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Abstract: Electro-dermal Response (EDR) is one of the important bioelectric signals used in 

various applications and research studies in the multitude of disciplines, such as 

Psychophysiology and other areas of Neuroscience. In present paper, a low cost EDR system 

is designed using Texas Instrument’s MSP430 Value Line Launchpad with a general 

potential divider circuit as the EDR sensor. 

 

Throughout this paper, much emphasis is laid out on developing an inexpensive system that 

shall be easily affordable while offering quality measurements. The system is well 

incorporated to have a decently accurate and fast data acquisition system, good 

communication capability with PC for storage and analysis. The developed prototype was 

used in performing two experiments related to the effects of Deep Breath and Visual Stimulus 

on EDR data, which gave substantiating results as per the theory. 

 

Keywords: Electro-dermal response, MSP430, Microcontroller, Moving-average filter, 

Arousal, Emotions. 

 

Introduction 
Electro-dermal Response (EDR) is one of the most important bio-electric signals that can be 

easily measured and, therefore, is widely used in studies of physiological and psychological 

activities. EDR is the estimate of electrical conductivity of the skin, which is an indirect 

measure of the sweat gland activity, which may be affected by various physiological and 

psychological factors. 

 

Neumann and Blanton presented a detailed history of electro-dermal research [14]. Malmivuo 

and Plonsey discussed the physiology of the skin and relation of EDR to the autonomous 

nervous system [13]. Also, EDR is widely used in studies of underlying functioning of 

Peripheral Sympathetic System and, as a result, it is regarded as Peripheral Autonomic 

Surface Potential in clinical Neurophysiological literature [2, 9]. 

 

Although the underlying fundamentals of EDR are yet to be clarified, this phenomenon is 

widely used in various applications ranging from polygraphs [30] to psychological treatments, 

such as hypnotherapy [3], etc. It is also used in the analysis and treatment of emotional 

disorders, stress-related disorders, etc. [22]. EDR is widely used as one of the key 

measurements for Biofeedback monitoring [20, 21]. It is pronounced as the best and 

inexpensive psychophysiological index used to study the emotional and cognitive states of the 

brain [3, 6, 10, 11, 27]. 
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EDR can be measured using skin resistance, skin conductance, endosomatic potential, etc. [2]. 

Cornell students, as a part of their course work, built a circuit to estimate EDR that uses an 

amplifier and filters to evaluate skin conductance [28]. Although a galvanometer circuit based 

measurement of Electro Dermal activity is an old technique, it is still in use in various 

polygraph devices [7, 30]. Few modern circuits use stages of OP-AMPS for signal conditioning. 

Recently, a wearable EDR-based device named Q-sensor was introduced by Affectiva Inc. to 

analyze human emotions in both commercial and research applications [1, 16]. 

 

In the present paper, EDR is evaluated as an exosomatic potential evaluated in terms of the 

resistance or conductance of the skin between two points. We propose using the concept of 

potential divider circuit powered by a DC source, unlike the well-defined conventional ways 

of measuring electro-dermal activity using either constant current or voltage sources and 

constant effective voltage or effective current for DC and AC methods respectively [2, 7, 13]. 

Our goal was to build a device prototype that would be of low-cost, yet sufficiently accurate 

and can be used in the academic research with due safety precautions. 

 

Texas Instruments Inc. has released a low cost hobbyist, academic MSP430 Launchpad Value 

Line Development Kit [24]. With the cost around 10 USD, it is widely used in variety of 

applications, such as for building low cost ECG acquisition systems [8]. The kit supports 16-bit 

high performance and low power MSP430 family microcontrollers and is shown in Fig. 1. 

 

 

Fig. 1 An image of Texas Instruments MSP430 Launchpad Value  

Line Development Kit with MSP430G2231 MCU installed 

 

The MSP430 value line microcontrollers generally incorporate 10-Bit ADC that may be used 

in a data acquisition system.  
 

EDR variations 

Based on various stimuli, ambient conditions, and other factors, the sweat gland activity 

changes with the physical and mental activities of the body; therefore, affecting the EDR. 

