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Abstract: Based on the Histogram equalization theory, this paper presents a novel concept of 

histogram to realize the contrast enhancement of hand vein images, avoiding the lost of 

topological vein structure or importing the fake vein information. Firstly, we propose the 

concept of gray-level information histogram, the fundamental characteristic of which is that 

the amplitudes of the components can objectively reflect the contribution of the gray levels and 

information to the representation of image information. Then, we propose the histogram 

equalization method that is composed of an automatic histogram separation module and an 

intensity transformation module, and the histogram separation module is a combination of the 

proposed prompt multiple threshold procedure and an optimum peak signal-to-noise (PSNR) 

calculation to separate the histogram into small-scale detail, the use of the intensity 

transformation module can enhance the vein images with vein topological structure and gray 

information preservation for each generated sub-histogram. Experimental results show that 

the proposed method can achieve extremely good contrast enhancement effect. 

 

Keywords: Contrast enhancement, Gray-level information histogram, Histogram 

equalization, Vein topological structure, Image quality evaluation. 

 

Introduction 
Hand-vein recognition as a newly and emergent modality for biometric authentication has 

attracted increasing attention in recent years. And the feature we adopt is the subcutaneous 

tissue that forms a network with a high random manner [16]. Compared with other traditional 

biometric characteristics (such as face, iris, fingerprints, hand-gesture), hand vein is superior 

in stability, uniqueness, active liveness and permanence. Furthermore, the hand-vein based 

identification systems can be immune to counterfeit hands and noninvasive to users in 

practice.  

 

As veins mainly course under the human skin, hand-vein patterns should be illuminated by 

near infrared (NIR) lights and captured by image sensors in a transillumination manner. 

Due to the light attenuation in biological mediums, the irradiation power are always in great 

degrading condition which directly results in poor quality of hand vein images with extremely 

low contrast, as shown in Fig. 1. In order to improve the clarity of hand-vein patterns 

effectively, hand-vein image enhancement thus plays a crucial role in hand-vein recognition. 

Image enhancement techniques can be used to improve the visual appearance of an image, or 

to convert an image to form better suited to the subsequent processing, such as segmentation, 

feature extraction, detection and recognition. Our group has conducted a deep research on this 

subject, many methods have been hitherto proposed. For instance: adaptive histogram 
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equalization method [9], morphological method [10], line-tracking method [12], 

curvature-based method [12], and transformation-based methods [4, 17-19]. One of the most 

popular methods for image contrast enhancement but has never been mentioned in hand-vein 

images enhancement is Global Histogram Equalization (GHE), which attempts to alter the 

gray-level histogram of an image to closely match a uniform distribution. Although the GHE 

method [6] is simple and fast, its performance is not good and effective enough in many cases 

due to its intrinsic limitations, such as the mean-shift problem (i.e. the mean brightness of the 

output image is significantly different from the input image which may result in false 

recognition) and we have also found that it cannot adapt to local brightness which causes 

limitations in the amount of contrast enhancement in some parts of the image [2]. 

 

   
(a) (b) (c) 

Fig. 1 Vein images with extremely low contrast: (a) the finger vein image, 

(b) the dorsal vein image and (c) the palm vein image 

 

To overcome the aforementioned drawbacks, many variants of histogram equalization have 

been proposed [1, 3, 5, 7-8, 11, 14]. In order to preserve the resulting image’s brightness and 

detailed feature, Kim proposed Brightness Preserving Bi-Histogram Equalization (BPBHE) 

[7]. This method first separates the input images into two sub-histograms based on the mean 

of the input image’s brightness and then the two sub-histograms are equalized independently. 

Later, Chen and Ramli proposed an optimal extension of BPBHE, called Minimum Mean 

Brightness Error Bi-Histogram Equalization (MMBEBHE) [1]. This method separates the 

histogram using the threshold that would yield minimum brightness difference between the 

input image and the output image. Other solutions can be found in [5, 8, 11, 14]. 

