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Abstract: Transient Receptor Potential-Canonical (TRPC) channels are the border guards 
residing in the supra-molecular assembly of plasma membrane. TRPCs represent a family of 
channels that have dual functions of store-operated and second messenger-operated 
channels in a diversity of cell types. Any disruption in the spatio-temporal organization 
drastically influences the calcium homeostasis. This review summarizes current 
interpretations on the infrastructure and characteristic divalent ions regulation in molecular 
anomalies. A specific targeting of these channels will enable us to get a step closer to 
personalized medicines. 
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Introduction 
Calcium is one of the repertoires of the cell. Calcium ions trigger multifarious processes.  
It implicates these processes by promoting or suppressing the interplay between proteins. 
These aspects range from cellular proliferation to apoptosis. Although both these parameters 
are paradigm in parallax, still opposite sides of the same coin. Ca2+ mediated signal 
transduction is engaged in tumorigenesis or various facets of tumor progression like 
metastasis, angiogenesis or invasion. Ca2+ is often given superficial attention or viewed 
simplistically as a switch. Paradoxically Ca2+ homeostasis must be controlled in a precise 
manner. There is a list of membrane associated proteins directly implicated in Ca2+ 
homeostasis and amplitude. There is no hardcore profile for variations in Ca2+ channel 
expression in cancer cells.  
 
TRP: TR(I)P to a planet of multitasking channels 
Transient receptor potential (TRP) channels behave as multifunctional cellular sensors and are 
engaged in appropriate switching and tuning of cellular growth factor signaling. Following 
literature will provide an overview of current awareness about the discrete role of TRP 
channels in various diseases. On the basis of phylogenetic categorization there are three major 
families. The TRPC or canonical TRP family, with seven members (TRPC1 through TRPC7), 
TRPV family comprises six members (TRPV1-6) and the TRPM family encompasses eight 
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members (TRPM1-8). On the basis of structural and functional commonalities, TRPC splits 
into four different subfamilies: TRPC1, TRPC2, TRPC3, 6 and 7 and TRPC4 and 5 
(Reviewed by Montell [49]). 
 
Increase in plasma membrane Ca2+ channel expression (for example in prostate cancer cells 
there is an up-regulation of TRPM8 and TRPV6) and reduced expression of Ca2+ pumps that 
limit the drastic increase in the ions. This malpractice would augment Ca2+ incline in cytosol 
thus facilitating proliferative signaling pathways. Significant changes in Ca2+ homeostasis and 
amplitude may take place. Ca2+ channel localization was altered in neoplastic cell. Expression 
of Ca2+ channel on the ER could result in Ca2+ leak from ER and resistance of apoptotic 
stimuli. In human prostate cancer cell line LNCaP, TRPM8 leaves plasma membrane and 
localizes to ER membrane [62]. Conversely, when overexpressed in Human Embryonic 
Kidney 293 Cells (HEK-293 cells), Transient receptor potential melastatin 8 (TRPM8) 
appeared both in plasma membrane and ER membrane. 
 
GPCR: A versatile signalling orchestrator 
Traditionally, it has been presumed that the constituents of signaling pathways show pathway 
fidelity and act with a high degree of autonomy. However, substantial fraction of information 
confirms that linear transduction cascades undergo integration. The linear pathways are often 
shared between multiple pathways. G protein-coupled receptors (GPCRs) respond to various 
ligands, such as hormones, neurotransmitters. It is quite often that GPCR-interacting partners 
directly mediate receptor signaling or they might act as scaffolds to operate the downstream 
signaling. Furthermore, GPCR-interacting proteins can have a big impact on the regulation of 
TRPC activities. 
 
Agonists stimulate G-protein-coupled receptors (GPCRs 1-3), in the cell membrane (Fig. 1). 
GPCR1 activates the Gαs protein, which results in the generation of cyclic AMP (cAMP) by 
adenylyl cyclase (AC). Protein kinase A (PKA) is also activated which phosphorylates 
various substrates. Gβγ-complex activates mitogen-activated protein kinase (MAPK) cascade, 
which results in the activation of extracellular signal-regulated kinase-1/2 (ERK1,2) to trigger 
transcriptional responses [20-22]. 
 