According to literature, skin resistance tends to be higher when the subject is in a relaxed state 

compared to the stressful state [13, 29]. 

 

The value of skin resistance changes from subject to subject even under the similar conditions 

as it is dependent on the subject’s properties, such as the thickness of the epidermal layer, sweat 

gland sensitivity, etc. In general, the skin resistance ranges between 1 kΩ and 1 MΩ [5, 29]. 
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It has been shown that deep breathing and various emotional states affect the sweat gland 

activity and, therefore, EDR [5]. Fig. 2 illustrates representation of Emotion using arousal-

valence model. 

 

 

Fig. 2 Arousal-Valence model representation of emotions [27] 

 

It is seen in Fig. 2 that to understand the emotional state of a subject, it is necessary to have 

information about both the valence and the arousal where the former describes the type of the 

emotion and the latter describes the magnitude of the activity. For example, a subject can be 

aroused with excitement or aroused with fear. In either case, subject is emotionally aroused 

but having a negative valence in case of fear and a positive valence in case of joyous 

excitement. It is important to note that valence part of the emotion cannot be recognized with 

EDR. Only the arousal part of the emotion influences the EDR [6, 7, 11, 27, 29].  

The emotional state of the subject can be determined using EDR to detect the arousal. Other 

complementary physiological measurements such as facial expressions [1], EMG, ECG, and 

Respiratory Signal [6, 11, 27] etc., may be employed to detect valence. Based on the latter, 

two experiments were established to test the designed EDR system. 

 

Methods: design of a Launchpad-based EDR system 
The main objective of the project was to design a low cost EDR acquisition system and store 

the acquired data on the Personal Computer for further analysis. Therefore, authors emphasize 

on the design of an EDR sensor using general passive circuit components that can be built 

without involving much cost. An interface system for communications between PC and the kit 

has been developed. Matlab was used for the analysis of EDR in the present work. The design 

of EDR sensor with suboptimal external resistance, Microcontroller programming, system 

interface design, and future improvements that can be incorporated into this Launchpad-based 

EDR system are discussed next. 

 

High-level system design 
Fig. 3 presents the general high-level block-diagram of the EDR system, while the design 

details of each block are discussed in the subsequent sections. 
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Fig. 3 A block diagram of high-level system design 

 

The first block is the EDR sensor, which is placed on the subject’s hand to evaluate EDR.  

The measured EDR is passed to Launchpad for further conversion to a digital signal.  

The Launchpad Kit is used as the SYSTEM module or the second block shown in Fig. 3.  

It includes the built-in circuits and necessary microcontroller to implement the ADC, control, 

and communication. MSP430G2231 microcontroller was used with the kit [25, 26]. 

 

The kit is connected to a PC through a USB protocol, supplying the kit with the power 

needed. The same Vcc of the kit is used to power EDR sensor circuit. As USB on PC is 

isolated from hazardous high voltages, the prototype is safe to experiment on human subjects 

(although it is not approved for medical practice). Also, the included external resistor in the 

EDR sensor limits the short circuit current when the skin resistance drops dramatically. 

 

The onboard UART-based USB communication is used for data exchange between PC and 

Launchpad. A control program running on PC and microcontroller coordinates and controls 

the data acquisition process. A workstation running windows 7 with 2 GB RAM, Intel Core 2 

Duo processor, 80 GB of internal HDD and with few USB ports is used as the PC – the third 

block shown in Fig. 3. Code Composer Studio installed on a PC was used to program and 

debug the microcontroller on Launchpad. 

 

EDR sensor design 
In this paper, EDR sensor is designed as a generic potential divider circuit without using any 

signal conditioning OP-AMP stages as shown in Fig. 4. 

 

 
Fig. 4 A circuit diagram of the potential divider used in EDR sensor and  

powered by 3.6 V DC source (Vcc of Launchpad) 
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The functionality of the EDR sensor is based on the exosomatic measurement of skin 

resistance between two points on the hand corresponding to Rhand in the Fig. 4. R represents 

the external resistance. 

