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Abstract: The normalization of high-throughput sequencing data from different sequencing 

conditions is a critical step of the entire high-throughput data analysis and processing. 

Normalization is important for the identification of gene structures and differentially 

expressed genes, which has great impact on the accuracy and reliability of downstream 

analysis procedures. Here, we propose a double-weighted normalization method for  

high-throughput sequencing data generated by RNA-seq, and present a p-value weighted 

method to detect differential expression from normalized data. This normalization method 

not only considers the overall expression level of all genes in a library, but also considers 

the impact of each individual gene. Experimental results show that our method can 

effectively normalize high-throughput data under different conditions to provide highly 

confident data for the downstream analysis of differential expression. 

 

Keywords: RNA-seq, Normalization, Double-weighted, Differential expression. 

 

Introduction 
The gene expression in higher organisms not only has the tissue specificity and 

developmental stage specificity, is also impacted by environmental factors. The differential 

expression analysis of digital gene expression data cannot only help conduct in-depth study of 

gene expression regulation and understand the nature of life processes, but also provide an 

important theoretical basis for gene diagnosis and treatment. Recently, RNA sequencing 

(RNA-seq) has become an important experimental protocol for the study of gene expression 

and transcriptome [12]. Due to that different samples are sequenced from different sequencing 

lanes (libraries), normalization is required to adjust the sequencing depth of different lanes 

and other potential technical errors for the objective differential expression inference [4, 7]. 

Experiments with microarray data have shown that normalization is an essential step in the 

processing pipeline for detecting differential expression [5]. However, although there are 

many approaches available for the normalization of microarray data [5, 10], they cannot be 

directly applied for RNA-seq data due to that the procedure for generating RNA-seq data is 

fundamentally different from that for microarray data [16]. The assumption of normalization 

is that most genes in the two samples have no global difference on gene expression [16], that 

is to say differential expression only occurs in a few genes. Normalization is a critical step of 

the entire high-throughput data analysis and processing, which has great impact on the 
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accuracy and reliability of the subsequent analysis such as identification of gene structure and 

differentially expressed genes. 

 

Normalization has great impact on the detection of differentially expressed genes. Due to that 

different lanes have different total number of sequences (i.e. sequencing depth), several 

widely used methods adopt the total number of sequences of all lanes to normalize the number 

of genes in each lane [4, 13, 14], such as RPKM (Reads Per Kilo bases per Million reads) 

method [14] or super geometry model [13]. However, the global normalization method tends 

to be influenced by a very small number of highly expressed genes, leading to errors in the 

detection of differentially expressed genes. Some other methods consider the normalization 

factor, such as geometric average method [19] and Trimmed Mean of M Values (TMM) [16], 

which can reduce the impact of a few extremely highly expressed genes on the global library 

to eliminate errors in a more robust way. Although the global influence of highly expressed 

genes could be eliminated using median metric, the geometric average method is too coarse to 

take consideration into account of the influence of normally expressed genes [16].  

The TMM method weights each gene, but it fails to consider the overall influence of 

remaining genes in the whole library. 

 

Here, a double-weighted normalization method for high-throughput sequencing data 

generated by RNA-seq is proposed. This method not only considers the overall expression 

level of all genes in the library, but also considers the impact of each individual gene. It can 

provide the dataset with high confidence for the analysis of differential expression and 

promote the research related to gene expression regulation. 

 

Materials and methods 

Double-weighted normalization method 
Given a n m  matrix, each row represents a gene, each column represents a sequencing 

library, each element gjk  represents the number of sequences of gene i in sequencing library j, 

g = 1, …, n, j = 1, …, m. The global normalization method yields a global factor for each 

sequencing library (each column), which can adjust the expression levels of all genes in the 

sequencing library. To normalize sequencing library j, the sum of the number of sequences of 

all genes j gjg
s k  is normally considered as an estimate of the capacity of the sequencing 

library. However, as a sequencing library may be dominated by a small number of highly 
expressed genes, this kind of normalization cannot be applied on such data.  

