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Abstract: Biclustering has a potential to discover the local expression patterns analyzing the 

gene expression data which provide clues about biological processes. However, since it is 

proven that the biclustering problem is NP-hard, it is necessary to seek more effective 

algorithm. Cuckoo Search (CS) models the brood parasitism behavior of cuckoo to solve the 

optimization problem and outperforms the other existing algorithms. In this paper,  

we introduce a new algorithm for biclustering gene expression data, called cuckoo search 

biclustering (CSB), which adopts CS to solve the biclustering problem. For further 

improving the performance of CSB, three modifications to CSB are made with the aim of 

increasing the convergence rate and the coevolution cuckoo search biclustering (COCSB) is 

designed. CSB and COCSB are tested on the six gene expression data and their results are 

compared to those of CC, FLOC, ISA, SEBI, BIC-aiNet, PSOB, SAB and SSB.  

The comparison shows that CSB and COCSB have achieved great success in biological 

significance and time performance. 

 

Keywords: Biclustering, Gene expression data, Coevolution cuckoo search biclustering. 

 
Introduction 
DNA microarray technology makes simultaneous monitoring of the gene expression level of 

thousands of genes under different samples which obtain the gene expression data after 

several preprocessing steps [5]. The gene expression data can be represented as a matrix 

where each gene corresponds to its row, each sample to its column and each element to the 

expression level of a gene under a sample. Different methods have been applied for 

discovering the biological knowledge in gene expression data [1, 8, 15, 19, 21, 33]. Among 

these methods, biclustering [8] has a potential to discover the local expression patterns of 

gene expression data, which makes biclustering an important tool in analyzing the gene 

expression data. 

 

Formally, a gene expression data can be viewed as a  n m  matrix   ( , )X YA , in which 

1 2{ , , , } nX x x x denotes the set of the genes, 1 2{ , , , } mY y y y denotes the set of the 

samples, and ija  denotes the expression level of the i-th gene under the j-th sample. Let that I 

is the gene subset of X and   ,   ,   ,I X I k k n   J is the sample subset of Y and

,  , J Y J l l m   . A bicluster is defined as a submatrix ( , )I JB  of data  ,X YA  in which 
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the subset I shows similar gene expression patterns under the subset J which also shows 

similar sample expression profiles across the gene subset I, and is denoted as k l  submatrix 

 ,I JB . So the biclustering problem can be formulated as follows: given a gene expression 

data  ,X YA , construct a bicluster  ,I JoptB  such that    maxf f


opt
B A

B B  where  f B  is 

an objective function for evaluating the coherence of a candidate bicluster    ,I JB . It is 

proved that the biclustering problem is NP-hard [8].  

 

Consequently, many existing biclustering algorithms are based on reducing the searching 

range or improving the searching efficiency. Since Cheng and Church [8] first proposed CC 

biclustering algorithm, many algorithms have been proposed and the surveys can be found in 

[7, 26-27]. Ayadi et al. [3] classified the biclustering algorithms into systematic search 

algorithms and stochastic search algorithms. Among the representative systematic  

search algorithms are ISA [21], CC [8], BiMine [3], OPSM [4], Motifs [28], Direct  

clustering [20], FLOC [36], SAMBA [32], OP-Cluster [24], Bimax [31] and Paid [22], etc. 

The stochastic searching algorithms have SEBI [13], SSB [29], CMOPSOB [25],  

BIC-aiNet [11], and SAB [6]. 

 

The stochastic search algorithms are known for their strength in avoiding locally optimal 

solutions especially using some local search strategies, so they can quickly converge toward 

the global optimum which account for many significant biclusters reported in their work. 

However, no single existing algorithm is completely successful in solving biclustering 

problem, so it is useful to seek more effective algorithms for obtaining a better bicluster. 

Cuckoo Search (CS), a recent metaheuristic algorithm first reported [37], models the brood 

parasitism behavior of cuckoo to solve the optimization problem and shows that CS is very 

promising and outperforms the other existing algorithms. In addition, CS only needs one 

parameter, the fraction of nests to abandon, to be adjusted which makes it easily implemented. 

