
 INT. J. BIOAUTOMATION, 2015, 19(2), 161-176

161

Biclustering of the Gene Expression Data

by Coevolution Cuckoo Search

Lu Yin

1,2
, Yongguo Liu

1*

1
School of Computer Science and Engineering

University of Electronic Science and Technology of China

ChenDu, SiChuan, 611731, China

E-mails: yinlu_78@163.com, liuyg@uestc.edu.cn

2
School of Computer Engineering

Huaiyin Institute of Technology

HuaiAn, JiangSu, 223003, China

*
Corresponding author

Received: January 17, 2015 Accepted: June 18, 2015

 Published: June 30, 2015

Abstract: Biclustering has a potential to discover the local expression patterns analyzing the

gene expression data which provide clues about biological processes. However, since it is

proven that the biclustering problem is NP-hard, it is necessary to seek more effective

algorithm. Cuckoo Search (CS) models the brood parasitism behavior of cuckoo to solve the

optimization problem and outperforms the other existing algorithms. In this paper,

we introduce a new algorithm for biclustering gene expression data, called cuckoo search

biclustering (CSB), which adopts CS to solve the biclustering problem. For further

improving the performance of CSB, three modifications to CSB are made with the aim of

increasing the convergence rate and the coevolution cuckoo search biclustering (COCSB) is

designed. CSB and COCSB are tested on the six gene expression data and their results are

compared to those of CC, FLOC, ISA, SEBI, BIC-aiNet, PSOB, SAB and SSB.

The comparison shows that CSB and COCSB have achieved great success in biological

significance and time performance.

Keywords: Biclustering, Gene expression data, Coevolution cuckoo search biclustering.

Introduction
DNA microarray technology makes simultaneous monitoring of the gene expression level of

thousands of genes under different samples which obtain the gene expression data after

several preprocessing steps [5]. The gene expression data can be represented as a matrix

where each gene corresponds to its row, each sample to its column and each element to the

expression level of a gene under a sample. Different methods have been applied for

discovering the biological knowledge in gene expression data [1, 8, 15, 19, 21, 33]. Among

these methods, biclustering [8] has a potential to discover the local expression patterns of

gene expression data, which makes biclustering an important tool in analyzing the gene

expression data.

Formally, a gene expression data can be viewed as a n m matrix (,)X YA , in which

1 2{ , , , } nX x x x denotes the set of the genes, 1 2{ , , , } mY y y y denotes the set of the

samples, and ija denotes the expression level of the i-th gene under the j-th sample. Let that I

is the gene subset of X and , , ,I X I k k n   J is the sample subset of Y and

, , J Y J l l m   . A bicluster is defined as a submatrix (,)I JB of data  ,X YA in which

mailto:yinlu_78@163.com
mailto:liuyg@uestc.edu.cn

 INT. J. BIOAUTOMATION, 2015, 19(2), 161-176

162

the subset I shows similar gene expression patterns under the subset J which also shows

similar sample expression profiles across the gene subset I, and is denoted as k l submatrix

 ,I JB . So the biclustering problem can be formulated as follows: given a gene expression

data  ,X YA , construct a bicluster  ,I JoptB such that    maxf f


opt
B A

B B where  f B is

an objective function for evaluating the coherence of a candidate bicluster   ,I JB . It is

proved that the biclustering problem is NP-hard [8].

Consequently, many existing biclustering algorithms are based on reducing the searching

range or improving the searching efficiency. Since Cheng and Church [8] first proposed CC

biclustering algorithm, many algorithms have been proposed and the surveys can be found in

[7, 26-27]. Ayadi et al. [3] classified the biclustering algorithms into systematic search

algorithms and stochastic search algorithms. Among the representative systematic

search algorithms are ISA [21], CC [8], BiMine [3], OPSM [4], Motifs [28], Direct

clustering [20], FLOC [36], SAMBA [32], OP-Cluster [24], Bimax [31] and Paid [22], etc.

The stochastic searching algorithms have SEBI [13], SSB [29], CMOPSOB [25],

BIC-aiNet [11], and SAB [6].

The stochastic search algorithms are known for their strength in avoiding locally optimal

solutions especially using some local search strategies, so they can quickly converge toward

the global optimum which account for many significant biclusters reported in their work.

However, no single existing algorithm is completely successful in solving biclustering

problem, so it is useful to seek more effective algorithms for obtaining a better bicluster.

Cuckoo Search (CS), a recent metaheuristic algorithm first reported [37], models the brood

parasitism behavior of cuckoo to solve the optimization problem and shows that CS is very

promising and outperforms the other existing algorithms. In addition, CS only needs one

parameter, the fraction of nests to abandon, to be adjusted which makes it easily implemented.

In this paper, we introduce a new stochastic search algorithm for biclustering of gene

expression data, called cuckoo search biclustering (CSB). Although CSB achieves good

performance, it cannot find the global optimal bicluster. For further improving the

performance of CSB, some modifications to CSB are made with the aim of increasing the

convergence rate but without losing the attractive features of CSB. The first modification is to

introduce the coevolution. The second is that the populations of host and cuckoo dynamically

change. The third is that unlike CSB the optimizing objective is the egg instead of the nest.

As a result, we designed the coevolution cuckoo search biclustering (COCSB) algorithm.

To assess the performance of the proposed algorithms, the results of CSB and COCSB on six

gene expression data are reported and compared with those of CC, FLOC, ISA, SEBI,

BIC-aiNet, PSOB, SAB and SSB. In addition, we perform a biological validation.