 

Although a similar circuit was earlier used to measure EDR for emotion recognition in 

Advanced Multimodal Biometric Emotion Recognition (AMBER) system, EDR sensor circuit 

design details were not thoroughly discussed and verified while building the AMBER system 

[10]. In this paper, a detailed discussion on selection of a sub-optimal external resistance is 

presented in the next subsection. 

 

Two metallic ring electrodes are used and placed on the Distal Phalanx and Medial Phalanx of 

the index finger as shown in Fig. 5. 

 

 
Fig. 5 The electrode placement on the index finger  

of the left hand with palm facing towards subject [17] 

 

Generally, in earlier EDR systems, electrodes were placed on Medial phalanx of index and 

middle finger. As seen in Fig. 5, the placement of one of the electrodes is chosen on Distal 

Phalanx to take the advantage of increased reactivity of Distal Phalanx [19]. Therefore, Distal 

Phalanx electrode helps to improve the overall sensitivity of the EDR sensor. 

 

Sub-optimal value of external resistance R 
In present project, the EDR sensor circuit was implemented as a generic potential divider 

circuit shown in Fig. 4. The two points on the hand measuring Rhand are considered as an 

unknown resistance that is in series with a known external resistance R. The circuit is driven 

by a DC voltage source. Based on the variations in the subjects' state, the EDR varies, 

producing changes of skin resistance and, as a result, variations in the voltage across the hand 

may be observed. The registered voltage across the hand is sent to an ADC of microcontroller 

for the data acquisition. The voltage output across the hand, Vout can be expressed as follows: 

 

hand in
out

hand

R V
V

R R



  (1) 

 

where Vin is the DC voltage source that drives the circuit, Rhand and R are the unknown hand 

resistance and the reference (known) external resistance, respectively. 

 

Since the Launchpad powers the EDR sensor, Vin = 3.6 V. The ADC of microcontroller has 

the same voltage as reference for conversion purposes. 
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Also, since a 10 bit ADC is implemented, 1024 distinct values of voltage are possible  

(0x000-0x3FF in Hexadecimal or 0-1023 in Decimal). 0x000 is observed for Vout = 0; when 

the voltage is measured across a short circuit in place of Rhand. Similarly, 0x3FF is measured 

for an open circuit where Vout = Vin. An analog factor n is defined such that it equals the ratio 

of Vout to Vin and has a range of 0 to 1: 

 

out hand

in hand

V R
n

V R R
 


 (2) 

 

The above equation generalizes and normalizes the calculations, thereby making them 

independent of both Vin that is the ADC reference voltage and the EDR sensor source voltage. 

ADC output is denoted as OUT and has a range from 0 to 1023. It can be expressed as: 

 

 1024OUT floor n   (3) 

 

where floor indicates the rounding towards - operation. Knowing OUT, Rhand can be 

estimated as follows: 

 

1024 1
hand

OUT R n
R R

OUT n
 

 
  (4) 

 

Rhand generally varies between 1 kΩ and 1 MΩ. When sweat gland activity causes to hydrate 

the skin during normal conditions, Rhand varies from 50 kΩ to 100 kΩ. On the other hand, 

during emotionally activated condition, Rhand may reduce below 50 kΩ [29]. 

 

The value of external resistance R is selected so that the ADC output should be approximately 

linear and have a maximum range corresponding to Rhand varying from 50 kΩ to 1 MΩ.  

The sub-optimal algorithm satisfying the maximum range of n for a known variation in Rhand 

was implemented in Matlab and the following Fig. 6 was obtained. 

 

 
Fig. 6 Range n vs R for Rhand 50 kΩ  1 MΩ. The maximum range is possible for R = 224 kΩ. 

 

It is evident from Fig. 6 that R = 224 kΩ is the value satisfying both the linearity and range 

constraints. The nearest standard value available R = 220 kΩ was used and the EDR sensor 

circuit was implemented. Using Matlab, the approximate behavior of ADC coupled with the 

EDR sensor was analyzed in terms of ADC Output OUT and the results are shown in Fig. 7 

and Fig. 8. 



