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Abstract: Multiple objective optimization of the initial conditions, maximal rotation speed 
and amplitude for a batch Saccharomyces cerevisiae cultivation using impulse and 
vibromixing systems is developed in this paper. The single objective function corresponds to 
the process productiveness and the residual glucose concentration. The multiple objective 
optimization problems are transformed to a single objective function with weight 
coefficients. A combined algorithm is applied for solving the single optimization. After this 
optimization the useful process productiveness increases and the residual glucose 
concentration at the end of the process decreases. The developed optimization and obtained 
results have shown that the impulse mixing systems have a better productiveness and better 
glucose assimilation. In addition, this system is easier for realization. The combined 
algorithm does not have a feedback and it does not guarantee robustness to process 
disturbances. For that purpose model predictive control for guarantee robustness to process 
disturbances is developed. The developed control algorithm – combined multiple objective 
optimization problem and model predictive control ensures maximal production at the end of 
the process and guarantees a feedback on disturbance as well as robustness to process 
disturbances. 
 
Keywords: Multiple objective optimization, Combined algorithm, Random search with back 
steps, Fuzzy sets theory, Model predictive control. 

 
Introduction 
Multiple objective optimization is a natural extension of the traditional optimization of a 
single objective function. On one hand, if the multiple objective functions are commensurate, 
minimizing single objective function, it is possible to minimize all criteria and the problem 
can be solved using traditional optimization techniques. On the other hand, if the objective 
functions are incommensurate or competing, then the minimization of one objective function 
requires a compromise in another objective function. The competition between multiple 
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objective functions is a key distinction between the multiple objective optimization and 
traditional single objective optimization [10]. 
 
Zhou et al. [16] have used of a Pareto optimization technique to locate the optimal conditions 
for an integrated bioprocessing sequence and the benefits of first reducing the feasible space 
by the development of a series of windows of operation to provide a smaller search area for 
the optimization. 
 
Vera et al. [13] have illustrated a general multi objective optimization framework of 
biochemical systems and they have applied it optimizing several metabolic responses 
involved in the ethanol production process by using Saccharomyces cerevisiae strain. The 
general multiple objective indirect optimization method (GMIOM) is based on the use of the 
power law formalism to obtain a linear system in logarithmic coordinates. The problem is 
addressed with three variants within the GMIOM: the weighted sum approach, the goal 
programming and the multi-objective optimization. We have compared the advantages and 
drawbacks of each of the GMIOM modes. The results obtained have shown that the 
optimization of biochemical systems was possible even if the underlying process model was 
not formulated in S-system form and that the systematic nature of the method has facilitated 
the understanding of the metabolic design and it could be of significant help in devising 
strategies for improvement of biotechnological processes. 
 
Tonnon et al. [12] have used interactive procedure to solve multi objective optimization 
problems. A fuzzy set has been used to model the engineer’s judgment on each objective 
function. The properties of the obtained compromise solution were investigated along with 
the links between the present method and those based on fuzzy logic. An uncertainty, which 
has been affecting the parameters, is modelled by means of fuzzy relations or fuzzy numbers, 
whose probabilistic meaning is clarified by random set and possibility theory. Constraint 
probability bounds that satisfy a solution can be calculated and procedures that consider the 
lower bound as a constraint or as an objective criterion are presented. Some theorems make 
the computational effort particularly limited on a vast class of practical problems. The 
relations with a recent formulation in the context of convex modelling are also pressured. 
 
In the papers [3, 15] a fuzzy procedure is applied to find the optimal feed policy of a fed-batch 
fermentation process for fuel ethanol production using a genetically engineered 
Saccharomyces yeast 1400 and the fuzzy optimization of a two-stage fermentation process 
with cell recycling including an extractor for lactic acid production. By using an assigned 
membership function for each of the objectives, the general multiple objective optimization 
problem can be converted into a maximizing decision problem. In order to obtain a global 
solution, a hybrid search method of differential evolution is introduced. 
 
Model predictive control (MPC) is a general methodology for solving control problems in the 
time domain [6]. More than 25 years after MPC appeared a theoretical basis for this technique 
has started to emerge in the industry as an effective means to deal with variable constrained 
control problems. In fact, that method for optimal control gives the necessary optimal profile, 
but it does not give the robustness of the optimization systems. Therefore the MPC can be 
used for ensuring maximal quality concentration at the end of the process and it guarantees a 
feedback on disturbance and thus – the robustness to process disturbances [7]. 
 