The article is organized as follows: Section II describes CSB. In Section III the procedure of

COCSB is introduced. In Section IV after briefly introducing the platform and the expression

data used by our experiment, the experiment results are reported and discussed in terms of the

evaluating criterion and biological significance. Finally, the conclusion and future work is

provided in Section V.

Description of CSB
Cuckoo Search (CS) is inspired by the brood parasitism behavior of cuckoos. In detail,

cuckoo does not hatch their eggs, but lay their eggs in the nests of other host birds. If the host

does not discover the cuckoo eggs then it hatches the cuckoo eggs and raises the child cuckoo,

 INT. J. BIOAUTOMATION, 2015, 19(2), 161-176

163

otherwise it either destroys the egg or abandons the nest. So for cuckoo the search procedure

of the host nest fitting for their eggs is the optimization procedure. After making some

assumptions, CS matches the nests with the candidate solution, the quality of the nest with the

fitness function of the solution, and gets the better nest by searching nest operation and

abandoning nest operation iteratively [37]. Based on CS, we propose the Cuckoo Search

Biclustering (CSB) for identifying the bicluster in the gene expression data. The flowchart of

CSB is shown in Fig. 1.

Fig. 1 Flowchart of CSB

Encoding of a bicluster

The represents of a bicluster  ,I JB are encoded as binary string of length n m which is

represented as a nest of  1 1, , , , , , , , ,p i n j mx g g g s s s , 1, ,p N , and N denotes

the population size in which n and m are the number of genes and samples of the gene

expression matrix  ,X YA . If the i-th gene or j-th sample in the  ,X YA is chosen by the

 ,I JB , 1 ig  or 1js  , otherwise, 0ig  or 0js  , where 1 i n  and 1 j m  .

The fitness function
In this work the index for evaluating the coherence of a candidate bicluster is MSR which has

largely been adopted in [4, 6, 8, 11, 13, 25, 29]. Given that the minimal gene and the sample

number of a bicluster are 10 as in SAB [6], so the fitness function mainly focuses on the

coherence of a bicluster. The fitness function () pf x of a nest px is as follows:

 
,

1
 () / / ()p ij iJ Ij IJ

i I j J

f x MSR B a a a a
k l

 
 

 
       

 (1)

where iJa , Ija and IJa are the mean of the i-th row, the mean of the j-th col and the whole

mean in   ,I JB and σ is the threshold of MSR. So the final objective of CSB is to maximize

the fitness.

stop

outputing bicluster

 Y

initializing

 searching nest operation

 abandoning nest operation

 N

 INT. J. BIOAUTOMATION, 2015, 19(2), 161-176

164

Initialization

The initial population  1 2, , , Nx x xP is composed of N initial nest , 1 i N ix which

corresponds to the i th bicluster  ,I JBi
. Assume that the number of the gene and the sample

of the bicluster  , , 1I J i N Bi
 are rBi

 and ,cBi
 then the pseudo code of the initializing is

as follows:

Step 1: Let 1num  .

Step 2: while (num N).

Step 2.1: generating the row vector G of length n in which values are 0, and

randomly flipping
i

rB bits from 0 to 1. Similarly, generating the row vector S of

length m which values are 0, and randomly flipping
i

cB bit from 0 to 1.

Step 2.2: merging G and S into a row vector represented by the initial nest

  ,ix I J for 1 i N  .

Step 2.3: computing (), 1if x i n  according to Eq. (1).

Step 2.4: 1num num  .

Searching nest operation
Searching nest means that each nest  , , 1x I J i N i

 in the population P performs local

searching. Let mSize is the step length of local searching of a nest, maxNumber is the

maximal times of local searching of a nest, and δ is the predefined threshold of a nest, the

detailed step is as follows:

Step 1: 1, 10i maxNumber  .

Step 2: while (i N and  if x ).

Step 2.1: 1, 2k mSize  .

Step 2.2: Randomly flipping the mSize bits from the binary string of ix to get new

x'

i
, and computing  f x'

i
.

Step 2.3: If  ' ()i if x f x , then updating ix with x'

i
 and go to Step 2.5.

Step 2.4: 1k k  , if k maxNumber , then 8mSize  , and randomly flipping

mSize bits from the binary string of ix generates x'

i
 to replace ix .

Step 2.5: 1i i  .

Abandoning nest operation
The aim of abandoning nest is to maintain the diversity of the nest population which helps to

escape the local optimal solution. In fact, abandoning nest operating is to update the worst

nests with new generated nests at a given proportion   0, 1p , its detailed step is as follows:

Step 1: Sorting all nests in P based on the fitness function in ascending order.

Step 2: Computing the number of nests to be updated r _eplace num N p  .

Step 3: For each the first _repalce num nests in P , performing the above searching

nest operation for obtaining the new nests to replace the above old nests.

 INT. J. BIOAUTOMATION, 2015, 19(2), 161-176

165

Stop condition

The stop condition of CSB is that the fitness function)(f x* of the best known solution x* in

the population P is smaller than the predefined threshold.

Description of COCSB
In the brood parasitism the cuckoo egg must mimic the host egg for assuring its egg hatched

by cuckoo. The hosts also evolve many defenses against the brood parasitism in nature [10].

So the completion of host and cuckoo leads to a co-evolutionary arms race in which each

party evolves in response to the other as in Fig. 2.

Fig. 2 The cycle of co-evolution between cuckoo and host

For simulating the above phenomena and increasing the convergence rate, three modifications

of CSB are made. The first modification is to introduce the coevolution. The brood parasitism

behavior simulated by CSB doesn’t show the coevolution which usually exists in nature.

The second modification is that the populations of host and cuckoo dynamically change.