In this paper, we introduce a new stochastic search algorithm for biclustering of gene 

expression data, called cuckoo search biclustering (CSB). Although CSB achieves good 

performance, it cannot find the global optimal bicluster. For further improving the 

performance of CSB, some modifications to CSB are made with the aim of increasing the 

convergence rate but without losing the attractive features of CSB. The first modification is to 

introduce the coevolution. The second is that the populations of host and cuckoo dynamically 

change. The third is that unlike CSB the optimizing objective is the egg instead of the nest.  

As a result, we designed the coevolution cuckoo search biclustering (COCSB) algorithm.  

To assess the performance of the proposed algorithms, the results of CSB and COCSB on six 

gene expression data are reported and compared with those of CC, FLOC, ISA, SEBI,  

BIC-aiNet, PSOB, SAB and SSB. In addition, we perform a biological validation. 

 

The article is organized as follows: Section II describes CSB. In Section III the procedure of 

COCSB is introduced. In Section IV after briefly introducing the platform and the expression 

data used by our experiment, the experiment results are reported and discussed in terms of the 

evaluating criterion and biological significance. Finally, the conclusion and future work is 

provided in Section V. 

 

Description of CSB 
Cuckoo Search (CS) is inspired by the brood parasitism behavior of cuckoos. In detail, 

cuckoo does not hatch their eggs, but lay their eggs in the nests of other host birds. If the host 

does not discover the cuckoo eggs then it hatches the cuckoo eggs and raises the child cuckoo, 
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otherwise it either destroys the egg or abandons the nest. So for cuckoo the search procedure 

of the host nest fitting for their eggs is the optimization procedure. After making some 

assumptions, CS matches the nests with the candidate solution, the quality of the nest with the 

fitness function of the solution, and gets the better nest by searching nest operation and 

abandoning nest operation iteratively [37]. Based on CS, we propose the Cuckoo Search 

Biclustering (CSB) for identifying the bicluster in the gene expression data. The flowchart of 

CSB is shown in Fig. 1.  

 

 

Fig. 1 Flowchart of CSB 

 

Encoding of a bicluster 

The represents of a bicluster  ,I JB  are encoded as binary string of length n m  which is 

represented as a nest of  1 1, , , , , , , , ,p i n j mx g g g s s s , 1, ,p N , and N  denotes 

the population size in which  n and m  are the number of genes and samples of the gene 

expression matrix  ,X YA . If the i-th gene or j-th sample in the  ,X YA  is chosen by the 

 ,I JB , 1 ig  or   1js  , otherwise, 0ig   or 0js  , where 1 i n   and 1 j m  .  

 

The fitness function 
In this work the index for evaluating the coherence of a candidate bicluster is MSR which has 

largely been adopted in [4, 6, 8, 11, 13, 25, 29]. Given that the minimal gene and the sample 

number of a bicluster are 10 as in SAB [6], so the fitness function mainly focuses on the 

coherence of a bicluster. The fitness function ( ) pf x of a nest px  is as follows: 

 

 
,

1
  ( ) / / ( )p ij iJ Ij IJ

i I j J

f x MSR B a a a a
k l

 
 

 
       

   (1) 

 

where   iJa , Ija  and IJa  are the mean of the i-th row, the mean of the j-th col and the whole 

mean in    ,I JB  and σ  is the threshold of MSR. So the final objective of CSB is to maximize 

the fitness. 

 

stop  

 
outputing bicluster 

 

 Y 

 
initializing 

 searching nest operation 

 abandoning nest operation 

 N 
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Initialization 

The initial population  1 2, , , Nx x xP    is composed of N  initial nest , 1 i N ix  which 

corresponds to the  i th bicluster  ,I JBi
. Assume that the number of the gene and the sample 

of the bicluster  , , 1I J i N Bi
 are rBi

 and   ,cBi
 then the pseudo code of the initializing is 

as follows: 

 

Step 1: Let 1num  . 

Step 2: while ( num N ). 

Step 2.1: generating the row vector G  of length n  in which values are 0, and 

randomly flipping 
i

rB  bits from 0 to 1. Similarly, generating the row vector S  of 

length m  which values are 0, and randomly flipping 
i

cB  bit from 0 to 1. 

Step 2.2: merging G  and S  into a row vector represented by the initial nest 

   ,ix I J  for 1  i N  . 

Step 2.3: computing ( ), 1if x i n   according to Eq. (1). 

Step 2.4: 1num num  . 