In the second part of the work multiple objective optimization problem (MOOP) of a batch 
cultivation process using the strain Saccharomyces cerevisiae has been developed. The single 
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objective functions reflect the process productiveness and residual glucose concentration. A 
combined algorithm has been used for the determination of MOOP and MPC has been used 
for process control of the different mixing systems. 
 
Materials and methods 
The experimental investigations for the different mixing systems were carried out in a 
bioreactor with total volume 5 litres and working volume V0 = 3 litres. The impulse mixing 
system included a double Rushton turbine with baffles. Maximum rotation speed of the stirrer 
is nm = 260 rpm with frequency f1 = 0.5 s-1 and period T = 2 s (Fig. 1a). The vibromixing was 
realised by replacing the turbine stirrer with vibrator plate 1 (Fig. 1b), where D is the 
bioreactor diameter. The maximum amplitude is Am = 10 mm, frequency f2 = 10 s-1, and 
period T = 0.l s [14]. 
 
The parameter identification of the batch models of Saccharomyces cerevisiae is examined in 
[14], using the different mixing systems. The models were developed based on the functional 
state approach [8] and they are shown in Table 1, where X1,2, S1,2 – cell and glucose 
concentration for different mixing systems, g·l-1; K1 ÷ K9 and k1 ÷ k10 – the parameters of the 
models for different mixing systems; t – time, h. 
 
The process is in Phase I, when S1 ≥ 9.6, in Phase II – when S1 < 9.6 for the impulse mixing 
and in Phase I, when S2 ≥ 12.81, in Phase II – when S2 < 12.81 for the vibromixing. 
 

 
n, rpm 

  0                     T              2T               3T               4T     t

nm, rpm 

 

z, mm 

D

r 

Am 

1 

 
 a) impulse mixing b) vibromixing 

 
Fig. 1 Impulse and vibromixing realised 

 
The maximal values of the rotation speed nm and amplitude Am influence the specific grown 
rate by the Monod constants – coefficients '

2K , '
5K , '

2k , and '
7k  (Table 1). They have been 

recalculated by the following dependences: 
 

mnKK /2
'
2 = , mnKK /5

'
5 = , mAkk /2

'
2 = , and mAkk /7

'
7 = . 

 
The experimental investigations have shown a decrease of the biomass concentration at the 
end of the process. This is because there is an insufficient mass exchange in the so-called 
dead zones of the bioreactor [14]. This is reflected in the models (1) – (4) by a coefficient K6. 
Now we will specify the coefficient and we will made the model validation at 
K6 = 0. The obtained parameter values of the models (1) – (4) are: 
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K1 = 0.238, '
2K  = 1158.3, K3 = 0.122, K4 = 0.641, '

5K  = 621.14,  
K6 = 0.0, K7 = 0.778, K8 = 4.286 and K9 = 0.106. 
 
These values are not significantly different from the values shown in Table 1. The model at 
K6 = 0 showed good statistical indexes. The statistic λ value [14] is λ = 1739 at a theoretical 
value '

TF  = 6.9, i.e. the model is adequate and the coefficient K6 can be removed from the 
model, and this will not significantly influence the simulation results. 
 
 Table 1. Models of the different mixing systems 

Mixing systems Phase I Phase II 

Impulse mixing 
12

1
'
2

2
111 X
SK

SK
dt

dX
+

=  (1) 

12
1

'
2

2
11

3

1 1 X
SK

SK
Kdt

dS
+

−=  (2)

2
161

1
'
5

141 XKX
SK

SK
dt

dX
−

+
=  (3) 

1
119

17

8

1 1 X
SXK

SK
Kdt

dS
+

−=  (4)

Initial conditions X1(0) = 0.89, S1(0) = 13.80. 

Parameters K1 = 0.254, 9.1160'
2 =К , K3 = 0.161, K4 = 0.714, '

5 638.51K = , 
K6 = 0.035, K7 = 0.907, K8 = 0.113, K9 = 5.200. 

Vibromixing 
22

2
'
2

2
212 X
Sk

Sk
dt

dX
+

=  (5) 

2
225

23

4

2 1 X
SXk

Sk
kdt

dS
+

−=  (6) 

2
2

'
7

262 X
Sk

Sk
dt

dX
+

=  (7) 

2
2210

28

9

2 1 X
SXk

Sk
kdt

dS
+

−=  (8)

Initial conditions: X2(0) = 1.20, and S2(0) = 15.75. 

Parameters k1 = 0.161, 76.132'
2 =k , k3 = 0.312, k4 = 0.161, k5 =  9.280, 

k6 = 0.367, 19.9'
7 =k ,     k8 = 0.339, k9 = 0.113, k10 = 1.521. 

