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Abstract: The paper deals with local asymptotic stability analysis of some mass balance 
dynamic models (based on one and on two-stage reaction schemes) of the anaerobic 
digestion (AD) in CSTR. The equilibrium states for models based on one (with Monod, 
Contois and Haldane shapes for the specific growth rate) and on two-stage (only with 
Monod shapes for both the specific growth rate of acidogenic and methanogenic bacterial 
populations) reaction schemes have been determined solving sets of nonlinear algebraic 
equations using Maples. Their stability has been analyzed systematically, which provides 
insight and guidance for AD bioreactors design, operation and control. 
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Introduction 
Anaerobic digestion (AD) is an effective biotechnological process for treatment of different 
agricultural, municipal and industrial wastes [1]. It combines environmental depollution 
(ecological aspect) with production of renewable energy – biogas, which main component is 
methane (energetical aspect).  
 
AD is a very unstable process in regard to the biogas reactors (digesters) operation. This is 
due to the complicated interactions between different microbial species as well as of the 
complex transformations of the organic matter affected by a variety of environmental factors 
[1]. In this context use of mathematical models is a powerful tool for investigations, 
optimization and control of the anaerobic biodegradation [2-8]. More than 750 papers in this 
field are published during the last 30 years (the half of them – during the last 5 years). 
 
Depending on the aim of the modelling, a large number of modelling approaches are 
available. From a general point-of-view, they can be classified within three important classes: 
mass balance models, consisting of sets of non-linear ordinary differential equations (ODE) 
and describing more accurately all microbiological and biochemical phenomena during the 
AD processes; black box models (linear or non-linear); heuristic models, based on qualitative 
and fuzzy logic 
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The biggest spread for AD processes is received dynamical type of models, based over mass 
balances and especially such of them, which are created for continuously stirred tank reactor 
(CSTR) mode.  
 
AD processes have more than one stable stationary solution and the attractive domains of the 
stable solutions vary with the key parameters. Thus, some initial transient process moving 
toward one stable solution could suddenly move toward another solution, at which a so-called 
catastrophe takes places (e.g. washout of microorganisms). That is why it is very important to 
study the stationary solutions with their associated stability [11, 12]. In [11] local asymptotic 
stability of the closed loop system (two bacterial populations model with nonlinear output 
feedback control) is proved decomposing the two populations model into two subsystems. In 
[12] the stability of the three equilibria and the bifurcation of a modified two populations 
model of the AD have been analyzed with regard to variations of one and two parameters, 
using a lot of simplification of the model. Some conclusions (very useful for practice) have 
been drowning. 
 
The aim of this paper is to present our results concerning the local stability of some AD 
models. 
 
Mass balance models  
Model based on one-stage reaction scheme 
Anaerobic digestion is a multistep process involving the action of multiple microbes. Usually, 
such processes contain a particular step, the so-called rate limiting or rate-determining step, 
which, being the slowest, limits the rate of the overall process. Lawrence [3] defined as 
limiting step “that step which will cause process failure to occur under imposed conditions of 
kinetic stress”. The first attempts for modeling anaerobic digestion led to models describing 
only the limiting step. However, during a wide range of operating conditions, the limiting step 
is not always the same. It may depend on wastewater characteristics, hydraulic loading, 
temperature, etc. Andrews [3] for example considered acetogenic methanogenesis as the 
limiting, O'Rourke [3] – the conversion of fatty acids to biogas, and Eastman and Ferguson 
[3] – the hydrolysis of biodegradable suspended solids.  
 
It is apparent that the “limiting step hypothesis” leads to simple and readily usable models. 
Such models, however, do not describe very well the anaerobic bioreactor (digester) 
behaviour, especially under transient operating conditions [3]. 
 