 

Searching nest operation 
Searching nest means that each nest  , , 1x I J i N i

 in the population P  performs local 

searching. Let mSize  is the step length of local searching of a nest, maxNumber  is the 

maximal times of local searching of a nest, and δ  is the predefined threshold of a nest, the 

detailed step is as follows: 

Step 1: 1,  10i maxNumber  . 

Step 2: while ( i N  and  if x  ). 

Step 2.1: 1,  2k mSize  . 

Step 2.2: Randomly flipping the mSize  bits from the binary string of ix  to get new

x'

i
, and computing  f x'

i
. 

Step 2.3: If  ' ( )i if x f x , then updating ix  with x'

i
 and go to Step 2.5.  

Step 2.4: 1k k  , if k maxNumber , then    8mSize  , and randomly flipping 

mSize  bits from the binary string of ix  generates x'

i
 to replace ix . 

Step 2.5: 1i i  . 

 

Abandoning nest operation 
The aim of abandoning nest is to maintain the diversity of the nest population which helps to 

escape the local optimal solution. In fact, abandoning nest operating is to update the worst 

nests with new generated nests at a given proportion    0, 1p , its detailed step is as follows: 

Step 1: Sorting all nests in P  based on the fitness function in ascending order. 

Step 2: Computing the number of nests to be updated  r _eplace num N p  . 

Step 3: For each the first _repalce num  nests in  P , performing the above searching  

nest operation for obtaining the new nests to replace the above old nests. 
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Stop condition 

The stop condition of CSB is that the fitness function )(f x*  of the best known solution x*  in 

the population  P is smaller than the predefined threshold. 

 

Description of COCSB 
In the brood parasitism the cuckoo egg must mimic the host egg for assuring its egg hatched  

by cuckoo. The hosts also evolve many defenses against the brood parasitism in nature [10].  

So the completion of host and cuckoo leads to a co-evolutionary arms race in which each 

party evolves in response to the other as in Fig. 2. 

 

 

Fig. 2 The cycle of co-evolution between cuckoo and host 
 

For simulating the above phenomena and increasing the convergence rate, three modifications 

of CSB are made. The first modification is to introduce the coevolution. The brood parasitism 

behavior simulated by CSB doesn’t show the coevolution which usually exists in nature.  

The second modification is that the populations of host and cuckoo dynamically change.  

The above competitive relation makes the population size of host and cuckoo dynamically 

changes and eventually arrives at equilibrium. The third is that the optimizing objective is the 

egg rather than the nest in CSB. Assuming that the host only possesses one defense against 

the cuckoo parasitism-reducing intra-clutch variation and increasing inter-clutch variation, for 

host and cuckoo the procedure of the coevolution in egg is the optimization procedure. 

Matching the egg with the candidate solution and the quality of the egg with the fitness of the 

solution, we propose the Coevolution Cuckoo Search Biclustering (COCSB). In COCSB, the 

evolution of the host egg carries out the exploitation process in the search space while that of 

the cuckoo egg controls the exploration process. The flowchart of COCSB is Fig. 3. 

 

Encoding of the bicluster and designing the fitness function 

In COCSB, a bicluster    ,I JB  is also encoded as binary string of length  n m  as CSB.  

This binary string is represented as an egg 1 2 1 2  , , , , , ,,n mx g g g s s s . The fitness 

function ( ) f x  of an egg x  is defined as Eq. (1) as CSB. 

 

Initializing the egg population of cuckoo and host 
In COCSB, there are two populations, host and cuckoo egg, which correspond to the bicluster. 

Assuming that the initial number of host and cuckoo are   cuckooEggN  and hostEggN  and that each 

host lay eggnum 5 eggs considering that each host usually lay 4~6 eggs in nature, so the 

population of host eggs  

 

 
,4 ,51,1 ,  , , , , ,

host hosteggHost i j N Nx x x xP , 

 

Cuckoo 

Better  trickery 

Host 

Better  defences
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where 
,   (1 ,i j hostEggx i N  1 5)j   represent the j-th egg of the i-th host. Moreover, since in 

nature each cuckoo lays one egg in each nest of host, so the number of cuckoo eggs is the 

same as the size of   hostN  and the population of cuckoo eggs 

 

 1, , , ,
hosteggCuckoo k Ny y yP , 

 

where   , 1k hosty k N   represent the k-th cuckoo egg. In COCSB initializing two above egg 

populations is the same as CSB. 