 

Here, we propose a double-weighted normalization method to estimate the normalization 

factor in a more robust way, which eliminates the impact of a few extremely highly expressed 

genes to provide a better estimation of the capacity of the sequencing library. For library j, 

two normalization factors are calculated: 

 
(1)

j j jf f  . (1) 

 

Our method contains two weighting steps, the first step is calculating the normalization factor 
(1)

jf  to weight for each gene. The second step is β weighting, which is a second weight for 

(1)

jf  to adjust the overall expression level of the entire library. 
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(1) Calculation of the normalization factor (1)f  

M/A values of gene expression data from next-generation sequencing are used to calculate the 

adjusted factor based on the principle of MA plot that widely used in microarray analysis [6]. 

For microarray normalization, MA plot is normally used to characterize the distribution of the 

intensity ratio (M) of the Cy5 (red) to the Cy3 (green) and the average intensity value (A) of a 

two-color fluorescent hybrid gene chip [6], here: 

 

2 2 2 2log log , (log log ) / 2M R G A R G    . (2) 

 

The general assumption for many microarray experiments on gene expression is that most 

genes are not differentially expressed, so M values of most genes should be in the vicinity of 

zero. Otherwise further normalization for the subsequent statistical analysis is required.  

For sequencing data, the logarithmic ratio M of gene g in library i to j and the absolute value 

of expression level A are defined by: 

 

 2 2log ( / ) log2( / ), log ( / ) log2( / ) / 2.g gi i gj j g gi i gj jM k s k s A k s k s     (3) 

 

As logarithmic computation is required to calculate M and A values, genes that are not 

expressed in library i or j are removed by first. Next, genes with too large or too small M or A 

values are also discarded to prevent their effects on the adjustment of the whole library.  

Set 0A  as the minimum of A and 0M  as the minimum of M, lowly expressed genes that meet 

0gA A  and 
0gM M  are removed. Here, 0A  and 0M  can be set as the 5% or 1% quantile of 

A and M values, and 

 

0 0 0 0( ), ( )A g M g
g g

N count A A N count M M    . (4) 

 

Set the number of highly expressed genes to be removed equal with the number of lowly 

expressed genes to be removed, then gM  and gA  values are sorted to filter genes. 

 

The next step is to weight each gene using the delta method [15] to estimate the approximate 

asymptotic variance and set the corresponding weight for each gene. Assuming that random 

variables nX  obey the binomial distribution with parameters p and n, then the approximate 

estimation of log( / )nX n  is (1 ) /p pn . If the ratio of p̂   to q̂  is the estimation of the ratio 

of two independent samples of size m and n, then the estimated relative risk, ˆ ˆ/p q , 
approximately obeys the normal distribution of the variance of ˆ ˆ ˆ ˆ(1 ) / (1 ) /p pn q qm   .  

In our model, considering that the number of gene sequences in sequencing library i obeys the 

binomial distribution of parameters /gi ik s  and is , then the variance of ratio of the sequence 

number of gene g in library i to j is estimated as: 

 
ˆ ˆ ˆ ˆ(1 ) / (1 ) /

(1 / ) / [( / ) ] (1 / ) / [( / ) ]

g

gi i gi i i gj j gj j j

i gi j gj

i gi j gj

v p pn q qm

k s k s s k s k s s

s k s k

s k s k

    

    

 
 

 (5) 
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Then the weight is set as the reciprocal of variance: 1/g gw v . 

 

Let sample i be the reference sample, the normalization adjusted factor of sample j is: 

 

(1) 2 ^

gj gj

g G

j

gj

g G

w M

f
w





 
 

  
 
 




, (6) 

 

where
2log ( / ) log 2( / )gj gj j gi iM k s k s  and 1/ ,

j gj i gi

gj

j gj i gi

s k s k
w

s k s k

  
   

 

 G denotes the 

remaining set of genes after removing genes according to the M value and A value. 

 

(2) Estimation of the second weight   

For the set of remaining genes G, first the geometric average of each gene in all libraries 

( 1, ...,r m ) is set as a benchmark. Then the expression level of a gene is divided by this 

benchmarking level to get a scaling factor. Finally the weight of each column (each library) is 

the median of all scaling factors of this library: 

 

 1/ mm
j gi r gr

g G
median k k 


  . (7) 

 

(3) Normalization of gene expression levels 

The final normalization factor of library j is: 

 

 1/ 2 ^

gj gj

g Gmm
j gi r gr

g G
gj

g G

w M

f median k k
w








  
  

     
  

  




. (8) 

 

The adjusted capacity of each sequencing library j is estimated as ˆ
j j gjg

s f k  .  