 
Formulation of the multiple objective optimization problem 
Selection of the control variables 
Control variables were used in the initial condition of the different mixing systems for solving 
optimization problems, such as X1(0), X2(0), S1(0), S2(0), two time dependent variables 
rotation speed nm(t) for impulse mixing, and maximal amplitude Am(t) for vibromixing. 
 
The control variables intervals for the different mixing systems are:  
0.5 ≤ X1,2(0) ≤ 1.5 g·l-1, 12 ≤ S1,2(0) ≤ 17 g·l-1, 100 ≤ nm ≤ 500 rpm, and 5.0 ≤ Am ≤ 15 mm. 
 
The vector of the control variables has the type: 
 
for impulse mixing: u = [X1(0), S1(0), nm(t)]T  
for vibromixing: u = [X2(0), S2(0), Am(t)]T 
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Criterion for optimization 
The objective of the problem is to find optimal initial conditions of the biomass, glucose 
concentration, maximal rotation speed, and amplitude for the different mixing systems in 
which the following objective functions have maximum values: 
 

f

f

t
tV ))((

max 00
1

XX
Q

u

−
=  (9) 

)0(
)()0(

max 2 S
SS

Q
u

ft−
=  (10) 

 
where Q1, Q2, X0, S0, X(tf), and S(tf) – vectors of the objective functions, initial conditions, 
and kinetics variables for the different mixing systems; tf  – final time. 
 
The first objective function corresponds to the process productiveness. The second objective 
function corresponds to the residual glucose concentration. 
 
The aggregate optimization criterion has an additive type [5]: 
 

2211max QQJ
u

wwS +=  (11) 

 
where JS – vectors of aggregate criteria; w1, w2 – weight coefficients, w1 = w2 = 0.5. 
 
Combined algorithm for optimization 
Random search with back step algorithm 
The random search algorithm is well-known from the literature [11]. Its rate of congruence, 
which is also valid for other algorithms, depends on the selection of a starting point. For 
augmentation of the congruence rate, a preliminary choice of a random set is used in the 
following scheme: 
 
A starting point in the admissible space is generated in an accidental method: 
 

( )0, min, max, min,
2 4 at 3

, 1, 2, ..., ;
2 4 at 3

m

i i i i i
m

i M M
m m

ξ
⎧ + ≤

= + − = = ⎨
+ >⎩

u u u u  

where )(IYURANDi =ξ . URAND(IY) is a random generator of random numbers [0 ÷ 1]. 
 
The point with the best result concerning some criterion JS is chosen as a starting point. After 
that a random search with back step algorithm is applied. 
 
Fuzzy algorithm 
Fuzzy sets theory [2] allows the possibility to develop a “flexible” model that reflects possible 
values of the criterion in more details all , as well as the control variables under the developed 
model. The model of the batch process (1) - (8) for different mixing systems is considered the 
most appropriate but deviations (εi) are admissible with small degree of acceptance. It is 
represented by fuzzy set of the following type X and S come into view approximately by the 
following relations: 
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( ) 121 −
+= ii εη  (12) 

 
where i = 1, 2; εi – deviation from the models. 
 
The prepositional “flexible” model of the process reflects better influence of all values of the 
kinetics variables. 
 
A fuzzy criterion from the following type: “JS to be in possibility higher” is formulated and 
presented with the subsequent membership function: 
 

min

min

min max

max min

max

0

1 for

for

0 for

S S

S S
S S S

S S

S S

η

⎧ <
⎪

−⎪
= ≤ ≤⎨ −⎪
⎪ >⎩

J J

J J
J J J

J J

J J

 (13) 

where 
minSJ  and 

maxSJ  – minimal and maximal values of criteria. 
 
The fuzzy set of the solution is presented by a membership function of the criterion η0 and 
model ηi [1]: 
 

⎭
⎬
⎫

⎩
⎨
⎧

−−+−= ∏∏
==

2

0

2

0
D )1(1)1(

i
i

i
i

ii θθ ηγηγη  (14) 

where γ – parameter characterized the compensation degree; θi – the weights of ηi. 
 
The solution was obtained by using the common defuzzification method BADD [4]: 
 

0

1

1

, 1, ..., ; 1, ...,
i

i

i

j

q
D m

i p
i

D
j

i q j q
θ

θ

η

η=

=

= = =∑
∑

u u  (15) 

where q – number of discrete values of control variables; m – number of control variables. 
 
An effective algorithm for process optimization is synthesized by using the random search 
and fuzzy sets [9]. The combined algorithm includes a method of random search for finding 
an initial point and a method based on fuzzy sets theory which are combined in order to find 
the best solution of the optimization problem. 
 