 

 

Fig. 3 Flowchart of COCSB 

 

Cuckoo selecting the host and laying egg 
Since the cuckoo evolved with the egg mimicry for improving the survival of its offspring, 

each cuckoo selects the host in which the fitness of eggs is close to the fitness of its own egg. 

Note that each cuckoo lays only one cuckoo egg in one host nest to avoid the intraspecific 

competition. The pseudo code of the cuckoo selecting the host is as follows:  

Step 1: For each egg ,i jx computing the fitness  ,i jf x  

Step 2: For each host computing and saving the mean fitness    
5

,

1

1
i i j

j

f x f x
eggnum 

   

Step 3: For each cuckoo egg ky  in cuckooP  

 Step 3.1: Computing the fitness  kf y  of cuckoo egg   ky . 

 Step 3.2: Getting the host minIndexx  of which the mean fitness is closest to the 

fitness  kf y  of cuckoo egg   ky . 

Cuckoo selecting the host and 

laying egg

Initializing the egg population 

of cuckoo and host

Host abandoning egg

Updating the egg population of 

cuckoo and host

Stop condition

Output biclusters

Y

N

Initializing
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 Step 3.4: For the host  minIndexx  replacing the egg of which the fitness is minimal 

with the cuckoo egg   ky . 

Step 4: Let    minIndexf x inf . 

 

Host abandoning egg 
For simulating the host’s ability against the cuckoo’ nest parasitism, for each host the 

difference between the mean fitness of the host eggs before cuckoo laying egg and that of the 

host and cuckoo eggs after cuckoo laying egg is computed. If the percentage of the above 

difference is larger than the threshold , then the cuckoo egg is abandoned, otherwise no egg 

is abandoned. Let succn  and succp  denotes the number and the percentage of abandoned egg, its 

pseudo code is as follows: 

 Step 1: Computing the population size hostEggN   and cukcooEggN   of next cuckoo and host using 

Step 2 and Step 3. 

 Step 2: If hostEgg hostEggN N  then performing accelerative evolving   eggHostP , otherwise 

performing constantly evolving eggHostP   . 

 Step 3: If cukcooEgg cuckooEggN N  then performing accelerative evolving eggCuckooP , otherwise 

performing constantly evolving eggCuckooP  . 

 

Stop condition 

As CSB, the stop condition of the COCSSB is that the fitness function *( )f x  of the best 

solution *x  in the   eggHostP   or    eggCuckooP is smaller than the predefined threshold. 

 

Experiments 
CSB and COCSB algorithms are implemented by Matlab 2012b and are run on a PC  

which uses Intel Core i3-2120 with 3.29 GHz, 8.0 Gb RAM and 64 bit Windows OS.  

In addition, CC, ISA, FLOC, SEBI, BIC-aiNet, PSOB, SAB and SSB are implemented in  

the above platform. All chosen algorithms get 100 biclusters for each data.  
 

Identifying of CSB and COCSB parameter 
For identifying the proportion of nests to abandon p  in CSB, the index of the 100 biclusters 

obtained on the yeast cell cycle data is reported in Table 1when specifying  p  with different 

value and the size of a population with 100. As shown Table 1, in the different p  MSR of the 

biclusters is less than the thresholds 300, but the time is best when   0.25p  . So  p is 

designed as 0.25 in the following experiments of other data. 

 

In COCSB,   hostEggN , cuckooEggN  and eggnum are is easily obtained since its value has little 

impact, so 100hostEggN  , 20 cuckooEggN   and 5eggnum  . Considering that in nature to a 

certain degree the host should accept the cuckoo parasitism, 10%   [10]. As for   deathp , 

because any population almost maintains a more stable state after a long term evolution, this 

is, hostEgg hostEggN N  and ' .  cuckooEgg cuckooEggN N The above condition is met when 

60.00%deathp   and the trend of the size of next population   hostEggN   and cukcooEggN   is shown in 

Fig. 4. 
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Table 1. The mean MSR and time of CSB under the different p 

p 0.10 0.15 0.20 0.25 0.30 0.35 0.40 

MSR 299.87 299.86 299.84 299.84 299.83 299.82 299.86 

Time 6.67 6.35 6.41 6.32 6.47 6.55 6.41 

 

Gene expression data and its threshold  
The aim of the experiment is to assess the potential of CSB and COCSB as the biclustering 

algorithm, so the data used in this work are as extensive as possible in the scale of the gene 

expression data. So the following six data are chosen and its more detailed information are 

shown in Table 2.  
 