The above competitive relation makes the population size of host and cuckoo dynamically

changes and eventually arrives at equilibrium. The third is that the optimizing objective is the

egg rather than the nest in CSB. Assuming that the host only possesses one defense against

the cuckoo parasitism-reducing intra-clutch variation and increasing inter-clutch variation, for

host and cuckoo the procedure of the coevolution in egg is the optimization procedure.

Matching the egg with the candidate solution and the quality of the egg with the fitness of the

solution, we propose the Coevolution Cuckoo Search Biclustering (COCSB). In COCSB, the

evolution of the host egg carries out the exploitation process in the search space while that of

the cuckoo egg controls the exploration process. The flowchart of COCSB is Fig. 3.

Encoding of the bicluster and designing the fitness function

In COCSB, a bicluster   ,I JB is also encoded as binary string of length n m as CSB.

This binary string is represented as an egg 1 2 1 2 , , , , , ,,n mx g g g s s s . The fitness

function () f x of an egg x is defined as Eq. (1) as CSB.

Initializing the egg population of cuckoo and host
In COCSB, there are two populations, host and cuckoo egg, which correspond to the bicluster.

Assuming that the initial number of host and cuckoo are cuckooEggN and hostEggN and that each

host lay eggnum 5 eggs considering that each host usually lay 4~6 eggs in nature, so the

population of host eggs

 
,4 ,51,1 , , , , , ,

host hosteggHost i j N Nx x x xP ,

Cuckoo

Better trickery

Host

Better defences

 INT. J. BIOAUTOMATION, 2015, 19(2), 161-176

166

where
, (1 ,i j hostEggx i N  1 5)j  represent the j-th egg of the i-th host. Moreover, since in

nature each cuckoo lays one egg in each nest of host, so the number of cuckoo eggs is the

same as the size of hostN and the population of cuckoo eggs

 1, , , ,
hosteggCuckoo k Ny y yP ,

where , 1k hosty k N  represent the k-th cuckoo egg. In COCSB initializing two above egg

populations is the same as CSB.

Fig. 3 Flowchart of COCSB

Cuckoo selecting the host and laying egg
Since the cuckoo evolved with the egg mimicry for improving the survival of its offspring,

each cuckoo selects the host in which the fitness of eggs is close to the fitness of its own egg.

Note that each cuckoo lays only one cuckoo egg in one host nest to avoid the intraspecific

competition. The pseudo code of the cuckoo selecting the host is as follows:

Step 1: For each egg ,i jx computing the fitness  ,i jf x

Step 2: For each host computing and saving the mean fitness    
5

,

1

1
i i j

j

f x f x
eggnum 

 

Step 3: For each cuckoo egg ky in cuckooP

 Step 3.1: Computing the fitness  kf y of cuckoo egg ky .

 Step 3.2: Getting the host minIndexx of which the mean fitness is closest to the

fitness  kf y of cuckoo egg ky .

Cuckoo selecting the host and

laying egg

Initializing the egg population

of cuckoo and host

Host abandoning egg

Updating the egg population of

cuckoo and host

Stop condition

Output biclusters

Y

N

Initializing

 INT. J. BIOAUTOMATION, 2015, 19(2), 161-176

167

 Step 3.4: For the host minIndexx replacing the egg of which the fitness is minimal

with the cuckoo egg ky .

Step 4: Let   minIndexf x inf .

Host abandoning egg
For simulating the host’s ability against the cuckoo’ nest parasitism, for each host the

difference between the mean fitness of the host eggs before cuckoo laying egg and that of the

host and cuckoo eggs after cuckoo laying egg is computed. If the percentage of the above

difference is larger than the threshold , then the cuckoo egg is abandoned, otherwise no egg

is abandoned. Let succn and succp denotes the number and the percentage of abandoned egg, its

pseudo code is as follows:

 Step 1: Computing the population size hostEggN  and cukcooEggN  of next cuckoo and host using

Step 2 and Step 3.

 Step 2: If hostEgg hostEggN N then performing accelerative evolving eggHostP , otherwise

performing constantly evolving eggHostP .

 Step 3: If cukcooEgg cuckooEggN N then performing accelerative evolving eggCuckooP , otherwise

performing constantly evolving eggCuckooP .

Stop condition

As CSB, the stop condition of the COCSSB is that the fitness function *()f x of the best

solution *x in the eggHostP or eggCuckooP is smaller than the predefined threshold.

Experiments
CSB and COCSB algorithms are implemented by Matlab 2012b and are run on a PC

which uses Intel Core i3-2120 with 3.29 GHz, 8.0 Gb RAM and 64 bit Windows OS.

In addition, CC, ISA, FLOC, SEBI, BIC-aiNet, PSOB, SAB and SSB are implemented in

the above platform. All chosen algorithms get 100 biclusters for each data.

Identifying of CSB and COCSB parameter
For identifying the proportion of nests to abandon p in CSB, the index of the 100 biclusters

obtained on the yeast cell cycle data is reported in Table 1when specifying p with different

value and the size of a population with 100. As shown Table 1, in the different p MSR of the

biclusters is less than the thresholds 300, but the time is best when 0.25p  . So p is

designed as 0.25 in the following experiments of other data.

In COCSB, hostEggN , cuckooEggN and eggnum are is easily obtained since its value has little

impact, so 100hostEggN  , 20 cuckooEggN  and 5eggnum  . Considering that in nature to a

certain degree the host should accept the cuckoo parasitism, 10%  [10]. As for deathp ,

because any population almost maintains a more stable state after a long term evolution, this

is, hostEgg hostEggN N and ' . cuckooEgg cuckooEggN N The above condition is met when

60.00%deathp  and the trend of the size of next population hostEggN  and cukcooEggN  is shown in

Fig. 4.