The Graef and Andrews model [2] involves only the acetoclastic methanogens. The 
conversion of volatile fatty acids into biogas is considered limiting. This is the first and the 
most simplified model for description of the AD process describing the process rate limiting 
methanogenic step [4, 7]:  
 

DXX
dt
dX

−= µ  (1) 

dS
dt

k X D S Si= − + −1 0µ ( )  (2) 

2Q k Xµ= , (3) 
 
where S – substrate (acetate) concentration, g⋅dm-3; X – biomass concentration, g⋅dm-3;  
D – dilution rate, day-1; S0i – concentration of inlet organics, g⋅dm-3; Q – biogas flow rate, 
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dm3⋅day-1; µ – specific growth rate, day-1; k1 and k2 are yield coefficients. The specific growth 
rate (µ) is with one from the following expressions: 
 

– Monod type: 
( )

max

s

S
k S
µµ =
+

, (4) 

– Contois type: 
( )

max

m

S
k X S
µµ =

+
, (5) 

– Haldane type: ( )
0

2 /s i

S
k S S k

µµ =
+ +

, (6) 

 
where µmax, µ0, km, ks, and ki are kinetic coefficients. 
 
According to this model, a digester is expected to fail whenever, for some reason, the fatty 
acid concentration is increased. This causes a drop in the pH and a rise in the acetic acid 
concentration. This in turn causes a drop in the growth rate of the methanogenic population, 
until they are washed out, if the situation is prolonged. 
 
It has been proved that this model poses single maximum of the static characteristic 

)(DQQ =  [7]. This simple nonlinear model is very useful for testing different control 
algorithms. 
 
Models based on two-stage scheme 
Moletta et al. [8] involve an acidogenic step, that forms acetate from glucose, and are 
inhibited by acetic acid. The overall AD model in this case is as follows: 
 

( )

1
1 1 1

1
1 1 1 0 1i

dX X DX
dt

dS k X D S S
dt

µ

µ

= −

= − + −
 

2
2 2 2

2
2 2 2 3 1 1 2

dX X DX
dt

dS k X k X DS
dt

µ

µ µ

= −

= − + −
 (7) 

4 2 2Q k Xµ= , 
 
where Х1 and Х2 – concentrations of acidogenic (with specific growth rate µ1, day-1) and 
methanogenic (with specific growth rate µ2, day-1) bacteria, respectively, g⋅dm-3; S1 – glucose 
concentration, g⋅dm-3; S2 – acetate concentration, g⋅dm-3; Q – biogas flow rate, dm3⋅day-1;  
D – dilution rate, day-1; Sin – concentration of inlet glucose, g⋅dm-3. In the model (7) ki  
(i = 1 – 4) – are yield coefficients, µ1 is with the Monod form (4) and µ2 – with Haldane form 
(6); µ1max, µ2max, ks1, ks2 and ki2 are kinetic coefficients. 
 
It has been proved that this model poses single maximum of the static characteristic 

)(DQQ =  [9]. This nonlinear model is very useful also for testing different control 
algorithms. 
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Local stability analysis 
Model based on one stage reaction scheme 
Equilibrium points 
It is a basic feature of nonlinear systems in general, and consequently of the model (1) – (2) in 
particular, that the equilibrium states can be stable or unstable depending on the operating 
point. The equilibrium pointes (for given constant values D* and S0i) for the model (1) – (3) 
are well known [4, 7]: 
 
Point 1. The digester is in stationary state when there are no more microorganisms in it, that is 
when X = 0. In this case, it follows from the model (1) – (2) that D = 0 or S = S0i:  
 

*

**
0

0

i

X
SS

⎡ ⎤ ⎡ ⎤
=⎢ ⎥ ⎢ ⎥

⎣ ⎦⎣ ⎦
. (8) 

 
This state (8) of the digester will be referred as the extinguishing equilibrium point.  
 
Point 2. Depending on values of constant inputs D* and S0i, there may be steady states for the 
digester other than the extinguishing equilibrium point. If any, such an equilibrium point will 
be called main equilibrium point. Main equilibrium points are with nonzero concentration of 
microorganisms, and they verify the following equations: 
 

* * *

* *
0

1

( , ) ,
1 ( ).i

X S D

X S S
k

µ⎧ =
⎪
⎨ = −⎪
⎩

 (9) 

 
Monod case 
Given the Monod shape (4) for µ (Fig. 1) Eqs. (9) have one, and only one solution if, and only 
if:  
 

)( *
0iSD µ< . (10) 

 
So that for the Monod shape for µ, there is one, and only one equilibrium point (which is then 
the so-called extinguishing equilibrium point (8)) if and only if : 
 

)( *
0iSD µ≥ , (11) 

 
and, there are exactly two equilibrium points (the extinguishing equilibrium point and the 
main one) if, and only if the condition (10) holds. 
 