In six data the first three are widely used in biclustering problem and are preprocessed in  

[8, 31]. However, the other three data are downloaded in GEO [14] which accession number 

is GSE2403, GSE2034 and GSE952 respectively. Its raw data are preprocessed by R package 

‘affy’ [18] and scaled by 100. For the first three data the MSR thresholds are available in  

[8, 31]. However, for the other three data the MSR thresholds are not off-the-peg. Considering 

that ISA need not MSR as evaluating the bicluster, so the minimal value of MSR obtained by 

ISA on BCLL, PBC and Rat Strain are used to the threshold as shown in Table 2. 
 

 
Fig. 4 The trend of the size of the population of cuckoo and host 

 

Table 2. The data used in the experimentation 

Data Name #Gene #Sample Threshold Ref 

Yeast Cycle Yeast cell cycle 2884 17 300 [9] 

DLBCL diffuse large B-cell lymphoma 4026 96 1200 [1] 

Gasch 

Yeast 
Yeast stress conditions 2993 173 500 [17] 

BCLL B-cell chronic lymphocytic 
leukemia 

12625 21 50 [16] 

PBC Primary breast cancer 22284 286 50 [35] 

RatStrain rat multiple tissue in strain 8799 122 5 [34] 

 

Analysis of experiment 
We aim to test whether CSB and COCSB can yield the discovery of biclusters characterized 

by small MSR and high volume. Moreover, we are interested in comparing the results 

achieved by CSB and COCSB against the results obtained by the other algorithms especially 

the stochastic search algorithms, so the compared algorithms will not only have CC, FLOC 

and ISA but also have SEBI, PSOB, BIC-aiNet, SAB and SSB. In this subsection the 
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following content mainly presents and analyzes the experiment results of eight compared 

biclustering algorithms and new proposed CSB and COCSB on the six gene expression data. 

The experiment result lists the gene number, sample number, MSR and time of a bicluster in 

which the gene number and the sample number together reflect the volume of a bicluster, 

MSR reflects the coherence and the time measured in seconds reflects the time performance 

of an algorithm. On each data the 100 biclusters are obtained for each algorithm, the mean 

and the standard variance of the gene number, the sample number, MSR, and time are 

presented in Tables 3-6. 

 

Table 3. Average gene number obtained on each data 

      Data 

Algorithm 
Yeast Cycle DLBCL Gasch Yeast BCLL PBC RatStrain 

ISA 62.53±103.94 370.23±327.88 256.56±190.62 363.34±616.85 1763.56±1470.5

6 
116.43±86.31 

CC 340.83±47.65 39.87±9.17 63.02±76.92 315.67±93.69 35.80±14.44 204.80±65.80 

FLOC 595.12±10.95 1330.69±135.99 798.15±108.10 359.24±175.20 1020.90±133.09 1694.54±46.13 

BIC-aiNet 1266.10±296.61 2189.62±512.22 761.34±925.77 418.26±459.46 1620.27±430.57 1174.17±552.40 

SEBI 1183.21±196.66 407.05±369.77 24.89±11.49 483.83±434.93 494.42±792.26 1250.73±501.63 

PSOB 1360.23±77.59 379.67±231.78 22.48±14.09 465.33±410.63 308.60±631.75 1194.55±356.75 

SAB 1200.46±154.38 829.26±541.93 214.46±62.45 505.03±281.11 1097.80±735.04 1082.30±357.07 

SSB 695.36±178.92 196.79±232.27 16.40±6.62 454.25±104.31 65.46±20.42 1202.55±214.34 

CSB 1435.34±185.86 688.15±251.80 257.55±134.61 373.21±190.44 254.07±83.00 1489.05±304.97 

COCSB 684.20±79.37 397.27±297.43 243.82±20.45 3402.06±339.41 249.88±93.47 1383.34±366.15 

 