All programs were written using a FORTRAN 77 programming language version 5.0. All 
computations were performed on a Pentium IV 1.8 GHz computer using Windows XP 
operating system. 
 
Results after fuzzy optimizations and optimal control 
Since the maximal rotation speed nm(t) and amplitude Am(t) are time dependent variables, the 
optimal control problem can be considered for an infinite dimensional problem. To solve this 
problem efficiently, the two control variables are represented by a finite set of control 
parameters in the time interval tj-1 < t < tj as follows nm(t) = nm(j) and Am(t) = Am(j) for 
j = 1 ÷ K, where K – number of time partitions. 
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The optimization problem (12) - (15) is determined in two stages – a static problem for 
determination of the optimal values of the initial conditions X1(0), S1(0), X2(0), S2(0), nm(1), 
and Am(1) for different mixing systems is defined on the first stage. A dynamic problem for 
determination of the optimal profiles of nm(j) and Am(j), (j > 1) is defined on the second stage. 
 
The obtained results of the control variables, kinetics variables, and criteria before and after 
optimization are shown in Table 2. 
 

Table 2. Optimal values of control variable, kinetics variables and criteria 
Mixing systems Variables X1(0) S1(0) nm(1) X1(tf) S1(tf) Q1,1 Q2,1 

Before 0.890 13.800 260 3.267 0.162 1.426 0.988Impulse mixing After 1.359 13.398 332 4.885 0.038 2.115 0.997
Variables X2(0) S2(0) Am(1) X2(tf) S2(tf) Q1,2 Q2,2 

Before 1.200 15.750 10.0 3.968 0.957 1.661 0.939Vibomixing 
After 1.212 12.918 10.4 4.011 0.049 1.679 0.996

 
The optimization results have shown (Table 2) that the biomass concentration increases by 
more than 49% in the impulse mixing and only by 1% for the vibromixing. Respectively, the 
process productiveness (criterion Q1) increases by more than 48% in the impulse mixing and 
only by 1% in the vibromixing. The glucose concentration decreases more than 4 times in the 
impulse mixing and more than 19 times in the vibromixing. The residual glucose 
concentrations (criterion Q2) are insignificant in the impulse mixing and decrease by more 
than 6% in the vibromixing. These results indicate the process impulse mixing productivity is 
better than the vibromixing and the residual glucose concentration is better in the 
vibromixing. 
 
The optimal initial values of biomass and glucose concentration (Table 2) for the different 
mixing systems are distinguished materially for biomass > 12% and glucose > 3.5%. The 
optimization problem is now decided in the intervals, determined by the optimal values 
(shown in Table 2): 1.212 ≤ X1,2(0) ≤ 1.359 and 12.918 ≤ S1,2(0) ≤ 13.398 with the purpose to 
validate the optimal initial values for both mixing systems in order to choose t. The intervals 
of change nm and Am are not changed. This will allow a comparative analysis to be made.  
The results are presented as follows: X1(0) = 1.334 and S1(0) = 13.122; X2(0) = 1.304 and 
S2(0) = 13.049. 
 
The differences between the new optimal values are insignificant (for the initial biomass 
concentration it is < 2.5%, for the initial glucose concentration it is < 0.7%). And for general 
initial condition X(0) = 1.3 g⋅l-1 and S(0) = 13.0 g⋅l-1 are chosen. With these initial conditions 
a fuzzy optimal control is made for determining nm(j) and Am(j) (j > 1). The obtained results 
for the kinetics variables and criteria are shown in Table 3. 

 
Table 3. Optimal values of kinetics variables and criteria 

Mixing systems Variables nm(1) X1(tf) S1(tf) Q1,1 Q2,1 
Before 488 3.899 0.037 1.56 0.9972Impulse mixing After 428 4.837 0.035 2.21 0.9973

Variables Am(1) X2(tf) S2(tf) Q1,2 Q2,2 
Before 14 4.025 0.044 1.64 0.9966Vibromixing 
After 13 4.332 0.043 1.82 0.9967
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The optimization results with identical initial conditions (Table 3) have shown that the 
biomass concentration increases by more than 24% in the impulse mixing and by more than 
7% in the vibromixing. Respectively, the process productiveness (criterion Q1) increases by 
more than 38% in the impulse mixing and by more than 12% in the vibromixing. The glucose 
concentrations decrease by more than 6% in the impulse mixing, and by more than 4% in the 
vibromixing. 
 