Contois case 
Given Eqs. (9) the Contois law (5) for µ reads as: 
 

*

1

*
0

1

*
max*

1
)(

S
k
k

S
k
k

S
S

m
i

m
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−+

=
µ

µ , 

which reveals µ as an increasing function with respect to S*. 
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If 1kkm =  than µ is of the following shape (Fig. 2) and there is one, and only one, so-called 
main equilibrium point: 
 

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

=
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

max

*
0

*

*
0

max

*

1
*

* 11

µ

µ

i

i

SD

SD
k

S
X

 

 
provided that maxµ<D . 
 
If 1kkm <  than µ is of the following shape (Fig. 3) and again, there is one, and only one, main 
equilibrium point given by the intersection between the “line D*” and the curve )( *Sµ  if, and 
only if, maxµ≤D . 
 

   
 

 Fig. 1  Fig. 2  Fig. 3 
 
If 1kkm >  than µ is of the following shape (Fig. 4): 
 

 
Fig. 4 

 
and again, there is one, and only one, main equilibrium point given by the intersection 
between the “line D*” and the upper part of the curve )( *Sµ  if, and only if, maxµ≤D . 
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Haldane case 
Given the Haldane shape (6) for µ (Fig. 5): 

 
Fig. 5 

 
there is one, and only one, main equilibrium point if, and only if: 
 

⎪⎩

⎪
⎨
⎧

≤

≤

,

),(

0

*
0

*

sii

i

kkS

SD µ
 or 

* *
0

0

( ),

,
i

i i s

D S

S k k

µ⎧ ≤⎪
⎨

≥⎪⎩
 (12) 

 
and there are exactly two main equilibrium points if, and only if: 
 

* * 0
0

*
0

( ) ,
(1 2 )

.

i
s

i

i i s

S D
k
k

S k k

µµ⎧ ≤ <⎪
⎪ −⎨
⎪
⎪ >⎩

 (13) 

 
Stability of the equilibrium points 
The analysis of the equilibrium states of the model (1) – (2) will be performed under the 
following realistic assumptions [4]: 
 
D(t) ≥ 0, ∀ t, 0 ≤ S0i ≤ Smax, X(t) ≥ 0; S(t) ≥ 0. 
 
The Jacobian matrix of the model (1) – (2) at the extinguishing equilibrium point is 

* * * *
0( , , , )iF D S X S , where  

 

0
1 0 1 0

( ) ( )

( , , , )
( ( )) ( ( )i

i i

X DX X DX
X S

F D S X S
k X D S S k X D S S

X S

µ µ

µ µ

∂ − ∂ −⎛ ⎞
⎜ ⎟∂ ∂⎜ ⎟=
⎜ ⎟∂ − + − ∂ − + −
⎜ ⎟∂ ∂⎝ ⎠

. 

 
Therefore 
 

* * *

0 * *
1

( , ) 0
( , , , )

( , )i
X S D

F D S X S
k X S D

µ
µ

⎛ ⎞−
= ⎜ ⎟

− −⎝ ⎠
, 
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and for any for shape of µ  the extinguishing equilibrium point is locally asymptotically stable 
if, and only if: 
 

* *( , )D X Sµ> . (14) 
 
Similarly, the Jacobian matrix of the model (1) – (2) at the main equilibrium point (if any) is 

* * * *
0( , , , )iF D S X S , where 

 

0

1 1

( , ) ( , )

( , , , )
( , ) ( , )( , )

i

X S X SX X
X S

F D S X S
X S X Sk X S X k X D
X S

µ µ

µ µµ

∂ ∂⎛ ⎞
⎜ ⎟∂ ∂⎜ ⎟=
⎜ ⎟⎛ ⎞∂ ∂
− + − −⎜ ⎟⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠⎝ ⎠

. 