 INT. J. BIOAUTOMATION, 2015, 19(2), 161-176

168

Table 1. The mean MSR and time of CSB under the different p

p 0.10 0.15 0.20 0.25 0.30 0.35 0.40

MSR 299.87 299.86 299.84 299.84 299.83 299.82 299.86

Time 6.67 6.35 6.41 6.32 6.47 6.55 6.41

Gene expression data and its threshold
The aim of the experiment is to assess the potential of CSB and COCSB as the biclustering

algorithm, so the data used in this work are as extensive as possible in the scale of the gene

expression data. So the following six data are chosen and its more detailed information are

shown in Table 2.

In six data the first three are widely used in biclustering problem and are preprocessed in

[8, 31]. However, the other three data are downloaded in GEO [14] which accession number

is GSE2403, GSE2034 and GSE952 respectively. Its raw data are preprocessed by R package

‘affy’ [18] and scaled by 100. For the first three data the MSR thresholds are available in

[8, 31]. However, for the other three data the MSR thresholds are not off-the-peg. Considering

that ISA need not MSR as evaluating the bicluster, so the minimal value of MSR obtained by

ISA on BCLL, PBC and Rat Strain are used to the threshold as shown in Table 2.

Fig. 4 The trend of the size of the population of cuckoo and host

Table 2. The data used in the experimentation

Data Name #Gene #Sample Threshold Ref

Yeast Cycle Yeast cell cycle 2884 17 300 [9]

DLBCL diffuse large B-cell lymphoma 4026 96 1200 [1]

Gasch

Yeast
Yeast stress conditions 2993 173 500 [17]

BCLL B-cell chronic lymphocytic
leukemia

12625 21 50 [16]

PBC Primary breast cancer 22284 286 50 [35]

RatStrain rat multiple tissue in strain 8799 122 5 [34]

Analysis of experiment
We aim to test whether CSB and COCSB can yield the discovery of biclusters characterized

by small MSR and high volume. Moreover, we are interested in comparing the results

achieved by CSB and COCSB against the results obtained by the other algorithms especially

the stochastic search algorithms, so the compared algorithms will not only have CC, FLOC

and ISA but also have SEBI, PSOB, BIC-aiNet, SAB and SSB. In this subsection the

 INT. J. BIOAUTOMATION, 2015, 19(2), 161-176

169

following content mainly presents and analyzes the experiment results of eight compared

biclustering algorithms and new proposed CSB and COCSB on the six gene expression data.

The experiment result lists the gene number, sample number, MSR and time of a bicluster in

which the gene number and the sample number together reflect the volume of a bicluster,

MSR reflects the coherence and the time measured in seconds reflects the time performance

of an algorithm. On each data the 100 biclusters are obtained for each algorithm, the mean

and the standard variance of the gene number, the sample number, MSR, and time are

presented in Tables 3-6.

Table 3. Average gene number obtained on each data

 Data

Algorithm
Yeast Cycle DLBCL Gasch Yeast BCLL PBC RatStrain

ISA 62.53±103.94 370.23±327.88 256.56±190.62 363.34±616.85 1763.56±1470.5

6
116.43±86.31

CC 340.83±47.65 39.87±9.17 63.02±76.92 315.67±93.69 35.80±14.44 204.80±65.80

FLOC 595.12±10.95 1330.69±135.99 798.15±108.10 359.24±175.20 1020.90±133.09 1694.54±46.13

BIC-aiNet 1266.10±296.61 2189.62±512.22 761.34±925.77 418.26±459.46 1620.27±430.57 1174.17±552.40

SEBI 1183.21±196.66 407.05±369.77 24.89±11.49 483.83±434.93 494.42±792.26 1250.73±501.63

PSOB 1360.23±77.59 379.67±231.78 22.48±14.09 465.33±410.63 308.60±631.75 1194.55±356.75

SAB 1200.46±154.38 829.26±541.93 214.46±62.45 505.03±281.11 1097.80±735.04 1082.30±357.07

SSB 695.36±178.92 196.79±232.27 16.40±6.62 454.25±104.31 65.46±20.42 1202.55±214.34

CSB 1435.34±185.86 688.15±251.80 257.55±134.61 373.21±190.44 254.07±83.00 1489.05±304.97

COCSB 684.20±79.37 397.27±297.43 243.82±20.45 3402.06±339.41 249.88±93.47 1383.34±366.15

Table 4. Average sample number obtained on each data

 Data

Algorithm
Yeast Cycle DLBCL Gasch Yeast BCLL PBC RatStrain

ISA 14.66±4.35 12.77±4.66 45.94±23.71 19.29±6.48 202.45±61.19 41.50±19.15

CC 16.92±0.307 90.57±11.10 47.56±18.43 24.00±0.00 44.25±12.53 24.25±7.15

FLOC 17.00±0.00 25.77±2.70 34.03±5.18 10.00±0.00 10.00±0.00 33.91±3.35

BIC-aiNet 10.18±0.41 12.80±5.35 79.09±57.37 10.02±0.14 11.68±16.40 14.72±8.38

SEBI 11.07±1.70 60.68±17.71 116.13±11.75 10.06±0.28 161.85±92.63 85.14±20.61

PSOB 10.01±0.10 58.02±14.56 120.37±12.99 10.09±0.40 176.67±80.15 85.03±13.30

SAB 10.33±0.91 37.47±17.05 72.20±7.04 10.00±0.00 38.74±37.38 70.69±17.90

SSB 15.24±1.53 72.34±16.74 120.77±11.54 12.29±3.86 179.50±29.38 97.60±12.56

CSB 11.56±1.32 36.36±9.20 59.31±13.34 14.95±2.46 74.19±33.35 88.40±15.87

COCSB 15.62+0.72 69.71+14.66 103.03±11.14 16.80±1.54 85.36±23.47 102.83±14.02

From Table 3 we can see that different algorithms show different performance in gene

number for different data. It can be seen that for Yeast Cycle data PSOB is the best, for

DLBCL BIC-aiNet is the best, for Gasch Yeast FLOC is the best, for BCLL COCSB is the

best, for PBC ISA is the best and for RatStrain CSB is the best. It is worth noting that gene

number of COCSB is better than most of the other algorithms.