The expression level of gene g after the global normalization using the adjusted library is 
'

gj j gjk f k  . Only one adjusted factor is required to compare two samples. To normalize 

multiple sequencing libraries, a sample is selected as the reference by first, and then adjusted 

factors of other sequencing libraries are calculated on the reference library. This factor can be 

used to adjust the sample size of each sequence library for further analysis of differential 

expression. 

 

Detection of differentially expressed genes based on a p-value weighted method 
Currently, there are several methods for the detection of differential expression [1, 4, 6, 8, 11, 

18, 19]. Both edgeR [17, 18] and DESeq [1] are based on the negative binomial distribution 

model and use precise testing method to infer differential expression. A p-value is obtained 

for each gene and genes are filtered according to their p-values. Let DEp  and edp  be p-values 

of each gene that are obtained by edgeR [17] and DESeq [1], respectively. Here, we present a 

p-value weighted method which weights DEp  and edp  in different ways to get an adjusted  

p-value 
fp : 
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= +f DE edp p p   (9) 

 

where α and   are weights of DEp  and edp , respectively. The sum of them is 1. We use the 

following methods to determine   and  .  

 

(1) Considering the simplest case 0.5   , i.e., 
fp  is the average value of DEp  and edp . 

Similarly, 
fp  is the geometric average, =f DE edp p p . 

(2) Taking into account that the smaller the p-value is, the greater the possibility of 

differential expression of a gene and the corresponding weight is, we set 

= /( + )ed DE edp p p and = /( + )DE DE edp p p , then get =2 /( + )f DE ed DE edp p p p p . After obtaining 

the adjusted p-value, the Bonferroni correction [2] is used to control the false discovery rate 

(FDR) for multiple comparisons. We then obtain a new FDR value for detecting differentially 

expressed genes. The selection of different weighting ways will affect the performance of the 

p-value weighted method. 

 

Results and discussion 

Data preprocessing 
The raw RNA-seq data is provided by Li et al. [9], which consists of 7 lanes of 35 bp reads.  

A data set containing approximately 10 million sequence tags was generated from both 

control and hormone-treated cells (Treat), which is sufficient for quantitative analysis of gene 

expression. The raw data should be filtered and normalized before downstream analysis. 

Since the analysis of genes with very low expression level is normally not statistically 

significant [16], these genes should be discarded from further analysis. We filtered out very 

lowly expressed tags, keeping genes that were expressed at a reasonable level in at least one 

treatment condition. Since the smallest group size is three, we kept genes that achieved at 

least one tag per million (TPM) in at least three groups. 

 

The raw data is comprised of 37435 genes (rows), the number of valid genes after filtering is 

16494. As shown in Fig. 1, the first column denotes the gene ID, each row represents the 

number of reads of a gene under different conditions. Ctrl1~4 denote the four control groups 

and Treat1~3 represent the three experimental groups. 

 

 

Fig. 1 Format of the RNA-seq data after pre-processing 

 

Data quality assessment is an essential step in any data analysis, which should typically be 

performed early in the analysis. To explore the count table, we applied the dist function [3] to 

the count matrix to get sample-to-sample distances and plotted a heat map for an overview 

over similarities and dissimilarities between samples. As can be seen from Fig. 2A, the 

clustering correctly reflects the experimental design, where samples are more similar when 

they have the same treatment. We also used the principal component plot [1] to visualize the 
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overall effect of experimental covariates and batch effects (Fig. 2B), where no batch effects 

besides the known effects are observed. Therefore, subsequent normalization and differential 

expression testing was applied on this data set. 

 

 
Fig. 2 Data quality assessment 

(A) Heat map of the Euclidean distances between samples 

(B) Principal component plot for the first two principals 

 

Normalization of RNA-seq data 
To compare the two libraries, our double-weighted method was first used to normalize the 

data. Fig. 3 shows the MA plot before and after normalization. There is a downward shift of 

the log ratio, probably due to that most reads are dominated by some highly expressed genes. 