The results for the biomass concentrations for different mixing systems before and after 
optimization are shown in Fig. 2. 
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Fig. 2 Biomass concentration before and after optimization 

 
The optimal profiles of maximal rotation speed and amplitude are shown in Fig. 3. 
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Fig. 3 Optimal profile of rotation speed and amplitude 

 
The obtained results show the impulse mixing is preferable to vibromixing. Another 
advantage is that expensive special equipment is not required. It can be realized easily in each 
bioreactor which has control systems equipped with a generator for a saw impulse. 
 
Model predictive control 
In order to understand MPC algorithm see Fig. 4. The figure and the notation used in the 
description are adapted from [6, 7]. The first part of the MPC algorithm is the specification of 
the reference trajectory which may be as simple as a step change to a new set point or as it is 
common for batch processes – a trajectory that the system must follow. At the present time k, 
the reference trajectory has a value r(k). 
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Also at k, consider the predicted process output over a future prediction horizon p. A suitable 
controller model of the process is used to obtain the projected behavior of the output over the 
prediction horizon by simulating the effects of the past inputs applied to the actual process 
(value ŷ (k) at the current time) [7]. 
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Fig. 4 MPC algorithm scheme 

 
However, due to unmodeled disturbances and modelling errors there might be some 
deviations between the actual observed output ym(k) and the predicted output behaviour. Due 
to these deviations, the computed future manipulated variable moves are no longer 
appropriate and hence only the first of the computed manipulated variable moves ∆u(k) is 
implemented on the actual process. The error d(k) = ym(k) – ŷ (k) is calculated and it is used to 
update the future measurements.  
 
The optimization is carried out again based on this new horizon and using the updated system 
information and the process continues. Since the horizon recedes at the next time step, this is 
also known as a receding horizon control problem. However, in the case of batch systems 
where the final time of the process operation is specified the available prediction horizon and 
the window of opportunity for control shrink as the batch is close to completion. 
Consequently, the value of the prediction horizon in the control algorithm successively 
decreases as the end of batch is near [7]. 
 
At the next time instant k + 1, the process measurement is taken again and the horizon is 
shifted forward by one step. The optimization is carried out again based on this new horizon 
and using the updated systems information and the process continues. Since the horizon 
recedes at the next time step it is also known as a receding horizon control problem. 
 
The 2nd hour is chosen as a first control point. As it may be noted that there is a diversion 
from the reference profile, accordingly the optimal profile is changed. The second point is at 
3rd hour. The third point is at 4th hour. The obtained control guarantees the robustness and 
stability of the optimization criterion. The optimization criterion is criterion (11). This is 
represented in Fig. 5. 
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Fig. 5 MPC to Saccharomyces cerevisiae cultivation 
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Conclusions 
1. The multiple optimization results with identical initial conditions have shown that the 

process productiveness increases by more than 38% for the impulse mixing and by 
more than 12% for the vibromixing. The glucose concentration decreases by more 
than 6% for the impulse mixing, and by more than 4% for the vibromixing. These 
results have shown that the impulse mixing is preferable to the vibromixing. 

2. The different initial conditions have shown the biomass concentration increases by 
more than 49% for the impulse mixing, and only by 1% for the vibromixing. 
Respectively, the process productiveness (criterion Q1) increases by more than 48% 
in the impulse mixing and only by 1% in the vibromixing. The glucose concentration 
decreases by more than four times in the impulse mixing, and more than 19 times in 
the vibromixing. The residual glucose concentration change (criterion Q2) is 
insignificant in the impulse mixing and increases by more than 6% in the 
vibromixing. These results have indicated the process impulse mixing productivity is 
better than the vibromixing and residual glucose concentration is better in the 
vibromixing. 

3. The applied multiple objective optimization of the process has shown а vast increase 
of their productivity, respectively decrease in the residual substrate concentration. 
This result leads to a higher economical effectiveness for each of them at a smaller 
outlay. The proposed combined algorithm for optimization includes a method for 
random search of an initial point and a method based on fuzzy sets theory, combined 
in order to find the best solution of the optimization problem. The application of the 
combined algorithm eliminates the main disadvantage of the used fuzzy optimization 
method, namely decreases the number of discrete values of control variables. In this 
way, the algorithm allows solution of problems having a larger scale. The developed 
combined algorithm can be used for the solution of other optimization problems in 
the area of bioprocess systems. 

4. Combined algorithm does not have a feedback and it does not guarantee robustness to 
process disturbances. MPC is developed to guarantee robustness of the process 
disturbances. The method is carried out with the purpose to control disturbance of the 
optimal control variables. The developed control algorithm – combined CA and MPC 
ensures maximum criterion at the end of the process and guarantees a feedback on 
disturbance as well as robustness to process disturbances. 
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