 INT. J. BIOAUTOMATION, 2015, 19(2), 161-176

170

Table 5. Average MSR obtained on each data

Data

Algorithm
Yeast Cycle DLBCL Gasch Yeast BCLL PBC RatStrain

ISA 317.20±289.3

6

57094.01±176

53.76
0.93±0.42 419.15±450.6

5

913.97±119.3

2
1.43±1.02

CC 223.76±13.17 1010.20±96.6

0
0.03±0.00 97.00±1.56 46.13±3.48 2.41±1.01

FLOC 299.71±0.11 1199.61±0.25 0.05±0.00 68.82±30.03 30.20±4.04 0.82±0.12

BIC-aiNet 298.18±1.87 1199.61±0.96 0.05±0.00 99.99±4.47 50.01±0.31 5.00±0.03

SEBI 299.85±0.11 1198.48±1.35 0.05±0.00 99.99±4.42 49.91±0.07 4.99±0.01

PSOB 299.84±0.12 1198.31±1.50 0.05±0.00 100.00±4.86 49.90±0.08 4.99±0.01

SAB 299.86±0.10 1199.08±0.94 0.05±0.00 100.00±3.58 49.93±0.06 4.99±0.01

SSB 299.75±0.11 1197.35±2.54 0.05±0.00 100.00±4.13 49.90±0.13 4.99±0.01

CSB 299.84±0.11 1199.96±0.04 0.05±0.00 100.00±0.28 49.99±0.01 5.00±0.00

COCSB 299.75±0.10 1199.52+1.42 0.05±0.00 99.99±0.38 49.85±0.02 4.98±0.01

Table 6. Average time obtained on each data

Data

Algorithm
Yeast Cycle DLBCL Gasch Yeast BCLL PBC RatStrain

ISA 0.12 0.01 0.04 4.5 0.28 0.42

CC 0.02 0.06 0.05 0.04 0.13 0.03

FLOC 4.05 14.98 14.14 49.95 77.33 95.54

BIC-aiNet 10.14 25.06 17.86 81.51 367.85 68.99

SEBI 6.66 15.79 14.72 43.95 357.23 81.81

PSOB 5.78 7.46 7.98 20.81 220.48 35.50

SAB 4.44 9.36 8.44 122.98 307.45 111.61

SSB 3.14 7.88 10.30 28.00 84.35 22.91

CSB 4.77 8.58 7.22 31.25 65.17 32.86

COCSB 3.95 6.49 12.76 20.50 58.36 34.19

As Table 4 shows, in sample number the systematic searching algorithms shows excellent

performance. It can be seen that CC is the best for DLBCL and BCLL, ISA is the best for

PBC and FLOC for Yeast Cycle. Even so, COCSB proposed in this work is the best for

RatStrain and SSB for Gasch yeast.

For MSR, as shown Table 5 which MSR of almost all algorithms are smaller than the

threshold while ISA which does not use MSR are far higher than the threshold. Further

observation shows that MSR obtained by CC and FLOC is smallest for most data. This is

because that CC and FLOC mainly focuses on the decreasing of MSR and ignores the

volume.

Table 6 shows that the time of ISA and CC in systematic search algorithm is the smallest in
all algorithms for each data. This is because the procedure of ISA and CC is specific. Even so,
the time of FLOC is comparable with that of stochastic search algorithm. In stochastic search
algorithm SSB are the best for Yeast Cycle and RatStrain and CSB and COCSB are the best
for other data. In detailed, CSB for Gasch Yeast and COCSB for DLBCL, BCLL and PBC of
which the gene number is very large shows that COCSB shows the potential of identifying the
bicluster in large scale data.

 INT. J. BIOAUTOMATION, 2015, 19(2), 161-176

171

Biological validation
The above analysis shows that CSB and COCSB proposed in this work can obtain the

bicluster which is better than that of other algorithms. For further evaluating the significance

of CSB and COCSB, the biological validation of the results obtained by all considered

algorithms on two well-studied data: Yeast Cycle and Gasch Yeast. GO [2] can be used to

investigate if a group of genes belonging to a bicluster presents significant enrichment about a

specific GO term. Following the methodology [31] the performance of all algorithms is

evaluated biologically with the proportion of the biclusters significantly enriched by GO and

the weight enrichment score.

A bicluster is said to be significantly enrichment if p-values of one or more terms produced by

the bicluster annotated by GO is smaller than the predefined significance level. So the

performance of a biclustering algorithm can be evaluated by the proportion of the biclusters

significantly enriched by GO, and the higher it is the better the performance of the algorithm

in biological significance. Weight Enrichment score (WEscore) is used to accurately evaluate

the quality of a bicluster and the performance of a biclustering algorithm. WEscore of a

bicluster is described below:

1

/ ,
n

i i IJ

i

WEscore x s r


 (2)

where n is the number of GO terms annotated by GO, xi and si are the gene number and

-log10 transformed p-value of i-th GO terms, and
IJr is the gene number of this bicluster.

