solutions are based on 
mathematical techniques from differential geometry and optimal 
control theory. 
 
4. SLIDING MODE CONTROL 
 
The sliding mode control is a good solution for stabilization under 
varying conditions (parameters deviations, noises etc.). In the paper 
is demonstrated a sliding mode control for stabilization of the 
specific growth rate in “the best” technological conditions [8]. 
Binary control algorithms of first order are used so that the system 
moves along the constraint manifold in sliding mode [1, 2, 13]. This 
sliding mode control is based on the alternations of the maximum 
specific growth rate µm(T, pH) [8]. The temperature T and the acidity 
of the bioreactor medium pH could be used for archiving this 
solution [9]. 
 
In this sliding mode solution is used the Wang-Monod model. The 
sliding affine subspace is defined by the following equation 

0)31,0()( =−= µµSL  (x30=0,31 [h-1]). The general stability conditions 

are derived from the Liapunov’s function  [13]. The 
performances of the system with this control are shown on the 
figures (5, 6, 7, 8). 
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Fig. 5 Biomass concentration X (x1) 
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Fig. 6 Substrate concentration S (x2) 

 
The equivalent control has the presentation: 
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In sliding mode control the substrate concentration S in the bio-
reactor is constant 0,0498xsKxx m ==−= 28,0/045,0.31,0)/( 30302 µ . 
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Fig. 7 Specific Growth Rate stabilization 
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Fig. 8 Volume of the Bioreactor V (x4) 

 
The feeding rate F(t) is derived from the equation of the substrate 
concentration and has the form 
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The mathematical model and the corresponding stability conditions 
determined the SM control law [13]: 
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The temperature (T) and the acidity (pH) assure the alternation of µm 
around the equilibrium (µm=µm0+∆µm), where: 
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The value µm
2 is a sufficiently small value. It is supposed that 

µm(T, pH)∈[ 0,74, 0,44]. The control could be determined aiming 
elimination of 15% parameter and measurement noises: 
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This SM control law eliminates the deviations of the parameters, 
noises and structure modifications in the condition that it starts in 
“equivalent control” position. For this purpose we begin the control 
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design with a chattering control solution demonstrated in figures 7 
and 9 [4, 5, 8]. 
 
5. SECOND ORDER SLIDING MODE CONTROL 
 
The Russian scientists Emelyanov, Korovin and Levant evolve high-
order sliding mode methods in control systems. The order of the 
sliding mode algorithm is defined by the proximity of the system 
state to the constraint manifold [1, 2]. The control algorithms of 
second order are used so that the system deviations become cooler 
but a little more imprecise. Such a control is shown on Figures 9 and 
10. 
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Fig. 9 Second order SM – µ 

 

0 2 4 6 8 10 12 14 16 18
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time [h]

Su
bs

tr
at

e 
C

on
ce

nt
ra

tio
n 

[g
/l]

X2

Equivalent Control 

 
Fig. 10 Second order SM – substrate concentration S(x2)
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Out of the Emelyanov’s approach the second order SM manifold 
becomes: 

.)31.0(, 3 derivativetimetheisSLandxSLwhereSLSL
••

−=∩  (9) 

We use in this investigation the so cold “contraction” algorithm 
[1, 2]. After Emelyanov the SM control input becomes: 

))59.0)(
)(

((
3
1

)(
3
2(

85,0
15,1)15,115,1(

3

21

−−
+

+⎥
⎦

⎤
⎢
⎣

⎡
+−

+
−=

mx
KS

S
mµsign

SLsign
S
SK

m

s

mm

s

µ

µµµµ∆
 (10) 

It is known that this algorithm ends for finite time. The solutions are 
shown on Figures 9 and 10. The control input in SM is smoother but 
more imprecise.  
 
6. CONCLUSIONS 
 
In the paper is analyzed an enlarged Monod-Wang-Yerusalimsky 
form of biotechnological model. This form permits a unification of 
the models in the functional state approach. 
 
The investigation demonstrates the behavior of the fed-batch and 
continuous processes when the control algorithm is constructed by 
synchronized utilization of different approaches for control. The 
synchronized utilization of different control algorithms permits to 
overcome the difficulties arising from the biotechnological 
peculiarities in order to obtain more precise control solutions. These 
control laws is based on the specific growth rate measurement. 
 
The possibilities of the second order SM are investigated and the 
results are that the control becomes smoother but little more 
imprecise. The utilization of sliding mode control is acceptable when 
the system is in a “sliding mode equivalent control” position. 
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