MA values after normalization in Fig. 3B show that the majority of M values are near zero, 

which is consistent with the normalization assumption that differential expression only occurs 

in a few genes. 

 

It can be seen from Fig. 4 that median values of experimental data after normalization are all 

in the same level, which suggests that our double-weighted method could help to normalize 

the sequencing depth under different conditions to make the libraries under different 

conditions comparable. 

 

Detection of differential expression 
We then conducted the p-value weighted test to infer differential expression between the 

control and treatment. The smear plot in Fig. 5A shows the log-fold changes with 

differentially expressed genes highlighted. It can be seen that the lower the level of gene 

expression is, the greater difference the sample size required to call the differential expression 

is. This is because that the error from the sequencing will be large if the number of genes in a 

sample is too small. Therefore, the sample of small size is insufficient to determine the 

differential expression, while a relatively small difference is allowed in the detection of 

differentially expressed genes with high expression level. Lines in Fig. 5A denoting 2-fold 

changes highlight differential expressed genes, which are in accord with results of the 

multiplicity method [13, 14] for differential expression detection. Multiplicity method is a 

relatively simple and straightforward method for detecting differential expressed genes [16], 

which considers genes with fold-change greater than 2 or less than 0.5 as differential 

expressed genes. However, the result of this method is too simple to find clues for higher 
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level functions. Moreover, except for differentially expressed genes with significant changes, 

the reliability of the other differentially expressed genes with a small change is relatively low. 

 

(A) (B)

 
Fig. 3 MA plots before (A) and after (B) normalization. Blue line marks M = 0. 

 

 
Fig. 4 Box plots of four samples of control group and three samples of treat group  

before (A) and after (B) normalization 

 

As can be seen from Fig. 5B that frequencies are significantly higher when p-values are close 

to 0 or 1, while frequencies are more uniformly distributed when p-values are between 0 to 1. 

In fact, the p-value is supposed to obey the uniform distribution when there is no differential 

expression. Therefore, the high frequency at the low p-value is caused by differentially 

expressed genes, whereas the high frequency at p-value = 1 is caused by a small number of 

genes.  

 

We also compared differential expression results from our p-value weighted method with 

DESeq and EdgeR. Top 1000 (top 1500 or 2000 genes were also tested, but the results 

showed no difference) differentially expressed genes were selected according to their FDR 

values from each method to count the overlapping. From these 1000 genes, 634 genes are 

found by all the three methods (Fig. 6A). The overlapping between EdgeR and other two 

methods is relatively low, where 254 genes are not overlapped. Up to 967 and 926 genes 

detected by our p-value weighted method can also be found by DESeq and EdgeR, 

respectively. The extent of overlapping of our method is the highest among these three 
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methods (Fig. 6B), indicating that our method is the most robust in the detection of 

differential expression. 
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Fig. 5 (A) Smear plot showing the log-fold changes with differentially expressed genes 

highlighted. Blue lines indicate 2-fold changes;  

(B) Histogram of p-values from the p-value weighted test 
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Fig. 6 Comparison of different methods for calling differential expression 

(A) Venn diagram showing the overlapping among DESeq, EdgeR and 

p-value weighted method (PWM); 

(B) Number of overlapping differential expressed genes between each two methods 

 

 

Conclusion 
In this paper, a double-weighted normalization method for high-throughput sequencing data 

was proposed. This method considers both the overall expression level of all genes in the 

library as well as the impact of each individual gene, which provides data with high 

confidence for the subsequent bioinformatics analysis. In contrast, two other widely used 

methods, DESeq and EdgeR, were both implemented by statistical tests and were sensitive to 

the number of replicates of samples. Experimental results show that our method can 

effectively normalize sequencing data under different conditions and provide highly confident 

data for the detection of differential expression. We also proposed the p-value weighted 
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method to improve the existing algorithm for detecting differentially expressed genes with 

statistical significance. Experimental results show the robustness of the proposed p-value 

weighted method in that the overlapping rate of differential expressed genes of our method is 

higher than that of DESeq and EdgeR. In summary, this work provides a pipeline for the 

analysis of sequencing data, which will promote the research related to gene expression 

regulation to some extent. 
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