 
Fig. 1 Diagrammatic presentation of GPCR signaling 

 
GPCR2 activates G protein Alpha Subunit Q polypeptide (Gαq). Phospholipase Cβ (PLCβ), 
generates inositol-1,4,5-triphosphate (InsP3) and diacylglycerol (DAG) from 
phosphatidylinositol-4,5-bisphosphate (PtdIns(4,5)P2). InsP3 regulates intracellular Ca2+ ions 
([Ca2+]i) mobilization and the activation of Ca2+/calmodulin-activated protein kinase II 
(CaMKII) [83]. DAG activates protein kinase C (PKC) [65]. CaMKII and PKC can 
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phosphorylate multiple substrates [66]. GPCR3 activates G protein Alpha Subunit 
Transducing activity (Gαt), which induces bipartite signaling [54], the activation of PLCβ by 
Gβγ-complex and the activation of phosphodiesterase-6 (PDE6). PDE6 reduces cyclic GMP, 
protein kinase G (PKG) activity and cyclic-nucleotide-gated channel (CNGC) activity [12, 29, 
30, 64, 73]. 
 
STIM and ORAI: Dealing with TRPC in a friendly manner 
A shortfall of Ca2+ content within the endoplasmic reticulum (ER) has to be replenished.  
This is triggered by receptor activation that stimulates phospholipase C (PLC) to increase 
inositol-1,4,5-trisphosphate (InsP3) [71], leads to the opening of  plasma membrane embedded 
Ca2+ release-activated Ca2+ (CRAC) channels. These channels are selective for Ca2+ and result 
in a cytoplasmic rise in Ca2+ levels. A decline in Ca2+ concentration below the threshold value 
is sensed by stromal interaction molecule 1 (STIM1), which communicates this to ORAI 
calcium release-activated calcium modulator (ORAI1), the pore-forming subunit of the CRAC 
channel (Fig. 2). STIM1 is embedded in ER membrane. Framework of the protein comprises 
an EF hand that binds Ca2+, a “hidden” EF hand that does not bind Ca2+ and the sterile α-
motif (SAM) domain that promotes STIM1 oligomerization. Cytoplasmic domain is equipped 
with functional domains, coiled-coil domain, an ezrin-radixin-moesin (ERM) domain and 
serine or proline-rich (S/P-rich) and lysine-rich (K-rich) segments. The CRAC activation 
domain (CAD) is compulsory for ORAI1 gating [1]. ORAI1 has four transmembrane domains 
(TM1–TM4), with intracellular amino and carboxyl termini [36-38]. 
 

 

Fig. 2 Illustration of STIM and ORAI infrastructure and framework 
 
STIM is a protein that resides in the endoplasmic reticulum [33]. It has calcium binding 
domains in it [18]. In the absence of calcium concentration there is a shuttling of STIM from 
endoplasmic reticulum to PM-ER junction [52]. It gets coupled to the Transient receptor 
potential canonical (TRPC) and facilitates the trafficking of calcium ions [68, 69, 75]. This 
phenomenon of Store operated calcium entry (SOCE) is switched on because of Ca2+ store 
depletion. There are two domains of STIM which are involved in protein 
aggregation/oligomerization [39, 43]. It was observed that K684, K685 residues of STIM, that 
are involved in making indirect attachment with TRPC [82]. As STIM gets indirectly attached 
to heteromultimeried TRPC [36, 77, 81]. It first enhances heteromultimerization of TRPC 
isoform then gets attached to that complex. Attachment of STIM1 to TRPC dissociates pre 
existing interactive complex of TRPC and caveolin [50]. TRPC harbors STIM binding 
domain in the C terminal region of the channel while N-Terminal region holds binding site for 
caveolin. STIM C-terminal interacts with C-Terminal region of TRPC [23, 40]. 
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There is a very tight involvement of ER stored calcium in pulmonary constriction. The 
induced mobilization of Ca2+ out of ER infringed the vasoconstriction. There is threshold 
calcium amplitude that is necessary in cytoplasm to instigate contraction. This threshold can 
be maintained either by ER stored depletion or influx of Ca2+ ions via TRPC channels. In 
agreement with this assumption another parameter that cannot be ruled out is that elevated 
cytosolic amplitude of Ca2+ is mediated by upstream and downstream avenues which are Ca2+ 
influx via plasma membrane localized channel and Ca2+ efflux via stored Ca2+ reservoirs in 
ER to sustain Ca2+ amplitude in cytosol. Hence it is obvious and outstanding situation in 
which cytosolic calcium is the licensing factor for proliferation and vasoconstriction. Both 
these mechanisms are bolstered by Ca2+ ions in cytoplasm. If this threshold amplitude of Ca2+ 
is extinguished by inhibiting Ca2+ mobilization via ER or abrogating influx via TRP channels, 
both patterns of constriction and proliferation can be attenuated [9, 28, 45, 60, 61]. 
 