It can be seen from Eq. (2) that the higher the biological significance of a bicluster is, the

larger is WEscore.

We implement the module of GO annotation in Matlab. This module of GO annotation first

performs GO enrichment analysis in biological process, then uses the hyper geometric tests

for statistical analysis to compute p-value, and finally uses Benjamin-Hochberg False

Discovery Rate (FDR) procedure to perform the multiple testing corrections. In addition,

since the probability of random chosen is relative large, the GO term only involving one gene

is discarded. The eight significant levels selected in this work are 0.001%, 0.005%, 0.01%,

0.05%, 0.1%, 0.5%, 1% and 5%.

Table 7 and Table 8 represent the proportion of biclusters significantly enriched by GO in

different significant levels and WEscore for Yeast Cycle and Gasch Yeast. Standard variance

of WEscore are also reported in Tables 7-8.

As Table 7 shown, for Yeast Cycle data the proportion of biclusters significantly of the

stochastic search algorithm are higher than that of systematic search algorithm while its

WEscore are smaller than that of that of systematic search algorithm. Under p < 0.001% the

proportion of biclusters significantly of ISA is 12.00%, of CC is 88.00%, of FLOC is

100.00%, of BIC-aiNet is 94.00%, of SEBI is 98.00%, of PSOB is 100.00%, of SAB is

99.00%, of SSB is 78.00% and of CSB and COCSB proposed in our work are 96.00% and

98.00%. However WEscore of ISA, CC and FLOC are 1.54, 163 and 1.45 which are higher

than that of stochastic search algorithm. This is due to the volume of biclusters since it is

easier to find functional enrichment from larger groups of genes than from small groups [29]

which is validated by the gene number of ISA, CC and FLOC being far smaller than that of

stochastic search algorithm as shown in Table 3. However, for all stochastic search algorithms

 INT. J. BIOAUTOMATION, 2015, 19(2), 161-176

172

CSB and COCSB achieve the best biological performance according to WEscore of which

CSB and COCSB are 1.38 and 1.49 and greater than that of other stochastic search

algorithms.

Table 7. The proportion of biclusters significantly and WEscore on Yeast Cycle data

Algorithm p < 0.001% p < 0.005% p < 0.01% p < 0.05% p < 0.1% p < 0.5% p < 1% p < 5% WEscore

ISA 12.00% 16.00% 17.00% 82.00% 84.00% 87.00% 90.00% 92.00% 1.54±0.67

CC 88.00% 96.00% 97.00% 100.00% 100.00% 100.00% 100.00% 100.00% 1.63±0.18

FLOC 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 1.45±0.09

BIC-aiNet 94.00% 94.00% 96.00% 97.00% 98.00% 99.00% 100.00% 100.00% 1.23±0.14

SEBI 98.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 1.36±0.18

PSOB 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 1.23±0.09

SAB 99.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 1.36±0.14

SSB 78.00% 97.00% 98.00% 100.00% 100.00% 100.00% 100.00% 100.00% 1.37±0.12

CSB 96.00% 99.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 1.38±0.23

COCSB 96.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 1.49±0.15

Table 8. The proportion of biclusters significantly and WEscore on Gasch Yeast data

Algorithm p < 0.001% p < 0.005% p < 0.01% p < 0.05% p < 0.1% p < 0.5% p < 1% p < 5% WEscore

ISA 83.00% 83.00% 86.00% 93.00% 97.00% 99.00% 100.00% 100.00% 8.92±8.06

CC 14.00% 28.00% 33.00% 50.00% 61.00% 79.00% 89.00% 97.00% 1.60±0.63

FLOC 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 2.58±0.18

BIC-aiNet 51.00% 62.00% 67.00% 75.00% 78.00% 85.00% 88.00% 93.00% 1.53±0.69

SEBI 3.00% 11.00% 17.00% 34.00% 50.00% 85.00% 93.00% 99.00% 1.51±0.39

PSOB 3.00% 12.00% 21.00% 40.00% 55.00% 81.00% 88.00% 98.00% 1.63±0.52

SAB 80.00% 90.00% 95.00% 98.00% 100.00% 100.00% 100.00% 100.00% 1.95±0.42

SSB 2.00% 4.00% 8.00% 31.00% 43.00% 68.00% 83.00% 97.00% 1.62±0.55

CSB 67.00% 83.00% 87.00% 97.00% 99.00% 100.00% 100.00% 100.00% 1.97±0.39

COCSB 69.00% 89.00% 91.00% 100.00% 100.00% 100.00% 100.00% 100.00% 2.85±0.39

For Gasch Yeast data, as the above analysis of the biological performance of CSB and

COCSB is higher than that of other stochastic search algorithm in Table 8, and it is smaller

than that of ISA while it is slightly greater than that of CC and FLOC. This fully shows that in

all stochastic search algorithms the biological performance of CSB and COCSB has been

greatly enhanced.

As shown in Tables 7 and 8, the proportion of biclusters significantly and WEscore of

COCSB are better than that of CSB which clearly shows that the improved COCSB has

achieved great success compared to CSB. For Yeast Cycle WEscore of CSB is 1.38 while that

of COCSB is 1.49, for Gasch yeast WEscore of CSB is 1.97 while that of COCSB is 2.85.

 INT. J. BIOAUTOMATION, 2015, 19(2), 161-176

173

Conclusions
In this paper, we proposed two new stochastic search algorithms CSB and COCSB for

biclustering gene expression data. Compared with other stochastic search algorithm, CSB and

COCSB have many advantages. First, they are easy to implement and its number of the

parameter is small compared to existing stochastic biclustering. Secondly, they have achieved

great success in biological significance. Thirdly, they are able to efficiently explore the search

space which makes identifying the biclusters in gene expression data faster than most of the

stochastic algorithm. The performance of CSB and COCSB is compared in gene number,

sample number, MSR and time as well as the biological validation based on GO.