 INT. J. BIOAUTOMATION, 2015, 19(1), 79-94 
 

 85 

 

 
Fig. 7 ADC Output OUT as a function of Rhand for R = 220 KΩ 

 

 
Fig. 8 ADC output OUT as a function of Rhand for R = 220 kΩ: zoomed-in version 

 

As seen in Fig. 7, a continuous line indicates the ADC output OUT having a range of  

0-1023 where Rhand varies from 0 to 250 MΩ. The “o” points in the plot indicate the ADC 

output OUT for a limited range where Rhand varies from 50 kΩ to 1 MΩ. Also, it is evident 

from Fig. 7, that ADC output OUT is approximately linear for Rhand varying from 50 kΩ  

to 1 MΩ compared to the overall range. 

 

Although appearing as linear in Fig. 7, Fig. 8 showing a zoomed-in resistance range from  

50 kΩ to 1 MΩ reveals a considerable non-linearity in the ADC output. 

 

Microcontroller programming and system interface 
While programming the ADC, sample-hold process cycle time was chosen as 64 cycles of 

internal ADC clock set to a frequency of 5/8 MHz, such that the internal sample-hold circuit 

capacitor charges to the Vout [25, 26]. 

 

Universal Serial Interface (USI) based communication is supported by MSP430G2231 

microcontroller device [16]. The microcontroller was programmed to communicate with PC 

via Launchpad’s UART based USB protocols. Launchpad has a default Microsoft windows 

driver that treats the USB interface as a virtual COM port and communicates with the 

Launchpad at a 9600 baud rate. A Python program [17] using pyserial API was used as the 

interface controlling the acquisition process [16]. The interface program reads the data sent to 



 INT. J. BIOAUTOMATION, 2015, 19(1), 79-94 
 

 86 

PC by the Launchpad and stores it in a file for further processing and analysis. The interface 

program was designed implementing the state level transition diagram shown in Fig. 9. 

 

 
Fig. 9 State level transition diagram for the PC-Launchpad interface 

 

The letters S, X, Q shown in Fig. 9 indicate the user inputs to the Interface program 

determining the transition between states. Based on the user input, the interface program 

communicates to the microcontroller whether to start the acquisition, to stop the acquisition, 

or to stop and quit the interface program. 

 

System calibration 
The EDR system was built with the external resistance R = 220 kΩ having a tolerance  

of +1%. The system was then tested by replacing Rhand with known resistances. Table 1 

illustrates the calibration results. 

 

Table 1. Calibration results using a known resistance in place of Rhand 

Rhand used,  

(±5% tolerance) 

Measured value of 

Rhand,  (±100 ) 

ADC output, OUT 

Hex (Decimal) value 

Evaluated Rhand,  

 

Short Circuit (0) 0 0x000 (0) 0 

100 k 99 k 0x13E (318) 99.0935 k 

220 k 222 k 0x203 (515) 222.5933 k 

1 M 1.009 M 0x348 (840) 1.0043 M 

Open Circuit ()  0x3FF (1023) 225 M 

 

It is evident from Table 1 that the evaluated Rhand (last column) exhibits a negligible error 

compared to the known resistance used (second column). In case of larger deviation, the 

reference resistance R should be measured explicitly and used in calculations. Also, it has 

been observed that the system collects data at a rate of 152.34 + 1 samples/second. 

 

Future improvements 
In this project, an EDR sensor was based on the exosomatic measurements on the underlying 

assumption that the skin resistance is only changed by psychophysiological state of a subject 

and the applied voltage may not have severe impact. This can be a limitation in few cases that 

can, however, be overcome by making the sensor endosomatic using other (and more 

expensive) hardware. The latter can be achieved by implementing stages of OP-amps for 

amplification and signal conditioning. Also, the nonlinearity issue can be addressed, by 
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redesigning the sensor circuit and using an advanced ADC with a higher bit resolution. Safety 

of the system can be improved by isolating the EDR sensor’s power source by including a 

separate battery-powered and regulated source. 