TRP’s are potential candidates that indicate a transitional switch from uterine quiescence to 
contraction during labor. Various isoforms of TRPC are localized in myometrium. Henceforth 
similar contractions are induced by increase in cytosolic Ca2+ ions which facilitate the process 
[16, 17]. Pulmonary vasoconstriction is a phenomenon associated with constriction of 
pulmonary arteries in hypoxia (low oxygen level) without hypercapnia (high carbon dioxide 
level). This hypoxic stress redirects blood flow to higher oxygen content region i.e is alveoli. 
Vasoconstriction is more pronounced in distal pulmonary artery than proximal artery. This 
vasoconstriction is triggered by co-interaction of TRPC and STIM-C that impinges store 
operated calcium entry [41, 42]. IP3 mediated Icat (IP3 induced nonselective cation current) 
activation and vasoconstriction by IP3R1 and TRPC3 present in arterial myocytes [72].  
C terminal calmodulin and IP3R binding (CIRB) domain are present in myocyte TRPC3 and 
TRPC6 channels [2, 8, 25, 70] determined the role of TRPC in pulmonary vasoconstriction. 
They used epoxyeicosatrienoic acid (EET) in TRPC heterozygous and homozygous mice to 
explore the involvement of TRPC6 in pulmonary vasoconstriction. There was a remarkable 
vasoconstriction in TRPC heterozygous mice but contrarily, there was no effect of compound 
EET on the mice, that were homozygous recessive for TRPC. These observations strengthen 
our understanding regarding role of TRPC in pulmonary vasoconstriction. TRPC is activated 
by G-protein coupled receptor signaling in an indirect manner. PLC once switched on because 
of GPCR signaling acts on Phosphatidylinositolbisphosphate (PIP2) and subsequently 
generation of IP3 and DAG takes place [32, 34]. Both entities are implicated in activation of 
TRPC [46]. TRPC4 expression is upregulated in diabetic vessels whereas TRPC1 and TRPC6 
are downregulated [14]. 
 
Heteromultimer TRPC6/TRPC7 is strongly influenced by extracellular Ca2+ concentration. 
Increase in Ca2+ concentration attenuates heteromultimer mediated current. Same trend was 
observed after knockout of STIM which compromised trafficking of Ca2+ ions after store 
depletion. STIM ablation prevented metastatic dissemination but bolstered proliferation [44]. 
 
BDNF and TRPC: Hands in glove 
The binding of brain derived neurotrophic factor (BDNF) to Tropomyosin-Related Kinase B 
(TrkB) activates phospholipase Cγ (PLC-γ) which generates diacylglycerol (DAG) and 
inositol triphosphate (IP3) [5, 15]. DAG directly activates TRP family channels [3, 35, 59], 
whereas IP3 may trigger store-operated Ca2+ release mechanisms [63, 76, 79]. Ca2+ influx via 
TRPC3 and TRPC6 channels activates extracellular receptor kinase (Erk) and 
Calcium/calmodulin-dependent protein kinase type IV (CaMKIV). This activates cAMP 
responsive element binding (CREB) transcriptional pathways that integrate with  



 INT. J. BIOAUTOMATION, 2010, 14(4), 233-246 
 

 237

Akt-dependent pathways to potentiate survival of neurons. Ca2+-dependent survival pathways 
are induced via activity-dependent opening of L-type Ca2+ channels as well (Fig. 3). 
 

 
Fig. 3 BDNF-induced and activity-dependent survival mechanisms are potentiated  

by intricate Ca2+-dependent signaling pathways 
 

Activation cascades of TRPC 
TRPC is susceptible to stimulation by multiple factors. Sustainability of TRPC6 in plasma 
membrane is bolstered by Ras-like proteins (Rab 9 and Rab 11). Both the proteins are actively 
involved in recycling of TRPC6 to plasma membrane (Fig. 4) [11]. Substance P (subp) and 
IP3 are implicated in activating TRPC’s. IP3 displaces PIP2 mediated inhibition of TRPC7 
subunits [6, 24]. 
 
SEC14 domain and spectrin repeat-containing protein 1 (SESTD1) gets docked to calmodulin 
and IP3 receptor domain in TRP-like protein (TRPL). SESTD1 harbors a lipid binding SEC14 
domain. Multiple phospholipids get attached to SESTD1 which render it active and enhance 
its affinity for TRPC [47]. TRPC mediated inward trafficking of calcium ions facilitates the 
expression of vascular cell adhesion molecule (VCAM) via tumor necrosis factor (TNF) and 
Adenosine triphosphate (ATP) [57, 58]. Notch signaling modulates transcription of TRPC via 
NUMB [13, 31]. 
 