Table 4. Average sample number obtained on each data 

     Data 

Algorithm 
Yeast Cycle DLBCL Gasch Yeast BCLL PBC RatStrain 

ISA 14.66±4.35 12.77±4.66 45.94±23.71 19.29±6.48 202.45±61.19 41.50±19.15 

CC 16.92±0.307 90.57±11.10 47.56±18.43 24.00±0.00 44.25±12.53 24.25±7.15 

FLOC 17.00±0.00 25.77±2.70 34.03±5.18 10.00±0.00 10.00±0.00 33.91±3.35 

BIC-aiNet 10.18±0.41 12.80±5.35 79.09±57.37 10.02±0.14 11.68±16.40 14.72±8.38 

SEBI 11.07±1.70 60.68±17.71 116.13±11.75 10.06±0.28 161.85±92.63 85.14±20.61 

PSOB 10.01±0.10 58.02±14.56 120.37±12.99 10.09±0.40 176.67±80.15 85.03±13.30 

SAB 10.33±0.91 37.47±17.05 72.20±7.04 10.00±0.00 38.74±37.38 70.69±17.90 

SSB 15.24±1.53 72.34±16.74 120.77±11.54 12.29±3.86 179.50±29.38 97.60±12.56 

CSB 11.56±1.32 36.36±9.20 59.31±13.34 14.95±2.46 74.19±33.35 88.40±15.87 

COCSB 15.62+0.72 69.71+14.66 103.03±11.14 16.80±1.54 85.36±23.47 102.83±14.02 

 

From Table 3 we can see that different algorithms show different performance in gene 

number for different data. It can be seen that for Yeast Cycle data PSOB is the best, for 

DLBCL BIC-aiNet is the best, for Gasch Yeast FLOC is the best, for BCLL COCSB is the 

best, for PBC ISA is the best and for RatStrain CSB is the best. It is worth noting that gene 

number of COCSB is better than most of the other algorithms. 
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Table 5. Average MSR obtained on each data 

Data 

Algorithm 
Yeast Cycle DLBCL Gasch Yeast BCLL PBC RatStrain 

ISA 317.20±289.3

6 

57094.01±176

53.76 
0.93±0.42 419.15±450.6

5 

913.97±119.3

2 
1.43±1.02 

CC 223.76±13.17 1010.20±96.6

0 
0.03±0.00 97.00±1.56 46.13±3.48 2.41±1.01 

FLOC 299.71±0.11 1199.61±0.25 0.05±0.00 68.82±30.03 30.20±4.04 0.82±0.12 

BIC-aiNet 298.18±1.87 1199.61±0.96 0.05±0.00 99.99±4.47 50.01±0.31 5.00±0.03 

SEBI 299.85±0.11 1198.48±1.35 0.05±0.00 99.99±4.42 49.91±0.07 4.99±0.01 

PSOB 299.84±0.12 1198.31±1.50 0.05±0.00 100.00±4.86 49.90±0.08 4.99±0.01 

SAB 299.86±0.10 1199.08±0.94 0.05±0.00 100.00±3.58 49.93±0.06 4.99±0.01 

SSB 299.75±0.11 1197.35±2.54 0.05±0.00 100.00±4.13 49.90±0.13 4.99±0.01 

CSB 299.84±0.11 1199.96±0.04 0.05±0.00 100.00±0.28 49.99±0.01 5.00±0.00 

COCSB 299.75±0.10 1199.52+1.42 0.05±0.00 99.99±0.38 49.85±0.02 4.98±0.01 

 

Table 6. Average time obtained on each data 

Data 

Algorithm 
Yeast Cycle DLBCL Gasch Yeast BCLL PBC RatStrain 

ISA 0.12 0.01 0.04 4.5 0.28 0.42 

CC 0.02 0.06 0.05 0.04 0.13 0.03 

FLOC 4.05 14.98 14.14 49.95 77.33 95.54 

BIC-aiNet 10.14 25.06 17.86 81.51 367.85 68.99 

SEBI 6.66 15.79 14.72 43.95 357.23 81.81 

PSOB 5.78 7.46 7.98 20.81 220.48 35.50 

SAB 4.44 9.36 8.44 122.98 307.45 111.61 

SSB 3.14 7.88 10.30 28.00 84.35 22.91 

CSB 4.77 8.58 7.22 31.25 65.17 32.86 

COCSB 3.95 6.49 12.76 20.50 58.36 34.19 

 

As Table 4 shows, in sample number the systematic searching algorithms shows excellent 

performance. It can be seen that CC is the best for DLBCL and BCLL, ISA is the best for 

PBC and FLOC for Yeast Cycle. Even so, COCSB proposed in this work is the best for 

RatStrain and SSB for Gasch yeast. 
 