 

Present system only operates at 9600 baud rate limited by the default driver available from 

Microsoft. By developing a new driver and communication circuitry as well as advanced 

ADC, the number of samples recorded per second can be increased. By using wireless 

daughter boards or extensions, such as CC110L RF Booster Pack [23] by Texas Instruments, 

the system can be made wearable and wireless and would have a smaller form factor. 

 

Experimental results and discussions 
Two experiments were conducted with the EDR system to study the effect of Visual 

Stimulation and Deep Breath on EDR. The subject was a healthy 22 year old male with no 

known psychophysiological disorders. EDR data have been collected using the designed 

system and stored on a PC for further analysis. 

 

Visual stimuli 
The subject was initially relaxed while sitting in a comfortable chair and asked to look at an 

animated picture. The stimulation included scary elements appearing suddenly in the middle 

of the animation, therefore, eliciting emotional activation in the subject [18]. The EDR data 

collected is shown in Fig. 10. 

 

 
Fig. 10 ADC Output OUT, a measure of EDR, for visual stimulus 

 

As seen in Fig. 10, the scary part of the visual stimuli might have emotionally activated the 

subject causing a dip in the EDR during seconds 100 to 150. Since the pictures were scary in 

nature, this emotional arousal can be attributed to negative valence. The ADC output OUT 

was used to evaluate Rhand using Eq. (4). The graph corresponding to Rhand of visual stimuli is 

illustrated in Fig. 11. 
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Fig. 11 Rhand as a function of time for visual stimulus experiment 

 

We observe in Fig. 11 that Rhand has a similar pattern that of ADC Output OUT as observed in 

Fig. 10 and dropped approximately from 440 k to 260 k following the scary visual stimuli. 

 

Deep breath 
The subject was initially relaxed while sitting in a comfortable chair and asked to perform 

deep breath with a break of few seconds. The EDR data collected is illustrated in Fig. 12. 

 

 
Fig. 12 ADC Output OUT, a measure of EDR, for deep breath exercise 

 

As seen in Fig. 12, the deep breath exercise results in an increased sweat gland activity that 

reduces the skin resistance. The latter produces a dip in ADC output OUT, which is a measure 

of EDR, during the seconds 200-300 and also around the 500th second. As the subject was 

initially relaxed and took a deep breath, the EDR dip corresponds to a Positive valence based 

emotional activity and the same was confirmed by the subject. The ADC output OUT was 

used to evaluate Rhand using Eq. (4). The graph of corresponding Rhand in the deep breath 

exercise is illustrated in Fig. 13. 
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Fig. 13 Rhand as a function of time for deep breath exercise 

 

We observe in Fig. 13 that Rhand has a similar pattern to that of ADC Output OUT as observed 

in Fig. 12. 

 

Discussion 
We observe that the graphs for the hand resistance Rhand are similar to ADC output OUT graphs, 

where both of them represent a measure of EDR. The range of Rhand in both experiments was 

from 270 kΩ to 480 kΩ that falls in the general EDR range of 50 kΩ to 1 MΩ [29]. 

 

From the Fig. 11 and 13, it is clear that both experiments have similar variation in EDR in 

terms of the range. When emotionally activated, Rhand took a dip from approximately 500 kΩ 

to 250 kΩ. On the other hand, the experiment with Visual Stimuli has negative valence and 

the experiment with Deep Breath has positive valence. This confirms the fact that EDR can be 

used to detect whether the subject is emotionally activated or not and cannot be used to detect 

the valence. Since both experiments were conducted on the same subject, the baseline of Rhand 

for the relaxed condition is quite similar in both cases and is at approximately 460 kΩ.  

This quantifies the designed system’s precision. 

 

In the results shown in Figs. 10-13, a presence of predominant local variations are evident. 