 
Fig. 4 Tight regulation of TRPC by Rab proteins 
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TRPC: Partners and partnerships in the crime 
Facts advocate that up-regulation of TRPC channels is entailed in the development of cardiac 
hypertrophy and heart failure. Moreover it contributes in vascular remodeling and pulmonary 
hypertension. TRP channels are imperative novel pharmacological targets for the clinical 
management of cardiovascular disease. 
 
Atrial natriuretic peptides (ANP) and brain natriuretic peptides (BNP) are actively involved in 
mediating antihypertrophic effects in the heart via their common receptor, guanylyl cyclase 
(GC)-A. It generates cGMP, for activation of protein kinase (PK)G. Protein kinaseG (PKG) 
suppresses TRPC6 activity and cardiac hypertrophy. It was unclear whether PKG suppresses 
cardiac hypertrophy through inhibition of TRPC. PKG activated by Phosphodiesterase5 
(PDE5) inhibition phosphorylated TRPC6 proteins at Thr(69). This interferes with the 
calcium trafficking. Substitution of Ala for Thr(69) in TRPC6 impaired the anti-hypertrophic 
effects of PDE5 inhibition. PDE5 inhibitiors induce TRPC6 phosphorylation that plays an 
active role in prevention of pathological hypertrophy by PDE5 inhibition. Overexpressed 
TRPC6 in GC-A compromised cells exacerbated cardiac hypertrophy as TRPC channel 
blocker, considerably decreased the cardiac hypertrophy. There is an existence of an 
interactive pathway encompassing TRPC activation via cardiac ANP/BNP-GC-A pathway. 
TRPC6 blockade is an effective therapeutic strategy for management of pathological cardiac 
remodeling [26, 27, 51]. 
 
In cardiomyocytes, alterations in the frequency or amplitude of calcium results in induction of 
hypertrophy. Some pivotal receptor-ligand engagements regulate the switching of calcium 
channels in a diversified manner. Angiotensin (Ang) II modulates pathogenesis of cardiac 
hypertrophy by nuclear factor of activated T cells (NFAT), a calcium responsive 
transcriptional factor. PLC-mediated production of diacylglycerol (DAG) results in robust 
activation of diacylglycerol (DAG)-responsive canonical transient receptor potential (TRPC) 
subfamily channels (TRPC3 and TRPC6) triggers membrane depolarization. Ablation of 
either TRPC3 or TRPC6 completely hampered agonist-induced hypertrophic responses, 
highlighting that TRPC3 and TRPC6 undergo heterotetramerization and targeting of either 
member of the family disrupts the synergy.  
 
A recent swing of emphasis towards endogenous TRPC proteins has resulted in a mounting 
body of substantiation indicating that a combinatorial scheme is observed in TRPC channels. 
These proteins work synchronously to form native heteromeric SOCs. TRPC proteins are 
involved in the formation of multiple native channel types. Heteromultimerization of variety 
of TRPC proteins, results in assembly into multifarious channel types. 
 
Interestingly there is an antagonistic interaction that prevails between TRPC3/TRPC6 and 
TRPC1/TRPC5. TRPC6 channels evoked by Ang II are rendered functionally inactive by 
TRPC1/C5-mediated Ca2+ influx and stimulation of PKC which phosphorylates TRPC6 
subunits. This unmasks a novel interaction between two distinctive vasoconstrictor-activated 
TRPC channels expressed in the same VSMCs. The endothelin-1 (ET-1) receptor subtypes 
have a dual mode of activation of TRPC’s. The alternative pathways of PIP2 and PIP3 are 
utilized in a precise manner to trigger the activation of the channels. This appears to be a 
“double edged sword” as any medication that solely targets any of the members will be 
incompetent to produce desired results because of the probabilistic switching mode of the 
signaling. Mechanistic activation of TRPC1/C5/C6 channels (termed TRPC1 channels) by 
stimulation of (ET-1) receptor subtypes is intriguingly diverse. Activation of native 
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TRPC1/C5/C6 channels executed by endothelin-1 can be achieved by both PIP3 and PIP2 
[53, 55]. 
 
In pulmonary arterial smooth muscle cells (PASMCs), Ca2+ influx occurs primarily through 
store-operated Ca2+ channels. Exposure to prolonged hypoxia results in an upregulated 
TRPC1 and TRPC6 expression in PASMCs. Sildenafil, a type V phosphodiesterase inhibitor 
is a remarkable agent for treatment of pulmonary hypertension that elevates cellular cGMP.  
It alters basal calcium level in PASMCs by decrease in SOCE through TRPC1/TRPC6 
expression inhibition and decreasing the vascular tone of pulmonary arteries [41, 67]. 
 
