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Abstract: Mathematical modeling is used to explore and understand complex systems 
ranging from weather patterns to social networks to gene-expression regulatory 
mechanisms. There is an upper limit to the amount of details that can be reflected in a model 
imposed by finite computational resources. Thus, there are methods to reduce the complexity 
of the modeled system to its most significant parameters. We discuss the suitability  
of clustering techniques, in particular Power Graph Analysis as an intermediate step  
of modeling. 
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Introduction 
Molecular interaction networks such as cell signaling pathways and gene expression 
regulatory networks frequently involve tens of individual elements in a dynamic relationship 
with each other. This makes a descriptive approach insufficient for their understanding and 
prediction. The complexity of such systems however can make mathematical modeling time 
and resource intensive. 
 
In computational systems biology a fundamental problem is the construction of biochemical 
reaction system models that can effectively predict cellular behavior. Given the high level of 
redundancy inherent to biological networks, an intermediate step which employs a clustering 
algorithm to reduce redundancy in the network would provide a consistent method to reduce 
the complexity of the model as a whole, esp. in non-trivial cases. 
 
A potential candidate for such a method is power graph (PG) analysis, which introduces both 
lossless clustering algorithm and a new visualization paradigm to highlight functional  
inter-dependencies in molecular networks [2]. 
 
The term network here is used as a synonym for graph ( )ENG ,= , which can be defined as 
an order pair ( )EN ,  of a set { }innnN ...,,, 10=  of nodes and a set E of edges, note that each 
edge is an unordered pair of nodes, i.e. { }{ }.,, NyxyxE ∈⊆  Thus, two nodes NBA ∈,  are 
adjacent if and only if there exists an edge { } EBA ∈, , in which case A and B are neighbors. 
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A PG ( )ENG ′′=′ ,  is a graph defined on the power set ( )NPN ⊆′  of power nodes connected 
to each other by power edges: NNE ′×′⊆′  [8]. Hence PGs are defined on the power sets of 
nodes and edges of the graph G.  
 
Recently, several examples of how Power Graph Analysis (PGA) can be used to visualize 
large biological networks (e.g., protein-protein interactions and gene co-expressions) have 
been documented in the published literature on systems biology and functional genomics.  
For example, Praneenararat and co-workers [7] developed NaviClusterCS, which enables 
researchers to interactively navigate large biological networks of ~100000 nodes in a “Google 
Maps-like” manner in the Cytoscape environment. 
 
Similarly, numerous groups have used PGA to analyze network structure, and thereby to 
compare false positive and false negative noise levels in protein-protein interaction networks, 
as well as to identify functional modules in protein interaction networks [3, 6, 9].  
The approach of PGA is useful because it provides a formal way to reduce the complexity of 
the molecular interaction networks and interpret new findings in the context of known 
biological processes. 
 
A dynamic system can be thought of as a graph, where the vertices of the graph are its 
parameters and the power edges represent the interactions between them. 
 
The simplest case of two vertices (A and B) with a power edge between them can be 
expressed with 2 ordinary differential equations: 
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Three interconnected vertices would result in 
A − B, A − C, B − C, i.e. (2) 
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The number of equations equals the number of vertices, n, and the number of parameters per 
equation equals the number of edges connected to that vertex. The higher the density of the 
graph, the more computationally expensive it will be to model the system it describes,  
worst case being O(n(n − 1)). 
 
Redundancy is the presence of more than one path from vertex A to vertex B.  
High redundancy is a characteristic feature of biological networks among others. A reduction 
in redundancy leads to a reduction in the density of the graph and thus the complexity of the 
mathematical model.  
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There are two strategies to achieve that goal: 
- Reducing the graph to a tree, by eliminating loops. 
- Grouping several vertices together. 

 
The first method is lossy, meaning data is actually lost during the transformation and is 
typically used to minimize storage space, although it might lead to an increase in search 
times. Feed forward/back loops are an important feature of biological networks and 
eliminating them would alter the nature of the system fundamentally, thus making it an 
unlikely candidate as a way to reduce complexity of the model without affecting its results, 
but it can be used for other purposes, such as reducing noise in order to find groups of 
interacting molecules, etc. 
 