The compared result shows that CSB and COCSB are highly competitive in comparison with

the biclustering algorithm chosen in this paper.

However, as mentioned in [12, 23] the threshold of MSR for each data decides the

performances of the biclustering algorithm, and identifying the right threshold for each data is

not emphasized in this work since the main focus of our work is putting forward and

ameliorating biclustering algorithm, so the further work will focus on identifying the right

threshold and using the other quality index such as VE, ACV and ASR for obtaining a better

bicluster in biological significance.

Acknowledgments
This research was supported in part by the National Natural Science Foundation of China

(NSFC) under grants 60903074, the National High Technology Research and Development

Program of China (863 Program) under grant 2008AA01Z119, the Natural Science

Foundation of the Jiangsu Province under grant BK20130417.

References
1. Alizadeh A. A., M. B. Eisen, R. E. Davis, C. Ma, I. S. Lossos, A. Rosenwald,

J. C. Boldrick, H. Sabet, T. Tran, X. Yu, J. I. Powell, L. Yang, G. E. Marti, T. Moore,

J. Hudson, L. Lu, D. B. Lewis, R. Tibshirani, G. Sherlock, W. C. Chan, T. C. Greiner,

D. D. Weisen-Burger, J. O. Armitage, R. Warnke, R. Levy, W. Wilson, M. R. Grever,

J. C. Byrd, D. Botstein, P. O. Brown, L. M. Staudt (2000). Distinct Types of Diffuse

Large B-cell Lymphoma Identified by Gene Expression Profiling, Nature, 403, 503-511.

2. Ashburner M., C. A. Ball, J. A. Blake, D. Botstein, H. Butler, J. M. Cherry, A. P. Davis,

K. Dolinski, S. S. Dwight, J. T. Eppig, M. A. Harris, D. P. Hill, L. Issel-Tarver,

A. Kasarskis, S. Lewis, J. C. Matese, J. E. Richardson, M. Ringwald, G. M. Rubin,

G. Sherlock (2000). Gene Ontology: Tool for the Unification of Biology. The Gene

Ontology Consortium, Nature Genetics, 25(1), 25-29.

3. Ayadi W., M. Elloumi, J.-K. Hao (2009). A Biclustering Algorithm Based on a Bicluster

Enumeration Tree: Application to DNA Microarray Data, BioData Mining, 2, 9-24.

4. Ben-Dor A., B. Chor, R. Karp, Z. Yakhini (2002). Discovering Local Structure in Gene

Expression Data: The Order-preserving Submatrix Problem, Proceedings of the 6th

Annual International Conference on Research in Computational Molecular Biology

(RECOMB'02), Washington D.C., USA, 49-57.

5. Brown P., D. Botstein (1999). Exploring the New World of the Genome with DNA

Microarrays, Nature Gentics, 21(S1), 33-37.

6. Bryan K., P. Cunningham, N. Bolshakova (2006). Application of Simulated Annealing to

the Biclustering of Gene Expression Data, IEEE Transactions on Information Technology

in Biomedicine, 10(3), 519-525.

7. Busygin S., O. Prokopyev, P. M. Pardalos (2008). Biclustering in Data Mining,

Computers and Operations Research, 35(9), 2964-62987.

 INT. J. BIOAUTOMATION, 2015, 19(2), 161-176

174

8. Cheng Y., G. M. Church (2000). Biclustering of Expression Data, Proceeding of the 8th

International Conference on Intelligent System for Molecular Biology (Bourne P.,

M. Gribskov, Eds.), California, USA, 93-103.

9. Cho R. J., M. J. Campbell, E. A. Winzeler, L. Steinmetz, A. Conway, L. Wodicka,

T. G. Wolfsberg, A. E. Gabrielian, D. Landsman, D. J. Lockhart, R. W. A. Davis (1998).

Genome-wide Transcriptional Analysis of the Mitotic Cell Cycle, Mol Cell, 2(1), 65-73.

10. Davies N. B. (1999). Cuckoos and Cowbirds Versus Hosts: Co-evolutionary Lag and

Equilibrium, Journal of African Ornithology, 70(1), 71-79.

11. de Franca F. O., G. Bezerra, F. J. Von Zuben (2006). New Perspective for the

Biclustering Problem, Proceeding of 2006 IEEE Congress on Evolutionary Computation,

Vancouver, BC, Canada, 753-760.

12. Divina F., B. Pontes, R. Giraldez, J. S. Aguilar-Ruiz (2012). An Effective Measure for

Assessing the Quality of Biclusters, Computers in Biology and Medicine, 42(2), 245-256.

13. Divina F., J. S. Aguilar-Ruiz (2006). Biclustering of Expression Data with Evolutionary

Computation, IEEE Transaction on Knowledge and Data Engineering, 18(5), 590-602.

14. Edgar R., M. Domrachev, A. E. Lash (2002). Gene Expression Omnibus: NCBI Gene

Expression and Hybridization Array Data Repository, Nucleic Acids Research, 30(1),

207-210.

15. Eisen M. B., P. T. Spellman, P. O. Brown, D. Botstein (1998). Cluster Analysis and

Display of Genome-wide Expression Patterns, PNAS, 95(25), 14863-14868.

16. Fält S., M. Merup, G. Gahrton, B. Lambert, A. Wennborg (2005). Identification of

Progression Markers in B-CLL by Gene Expression Profiling, Exp Hematol, 33(8),

883-893.