 
The matrix * * * *

0( , , , )iF D S X S  is Hurwitz if, and only if, its determinant is positive and its 
trace negative, that is: 
 

* * * * * * * *
* * * * * *

1

* * * *
* * *

1

( , ) ( , ) ( , ) ( , )( ) ( ) 0

( , ) ( , ) 0

X S X S X S X SX D X X k X D
S X X S

X S X SX k X D
X S

µ µ µ µ

µ µ

⎧∂ ∂ ∂ ∂
+ − + >⎪ ∂ ∂ ∂ ∂⎪

⎨
∂ ∂⎪ − − <⎪ ∂ ∂⎩

. (15) 

 
The stability of the main equilibrium points is examined through the three empirical laws for 
the specific growth rate (4), (5) and (6). 
 
Monod case 
In this case and under the condition (10) of existence of the unique main equilibrium point, 
the latter is asymptotically stable if, and only if: 
 

* *
* *

* *
* *

1

( , ) 0

( , ) 0

X S X D
S

X Sk X D
S

µ

µ

⎧∂
>⎪ ∂⎪

⎨
∂⎪− − <⎪ ∂⎩

. 

 
These conditions being always satisfied, there is a main equilibrium point, it is unique and 
asymptotically stable if, and only if, condition (10) holds. 
 
Contois case 
In this case the existence, uniqueness and asymptotical stability of the main equilibrium point 
holds if, and only if max

* µ<D . 
 
This results from the fact that: 
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* * *2
* *

max

* ** *
* max

max

( , )

( )( , )

X S DD X
X

D DX S X
X

µ
µ

µµ
µ

⎧ ∂
+ =⎪ ∂⎪

⎨
−∂⎪ = −⎪ ∂⎩

 

 

and since 
* *( , )X S
S

µ∂
∂

 is always positive, conditions (15) are easily checked to be verified for 

all three cases 1kkm = , 1kkm <  and 1kkm > . 
 
Haldane case 
In this case and under the condition (12), the main equilibrium point is asymptotically stable. 
This results from the fact that: 
 

* *

* *

( , ) 0

( , ) 0

X S
X

X S
S

µ

µ

⎧∂
=⎪ ∂⎪

⎨
∂⎪ >⎪ ∂⎩

,  

 
so that conditions (15) are easily checked to be verified. 
 
For Haldane law for µ and under the condition (13), the main equilibrium point with positive 
derivative of µ at X* is asymptotically stable, and the second main equilibrium point is 
unstable.  
 
This results from the fact that the first condition in (15) is violated when the derivative of µ at 
X* is negative. 
 
Model based on two-stage stage reaction scheme 
Equilibrium points 
In this case there are three equilibrium points: 
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where the last component of the equilibrium point 2) involves the first component *
1X of the 

same equilibrium point 2), and where the quantity A in the equilibrium point 3) is given by 
the following expression: 
 

* *2
3 0 3 1 1 2

* *
1 2 1max 2max

* * *
3 1max 2max 0 2 1 1max 1 3 2max 3 1max 2max 0

* *
1 2 1max 2max

( )
( )( )

( ( ) ) .
( )( )

i s s

i s s i

k S k k k k DA
k k D D

k S k k k k D k S
k k D D

µ µ

µ µ µ µ µ µ
µ µ

+ +
= −

− −

+ + + +
−

− −

 

 
Equilibrium point 1) will be named the extinguishing equilibrium point since it corresponds to 
the situation where there are no more microorganisms (neither acidogenic nor methanogenic) 
in the anaerobic bioreactor. 
 
Equilibrium point 2) will be named the methanogenic extinguishing equilibrium point since it 
corresponds to the situation where there are no more methanogenic microorganisms while the 
acidogenic microorganisms are still present in the anaerobic bioreactor. Its first two 
components are easy seen as the main equilibrium point of the one-stage model, that is, they 
are the solution of Eqs. (9), where µ is Monod type and S is replaced by S1. The last two 
components are the extinguishing equilibrium point of the one-stage model in which *

13 Xk  
(found in the previous first two components) is substituted for S0i. 
 
Equilibrium point 3) will be named the main equilibrium point of the two-stage model. Its first 
two components are the main equilibrium point of the one-stage model, that is, they are the 
non trivial solution of Eqs. (9) where µ is Monod type and S is replaced by S1. Its last two 
components are the main equilibrium point of the one-stage model in which *