Generally, as the skin resistance doesn’t change quickly [13], we can safely attribute the local 

variations to noise contaminations. A careful observation of Figs. 10 and 12 reveals that these 

local variations are approximately +/- 10 units of ADC OUT from the centre of signal at any 

point. One ADC OUT can be referenced to (Vin /1024 = 3.6/1024) 3.5 mV. The variation of 

10 ADC OUT units can be approximated to a variation of 35 mV. 

 

The noise in the EDR signal as shown in Fig. 14 is estimated as the difference between 

original signal and output of a simple moving average filter of order 100. Short time Fourier 

transform is applied on the noise estimate, using spectrogram function of Matlab, to obtain the 

spectral plot which is shown in the Fig. 15.  

 

A faint yellow line highlighted in the black rectangular box in the Fig. 15 spans over the 

complete time, represents a normalized frequency of 0.7874 (f = 0.7874*fs/2 = 60.6298 Hz, 

where fs is approximately 154 samples/sec) which corresponds to the noise introduced by 

power line interference (which is from 60 Hz 120 V AC power supply to the PC that in turn 

powers the experimental Launchpad circuitry through USB). It is evident that a uniform random 

noise is present across all the frequencies. As we are measuring the skin resistance using a 
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potential divider circuit at room temperature, thermal noise which is a form of white noise have 

contaminated the signal. Also, another important source of contamination is from the measure-

ment site itself in the form of skin potential which is in the range of 20-30 mV generally [13].  

In this experiment, we have assumed the measured site to be a linear passive resistor but in 

reality it needs to be modeled as a nonlinear RC circuit with internal excitation [13].  

 

 
Fig. 14 Noise estimated as difference between deep breath experiment’s ADC output OUT 

and its output of moving average filters of the order 100  

 

 
Fig. 15 Spectrogram plot of noise estimated (as shown in Fig. 14) 

 

Even with the presence of the local noise, the observations and inferences made in our current 

experiment based on the electro-dermal response using skin resistance as a measurement are 

valid and true because the Skin resistance does not vary quick enough and has a normal 

operating range of 50 kΩ to 1 MΩ [29]. In our current experimental setup, this normal skin 

resistance range can be approximated to 190-840 ADC OUT units and in turn estimated to 

0.665-2.940 V. The observed noise is estimated to have a peak-to-peak of 70 mV, i.e. 0.07 V. 

In the similar experimental setup, the noise immunity can be further increased by choosing the 

external series resistor with lower value instead of 220 kΩ by slightly foregoing the linear 

operational range corresponding to the Rhand range of 50 kΩ to 1 MΩ. 

 

This local noise can also be reduced by using various low pass filters, for instance, a moving 

average filter acting as a low pass filter would suppress the high frequency noise. In this 

paper, a moving average filter was chosen, since such filters are simple to construct, efficient 
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in eliminating the local disturbances/noise, and determining the general trend when used with 

the proper order. Moving average filters of order 10 and 100 were applied to ADC output 

OUT of both experiments. The obtained results are shown in Fig. 16. 

 

 
Fig. 16 Output of moving average filters of the orders 10 (a) and 100 (b) applied on the visual 

stimulus experiment ADC output OUT; output of moving average filters of order 10 (c) and 

100 (d) applied on the deep breath experiment’s ADC output OUT. 

 

It can be seen in Fig. 16 that the local noise in the filtered output was decreased compared to 

the input signals. Also, as the filter order was increased from 10 to 100, the graphs indicated 

the decreased local noise and a smoother overall appearance. On the other hand, the sharpness 

in variations decreases too as the filter order was increased. Using a proper order for the 

moving average filter, filtered output can be more accurately used for identifying the temporal 

markers for drastic emotional variations compared to the raw EDR signal. 

 

Conclusion 
We conclude that the low cost TI MSP430 Value Line Launchpad kit may be used for 

measuring EDR with the precision sufficient for general applications. The proposed design 

implements exosomatic EDR estimation while using a general potential divider based EDR 

sensor. The recorded signal can be stored on a PC for a future analysis. The experimental 

results obtained with the system prototype were in the agreement with the theory and with the 

results reported previously. The experimental EDR data can be conditioned by applying a low 

pass filter to improve the accuracy of the system. Therefore, despite a few observed hardware 

and software limitations, the proposed low-cost EDR device may be implemented in various 

commercial applications and research fields.  
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