Many receptor tyrosine kinases potentiate the activities of TRPC. A “transactivation” 
mechanism, which links these events in one signalling chain. Platelet drived growth factor 
(PDGF) mediated pulmonary artery smooth muscle cell proliferation is associated with 
upregulation of TRPC6 expression. Increase in capacitative Ca2+ entry (CCE) facilitate return 
of Ca2+ to sarcoplasmic reticulum and promote pulmonary artery smooth muscle cell 
(PASMC) growth [74]. Intracellular Ca+ depletion activates capacitative Ca2+ entry (CCE) 
which takes part in Pulmonary artery (PA) concentration through TRP Ca2+ channels [7, 45]. 
Arg8-vasopressin (AVP) acts as a ligand and gets attached to vasopressin receptor present on 
the surface of the cell. As soon as ligand receptor engagement takes place, there is a medley 
of receptors which synchronize and orchestrate calcium trafficking. TRPC might work in 
collaboration with Platelet-drived growth factor receptor (PDGFR), because the G-protein 
mediated calcium mobilization was observed in case of Platelet-drived growth factor receptor 
(PDGFR) activation. It had very tight interaction with TRPC that acts as a channel for 
calcium trafficking [48]. JAK-STAT pathway induced the expression of TRPC.  
STAT3 moves in the nucleus, it gets attached to response elements specified for binding of 
STAT3. This attachment induces expression of TRPC, however if TRPC is abolished, the 
trafficking of calcium through this channel will be impaired despite the activation of 
vasopressin receptor or PDGFR. 
 
Patients suffering from glioblastoma multiforme, the most aggressive form of glioma, have a 
median survival of around 12 months. Some members of the Ca(2+)-permeable transient 
receptor potential canonical (TRPC) family of channel proteins are instrumental to 
uncontrolled division of cells. TRPC6 might be a new target for therapeutic intervention of 
human glioma as manipulating the pathways augmenting the dynamics of these proteins can 
help a lot in standardization of therapy [19]. 
 
Role of TRP’s in prostate cancer progression 
Prostate cancer is a multifactorial disease. A wide range of proteins have been characterized 
and incriminated to be involved in the disease progression. A confluence of observations 
indicates that super-families of transient receptor potential (TRPs) channel are instrumental in 
prostate carcinogenesis. TRPC6 [78] is associated with the disease exacerbation and knocking 
down of TRPC6 (69) and TRPV6 [80] was growth inhibitory in prostate cancer cell lines. 
Recently a research group documented a tight association of TRPV with ATM.  
They registered that activation of TRPV1 with capsaicin resulted in the activation of ATM 
alongwith induction of apoptosis [4]. A closer look at the credentials of ATM indicates that it 
has bipartite activities. Either it is involved in the induction of apoptosis or it is engaged in 
DNA repair in a faithful manner. Despite the growing evidence that these channels and 
genomic rearrangements have wide contributions in disease aggressiveness, no study to date 
addresses the tight association of the abrogation of channels and genomic rearrangements.  
In a set of experimentations we have evaluated influence of TRP channels in chromosomal 
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fusions. Silencing of these channels alongwith erlotinib resulted in activation of ATM which 
triggered faithful recapitulation of genome (Ammad Farooqi unpublished observations). 
 
Gastric cancers: Opportunities and existing challenges 
TRPC6 has an imperative role in human gastric cancer development. While drawing a parallel 
between gastric cancer cells and normal gastric epithelial cells, expression of TRPC is 
enhanced in former. Drug treatment of human gastric cancer cell lines, with SKF96365, an 
agent known to inhibit TRPC channels, detained cell cycle and cell growth [10]. Oesophageal 
squamous cell carcinoma (OSCC) is one of the foremost causes of cancer-related death 
worldwide. TRPC6 is robustly expressed in OSCC and is essential for cell proliferation and 
cell cycle. Inhibition of TRPC6 channels in human OSCC cells brings forth anti proliferative 
effects and induces G2/M phase arrest [56]. 
 
Conclusion and future directions 
The next decade of research on TRPC channels should focus on several issues. First, it is 
essential to bridge the existing gaps in the literature that limit understanding of the modes of 
regulation of these channels. Interpreting and evaluating the range of effects of expression and 
factors that potentiate or blunt the expression can help to streamline these inconsistencies.  
As a final point, there is a need to move towards investigation of their molecular insights of 
cells in actual physiological systems. To this end, requirement to rely on a greater extent on 
knock-down strategies such as knock-out animals and RNAi gene silencing cannot be 
overlooked. Optimistically in the near future a sharper picture of the mechanistic insights for 
TRPC channels will be achieved. 
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