17. Gasch A. P., P. T. Spellman, C. M. Kao, O. Carmel-Harel, M. B. Eisen, G. Storz,

D. Botstein, P. O. Brown (2000). Genomic Expression Programs in the Response of Yeast

Cells to Environmental Changes, Molecular and Cellular Biology, 11(12), 4241-4257.

18. Gautier L., L. Cope, B. M. Bolstad, R. A. Irizarry (2004). affy--analysis of Affymetrix

GeneChip Data at the Probe Level, Bioinformatics, 20(3), 307-315.

19. Getz G., E. Levine, E. Domany (2000). Coupled Two-way Clustering Analysis of Gene

Microarray Data, PNAS, 97(22), 12079-12084.

20. Hartigan J. (1972). Direct Clustering of a Data Matrix, Journal of the American Statistical

Association, 337(67), 123-129.

21. Ihmels J., G. Friedlanders, S. Bergmann, O. Sarig, Y. Ziv, N. Barkai (2002). Revealing

Modular Organization in the Yeast Transcriptional Network, Nature Genetics, 31,

370-377.

22. Lazzeroni L., A. Owen (2002). Plaid Models for Gene Expression data, Statistica Sinica,

12, 61-86.

23. Li X., U. Lu, M. Wang (2013). A Hybrid Gene Selection Method for Multi-category

Tumor Classification Using Microarray Data, International Journal Bioautomation, 17(4),

249-258.

24. Liu J., W. Wang (2003). OP-cluster: Clustering by Tendency in High Dimensional Space,

Proceedings of the 3rd IEEE International Conference on Data Mining, Bangalore, India,

87-194.

25. Liu J., Z. Liu (2009). Biclustering of Microarray with MOPSO Based on Crowding

Distance, BMC Informatics, 10(4), s9.

26. Maderia S. C., A. L. Oliverial (2004). Biclustering Algorithms for Biological Data

Analysis: A Survey, IEEE/ACM Trans Computation Biological Bioinformatics, 1(1),

24-45.

27. Mukhopadhyay A., U. Maulik, S. Bandyopadhyay (2010). On Biclustering of Gene

Expression Data, Current Bioinformatics, 5, 204-216.

 INT. J. BIOAUTOMATION, 2015, 19(2), 161-176

175

28. Murali T. M., S. Kasif (2003). Extracting Conserved Gene Expression Motifs from Gene

Expression Data, Pacific Symposium Biocomputing, 8, 77-88.

29. Nepormuceno J. A., A. Troncoso, J. S. Aguilar-Ruiz (2011). Biclustering of Gene

Expression Data by Correlation-based Scatter Search, BioData Mining, 4(3), 1-17.

30. Nowak M. A. (2006). Evolutionary Dynamics: Exploring the Equations of Life, Belknap

Press, 65-66.

31. Prelić A., S. Bleuler, P. Zimmermann, A. Wille, P. Bühlmann, W. Gruissem, L. Hennig,

L. Thiele, E. Zitzler (2006). A Systematic Comparison and Evaluation of Biclustering

Methos for Gene Expression Data, Bioinformatics, 22(9), 1122-1129.

32. Tanay A., R. Sharan, R. Shamir (2002). Discovering Statistically Significant Biclusters in

Gene Expression Data, Bioinformatics, 18, 136-144.

33. Tavazoie S., J. D. Hughes, M. J. Campbell, R. J. Cho, G. M. Church (1999). Systematic

Determination of Genetic Network Architecture, Nature Genetic, 22, 281-285.

34. Walker J. R., A. I. Su, D. W. Self, J. B. Hogenesch, H. Lapp, R. Maier, D. Hoyer, G.

Bilbe (2004). Applications of a Rat Multiple Tissue Gene Expression Data Set, Genome

Research, 14(4), 742-749.

35. Wang Y., J. G. Klijn, Y. Zhang, A. M. Sieuwerts, M. P. Look, F. Yang, D. Talantov,

M. Timmermans, M. E. Meijer-van Gelder, J. Yu, T. Jatkoe, E. M. Berns, D. Atkins,

J. A. Foekens (2005). Gene-expression Profiles to Predict Distant Metastasis of Lymph-

node-negative Primary Breast Cancer, Lancet, 365(9460), 671-679.

36. Yang J., W. Wang, H. Wang, P. Yu (2002). δ-Clusters: Capturing Subspace Correlation

in a Large Data Set, Proceedings of the 18th IEEE International Conference on Data

Engineering, California, USA, 517-528.

37. Yang X., S. Deb (2009). Cuckoo Search via Lévy Flights, Proceeding of World Congress

on Nature & Biologically Inspired Computing, India, 210-214.

 INT. J. BIOAUTOMATION, 2015, 19(2), 161-176

176

Lu Yin, Ph.D. Student

E-mail: yinlu_78@163.com

Lu Yin received his M.E. degree in Computer Software and Theory from

TaiYuan University of Technology in 2005. Currently he is a Ph.D. student

in computer software and theory at the University of Electronic Science

and Technology of China. His research interests are in the field of

bioinformatics, data mining and machine learning.

Prof. Yongguo Liu, Ph.D.

E-mails: liuyg@uestc.edu.cn,

liuyg_cn@163.com

Prof. Yongguo Liu received his Ph.D. in Engineering in Computer Science

from Chongqing University in 2003 and has been out of

post-doctoral stations at the Shanghai Jiaotong University in 2005.

His research interests are in the field of data mining and

TCM Information Science.

mailto:yinlu_78@163.com
mailto:liuyg@uestc.edu.cn