13 Xk  (found in 
the previous first two components) is substituted for S0i. 
 
Given Eq. (7), and assuming Monod shapes for the specific growth rates µ1 and µ2, the 
Jacobian matrices of the system (7) are all of the form:  

 
* * * *

1 0
* * * *

0
* * * *

2 0

0( , , , )
( , , , )
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F D S X S
F D S X S

F D S X S

⎛ ⎞
⎜ ⎟= ⎜ ⎟
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⎝ ⎠

 

 
where 

1 1 1 1 1 1
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⎜ ⎟∂ − + − ∂ − + −
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2 2 1 2 2 2

2 2
2 0

2 2 2 3 1 1 2 2 2 2 3 1 1 2

2 2

( ) ( )

( , , , )
( ) ( )i

X DX X DX
X S

F D S X S
k X k X DS k X k X DS

X S

µ µ

µ µ µ µ

∂ − ∂ −⎛ ⎞
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⎜ ⎟∂ − + − ∂ − −
⎜ ⎟∂ ∂⎝ ⎠

 

and * designates a non necessarily zero sub-matrix. 
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The characteristic polynomial of * * * *
0( , , , )iF D S X S is the product of those of 

* * * *
1 0( , , , )iF D S X S  and * * * *

2 0( , , , )iF D S X S . 
 
An equilibrium point is thus asymptotically stable if, and only if, * * * *

1 0( , , , )iF D S X S  and 
* * * *

2 0( , , , )iF D S X S  are both Hurwitz. The matrix * * * *
1 0( , , , )iF D S X S  is Hurwitz means that 

the first two components of the equilibrium point form an equilibrium point which is 
asymptotically stable for the one-stage model where S is replaced by S1 and X by X1. And the 
matrix * * * *

2 0( , , , )iF D S X S  is Hurwitz means that the last two components of the same 
equilibrium point form an equilibrium point which is asymptotically stable for the one-stage 
model where S is replaced by S2,, X by X2 and S0i by *

13 Xk  (found in the previous first two 
components).  
 
Applying the previous rule it immediately follows that the extinguishing equilibrium point 
is asymptotically stable if, and only if, * * * *

1 0( , , , )iF D S X S  and * * * *
2 0( , , , )iF D S X S  are 

Hurwitz when evaluated at this equilibrium point, that is, if and only if: 
 

max1
* µ>D . 

 
By the same rule the methanogenic extinguishing equilibrium point is asymptotically 
stable if, and only if, the corresponding condition (10): 
 

)( *
01

*
iSD µ< , 

 
and the corresponding condition (11): 
 

)( *
132

* XkD µ> , 
 
are satisfied, where *

1X  is as in 2): 
 

*
01
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1

**
01*

1
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is

i
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DSX

+
−
−

=
µ
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Put together these two conditions read as: 
 

* *
* *1 0

2 3 1 0*
1max

1 *
1 0

( ) ) ( )i
i

s i

S Dk D S
Dk

k S

µµ µ
µ

⎛ ⎞
⎜ ⎟−⎜ ⎟ < <
⎜ ⎟−
⎜ ⎟+⎝ ⎠

. 

 
The main equilibrium point of the two-stage model is asymptotically stable if, and only if, the 
corresponding condition (10):  
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is satisfied. 
 
Conclusions and future work  
Different models of the AD of organic wastes have been developed. They can be used for 
process studies [1, 4], software sensors design [10], and control [6, 9]. In all cases model 
stability study is very important. 
 
From the above-presented study, concerning local stability analysis of the adopted AD 
models, the following generalized remarks could be summarized: 

1. For one stage AD model (describing the methanogenic stage) with Monod, Contois 
and Haldane shapes for the specific growth rate, there exists only one asymptotically 
stable equilibrium point, if and only if, one upper bound for D is satisfied. 

2. For two stage AD model only with Monod shapes for both specific growth rate of 
acidogenic and methanogenic bacterial populations, there exists only one 
asymptotically stable equilibrium point, if and only if, one upper bound for D is 
satisfied. 

 
These remarks may be useful for maximising biogas production from the digester. 
 
In this paper local stability of some AD models has been analyzed using the Lyapunov’s first 
method. Some open problems concerning AD models stability are: steady-state analysis 
(including local stability) of more complex models and global stability study. 
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