Alternatively, grouping vertices together (clustering) can be either lossy or lossless, 
depending on the particular algorithm. PGA is both a clustering algorithm and a way to 
represent graphs visually intended to make sense of biological networks [8]. It groups vertices 
into sets called power nodes based on common neighbors and is lossless. Individual edges are 
represented by links between sets of nodes and called power edges. 
 
Two sets of vertices where each individual vertex is connected to all vertices in the other set  
is represented by an element called a bi-clique and visualized as 2 power nodes connected by 
a power edge. A set of interconnected vertices is called a clique and is visualized as a single 
power node with a power edge loop. A star is a special case of bi-clique where one of the sets 
consists of a single vertex. 
 
Software 
We created a software program as a test-bed to assess the suitability of Power Graph Analysis 
(and potentially other clustering algorithms) as a tool to reduce the complexity of biological 
systems and identify significant parameters for the purposes of mathematical modeling. 
 
Features 
The program consists of a command-line tool, written in C [http://www.imbm.bas.bg/lib/ 
files.php], which can be sub-divided into 3 logical parts. 

1. Input: Provides a framework for the actual parsers dealing with specific formats in the 
form of libraries. Constructs a graph in memory. 

2. Clustering algorithm: Turns the above graph into a PG (as of the time of writing). 
3. Output: Creates a visual representation of the graph and writes it as an image file. 

 
Dependencies 
- The Cairo graphics library is used for image generation. 
- C99 compatible compiler is required to compile the sources. 
 
Usage 
- The program accepts line-delimited lists of tab-delimited ASCII tokens to its standard 

input. Support for more formats can be added through libraries. 
- The output of the program is an image file in one of several formats. 
- For command line options, see the documentation. 
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Todo 
The tool itself is a proof-of-concept with rudimentary, at this point, features. Considering 
there are more mature alternatives available it remains to be seen whether our team  
(or someone else) will find it useful enough to continue its development. One area which can 
be improved is adding more parsers to deal with different data formats such as those produced 
by Producer Price Index (PPI) databases etc. 
 
Alternatives and other similar tools 
A command-line tool and a Cytoscale plug-in are provided by the Technical University of 
Dresden at [http://www.biotec.tu-dresden.de/research/schroeder/powergraphs]. 
 
Results 
Two examples of the output from the program are shown in Figs. 1 and 2. As the first 
example, we use the autocatalytic (positive feedback) growth of a protein module (Myc and 
E2Fs), which is inhibited by miRNA – 17-92 [1]. It is known that the miRNA-17-92 cluster is 
a polycistronic gene located in human chromosome 13, ORF 25, located at 13q31-q32.  
The cluster consists of 7 mature miRNAs, namely, miRNA-17-5p, miRNA-17-3p,  
miRNA-18a, miRNA-19a, miRNA-20a, miRNA-19b, and miRNA-92-1. Gene expression 
data shows an over-expression of miRNA-17-92 in different tumors, including lung, colon, 
breast, prostate, stomach and pancreas cancer [4, 5]. 
 

 
 

Fig. 1 Output of the program when fed the Myc/E2F/mir-17-92 network  
consisting of 11 elements  as described in [1]. Result shows two sets, one self-referential 

clique, containing all proteins and another one, containing miRNAs. It is comparable  
to the model proposed in the source article by Aguda et al. [1] if the undirected nature  

of the PG is taken into account. 
 
Fig. 1 demonstrates cliques and bi-cliques, but contains no nested power nodes, which we felt 
was an important feature that warranted its own example. The following image does not 
reflect an actual biological network, but one that was intended specifically to show nested 
power nodes while keeping the size of the resulting image suitable for embedding in this 
article. 
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Fig. 2 Example of an abstract network of 12 original elements  
showing nesting of power nodes 

 
Conclusion 
For the purposes of modeling biological networks, such as signaling pathways or gene 
expression regulatory networks the algorithm identifies groups of elements which can be 
abstracted, thus reducing the complexity of the model. However, an intermediate human-
assisted step is needed to translate the input parameters from the uncompressed network into 
actual parameters for the PG model, because PGA has no notion of the nature of the 
interactions and it works with undirected graphs. This is not an easy task. A possible future 
feature of this program might be the additional ability to also take the nature of the 
interactions into account, in effect extending the paradigm of PGA. 
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