For MSR, as shown Table 5 which MSR of almost all algorithms are smaller than the 

threshold while ISA which does not use MSR are far higher than the threshold. Further 

observation shows that MSR obtained by CC and FLOC is smallest for most data. This is 

because that CC and FLOC mainly focuses on the decreasing of MSR and ignores the 

volume. 

 
Table 6 shows that the time of ISA and CC in systematic search algorithm is the smallest in 
all algorithms for each data. This is because the procedure of ISA and CC is specific. Even so, 
the time of FLOC is comparable with that of stochastic search algorithm. In stochastic search 
algorithm SSB are the best for Yeast Cycle and RatStrain and CSB and COCSB are the best 
for other data. In detailed, CSB for Gasch Yeast and COCSB for DLBCL, BCLL and PBC of 
which the gene number is very large shows that COCSB shows the potential of identifying the 
bicluster in large scale data. 
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Biological validation 
The above analysis shows that CSB and COCSB proposed in this work can obtain the 

bicluster which is better than that of other algorithms. For further evaluating the significance 

of CSB and COCSB, the biological validation of the results obtained by all considered 

algorithms on two well-studied data: Yeast Cycle and Gasch Yeast. GO [2] can be used to 

investigate if a group of genes belonging to a bicluster presents significant enrichment about a 

specific GO term. Following the methodology [31] the performance of all algorithms is 

evaluated biologically with the proportion of the biclusters significantly enriched by GO and 

the weight enrichment score.  

 

A bicluster is said to be significantly enrichment if p-values of one or more terms produced by 

the bicluster annotated by GO is smaller than the predefined significance level. So the 

performance of a biclustering algorithm can be evaluated by the proportion of the biclusters 

significantly enriched by GO, and the higher it is the better the performance of the algorithm 

in biological significance. Weight Enrichment score (WEscore) is used to accurately evaluate 

the quality of a bicluster and the performance of a biclustering algorithm. WEscore of a 

bicluster is described below: 

 

1

/  ,   
n

i i IJ

i

WEscore x s r


  (2) 

 

where n is the number of GO terms annotated by GO, xi and si are the gene number and  

-log10 transformed p-value of i-th GO terms, and 
IJr  is the gene number of this bicluster.  

It can be seen from Eq. (2) that the higher the biological significance of a bicluster is, the 

larger is WEscore. 

 

We implement the module of GO annotation in Matlab. This module of GO annotation first 

performs GO enrichment analysis in biological process, then uses the hyper geometric tests 

for statistical analysis to compute p-value, and finally uses Benjamin-Hochberg False 

Discovery Rate (FDR) procedure to perform the multiple testing corrections. In addition, 

since the probability of random chosen is relative large, the GO term only involving one gene 

is discarded. The eight significant levels selected in this work are 0.001%, 0.005%, 0.01%, 

0.05%, 0.1%, 0.5%, 1% and 5%.  

 

Table 7 and Table 8 represent the proportion of biclusters significantly enriched by GO in 

different significant levels and WEscore for Yeast Cycle and Gasch Yeast. Standard variance 

of WEscore are also reported in Tables 7-8. 

  

As Table 7 shown, for Yeast Cycle data the proportion of biclusters significantly of the 

stochastic search algorithm are higher than that of systematic search algorithm while its 

WEscore are smaller than that of that of systematic search algorithm. Under p < 0.001% the 

proportion of biclusters significantly of ISA is 12.00%, of CC is 88.00%, of FLOC is 

100.00%, of BIC-aiNet is 94.00%, of SEBI is 98.00%, of PSOB is 100.00%, of SAB is 

99.00%, of SSB is 78.00% and of CSB and COCSB proposed in our work are 96.00% and 

98.00%. However WEscore of ISA, CC and FLOC are 1.54, 163 and 1.45 which are higher 

than that of stochastic search algorithm. This is due to the volume of biclusters since it is 

easier to find functional enrichment from larger groups of genes than from small groups [29] 

which is validated by the gene number of ISA, CC and FLOC being far smaller than that of 

stochastic search algorithm as shown in Table 3. However, for all stochastic search algorithms 
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CSB and COCSB achieve the best biological performance according to WEscore of which 

CSB and COCSB are 1.38 and 1.49 and greater than that of other stochastic search 

algorithms. 

 
Table 7. The proportion of biclusters significantly and WEscore on Yeast Cycle data 

Algorithm p < 0.001% p < 0.005% p < 0.01% p < 0.05% p < 0.1% p < 0.5% p < 1% p < 5% WEscore 

ISA 12.00% 16.00% 17.00% 82.00% 84.00% 87.00% 90.00% 92.00% 1.54±0.67 

CC 88.00% 96.00% 97.00% 100.00% 100.00% 100.00% 100.00% 100.00% 1.63±0.18 

FLOC 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 1.45±0.09 

BIC-aiNet 94.00% 94.00% 96.00% 97.00% 98.00% 99.00% 100.00% 100.00% 1.23±0.14 

SEBI 98.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 1.36±0.18 

PSOB 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 1.23±0.09 

SAB 99.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 1.36±0.14 

SSB 78.00% 97.00% 98.00% 100.00% 100.00% 100.00% 100.00% 100.00% 1.37±0.12 

CSB 96.00% 99.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 1.38±0.23 

COCSB 96.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 1.49±0.15 

 
Table 8. The proportion of biclusters significantly and WEscore on Gasch Yeast data 

Algorithm p < 0.001% p < 0.005% p < 0.01% p < 0.05% p < 0.1% p < 0.5% p < 1% p < 5% WEscore 

ISA 83.00% 83.00% 86.00% 93.00% 97.00% 99.00% 100.00% 100.00% 8.92±8.06 

CC 14.00% 28.00% 33.00% 50.00% 61.00% 79.00% 89.00% 97.00% 1.60±0.63 

FLOC 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 2.58±0.18 

BIC-aiNet 51.00% 62.00% 67.00% 75.00% 78.00% 85.00% 88.00% 93.00% 1.53±0.69 

SEBI 3.00% 11.00% 17.00% 34.00% 50.00% 85.00% 93.00% 99.00% 1.51±0.39 

PSOB 3.00% 12.00% 21.00% 40.00% 55.00% 81.00% 88.00% 98.00% 1.63±0.52 

SAB 80.00% 90.00% 95.00% 98.00% 100.00% 100.00% 100.00% 100.00% 1.95±0.42 

SSB 2.00% 4.00% 8.00% 31.00% 43.00% 68.00% 83.00% 97.00% 1.62±0.55 

CSB 67.00% 83.00% 87.00% 97.00% 99.00% 100.00% 100.00% 100.00% 1.97±0.39 

COCSB 69.00% 89.00% 91.00% 100.00% 100.00% 100.00% 100.00% 100.00% 2.85±0.39 

 

For Gasch Yeast data, as the above analysis of the biological performance of CSB and 

COCSB is higher than that of other stochastic search algorithm in Table 8, and it is smaller 

than that of ISA while it is slightly greater than that of CC and FLOC. This fully shows that in 

all stochastic search algorithms the biological performance of CSB and COCSB has been 

greatly enhanced. 

 

As shown in Tables 7 and 8, the proportion of biclusters significantly and WEscore of 

COCSB are better than that of CSB which clearly shows that the improved COCSB has 

achieved great success compared to CSB. For Yeast Cycle WEscore of CSB is 1.38 while that 

of COCSB is 1.49, for Gasch yeast WEscore of CSB is 1.97 while that of COCSB is 2.85. 
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Conclusions 
In this paper, we proposed two new stochastic search algorithms CSB and COCSB for 

biclustering gene expression data. Compared with other stochastic search algorithm, CSB and 

COCSB have many advantages. First, they are easy to implement and its number of the 

parameter is small compared to existing stochastic biclustering. Secondly, they have achieved 

great success in biological significance. Thirdly, they are able to efficiently explore the search 

space which makes identifying the biclusters in gene expression data faster than most of the 

stochastic algorithm. The performance of CSB and COCSB is compared in gene number, 

sample number, MSR and time as well as the biological validation based on GO.  

The compared result shows that CSB and COCSB are highly competitive in comparison with 

the biclustering algorithm chosen in this paper. 

 

However, as mentioned in [12, 23] the threshold of MSR for each data decides the 

performances of the biclustering algorithm, and identifying the right threshold for each data is 

not emphasized in this work since the main focus of our work is putting forward and 

ameliorating biclustering algorithm, so the further work will focus on identifying the right 

threshold and using the other quality index such as VE, ACV and ASR for obtaining a better 

bicluster in biological significance. 
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