 

A direct extension of GHE is termed local histogram modification. In order to efficiently 

improve the visibility of the small-scale detail (the veins), local histogram modification 

techniques independently equalize each sub-histogram on the basis of histogram separation. 

However, local histogram modification techniques sometimes cause over-enhancement and 

noise-enhancing artifacts and also fake vein information in some portion of an image. 

 

A good contrast enhancement technique especially for the low contrast biological images for 

recognition should specially address several significant properties according to the criterion 

we set, some of which are listed below: 

(1). Noise tolerance: The contrast enhancement technique should exhibit appropriate 

noise immunity. 

(2). Partial contrast: The contrast enhancement technique should provide special 

enhancement for the certain detailed area of the hand vein according to the later process 

demand. 
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(3). Basic vein topological structure preservation: The enhancement technique should 

enhance the contrast of the hand vein image without losing the basic topological structure 

information. 

(4). Convenient implementation: The contrast enhancement technique should be able to 

set up quickly and reliably according to the technology demand. 

 

In this paper, a novel contrast enhancement method based on the self-designed gray-level 

information histogram is proposed to enhance the contrast of the hand vein images without 

losing the original vein topological structure information and importing the fake vein 

information. It is expected to eliminate the abovementioned drawbacks of the conventional 

global-based and local-based histogram modification methods effectively. The proposed 

method can be briefly described as follows: 

(1). Obtaining the gray-level information histogram, the components amplitudes of which 

can objectively reflect the contribution of the gray levels to the representation of image 

information. 

(2). Separation of the gray-level information histogram with the proposed multiple 

thresholding procedure by using a prompt mean function and standard deviation. 

(3). Achievement of the contrast enhancement by equalizing sub-histograms in 

small-scale and certain detail. 

 

Experimental results show that the proposed method gives more accurate and satisfactory 

results than other classical histogram-based methods without importing fake vein information 

and realizing the result of good contrast enhancement on the important and basic detailed 

region to get higher recognition rate, the performance of the proposed method will be 

demonstrated through the self-designed estimated parameters and recognition rate by template 

matching method. 

 

The rest of the paper is divided into Sections 2-5. In Section 2, we present the forming 

procedure of the self-designed gray-level information histogram. Section 3 describes the 

proposed contrast enhancement method based on the self-designed gray-level information 

histogram. Section 4 presents the comparison of the experimental results of the proposed 

method and some of the other existing methods. Our concluding remarks are presented in 

Section 5. 

 

Gray-level information histogram 

Construction of gray-level information histogram 
The gray-level information histogram is constructed as follows: 

 

(1). Smooth the hand vein image with a Gaussian filter mask to mitigate the possible noise 

influence. This can be performed into different and small scales, by varying the size of the 

filter mask which corresponds to the variance of the Gaussian function. 

 

(2). Calculate the gradient magnitude at each pixel using equations similar to the Canny edge 

detector. A 3×3 pixel gradient operator is described by the pixel numbering convention of 

Fig. 2. The square root gradient is defined as: 

 

     
1/2

2 2

,   , ,R CG x y G x y G x y          
  (1) 
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where  ,RG x y  and  ,CG x y  are the row gradient and the column gradient at  ,x y , 

respectively: 

 

     2 3 4 6 7 0

1
,   2 2

4
RG x y A A A A A A          (2) 

     0 1 2 4 5 6

1
,   2 2

4
CG x y A A A A A A          (3) 

 
A0 A1 A2 

A7  ,B x y  A3 

A6 A5 A4 

Fig. 2 Numbering convention for gradient calculation 

 

(3). Divide the original hand vein image captured by the self-designed device as shown in 

Fig.  3 into a proper number of equal-sized regions (i.e., default five regions), according to 

ascending order of their intensities of gradient. Each pixel location in the original image has a 

specific statistical weighting coefficient depending on its specific gradient magnitude. 

The coefficients are determined as follows: 

 

 

 

 

 
 

1 1

2 1 2

3 2 3

4 3 4
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w

 


 


  
  



, (4) 

 

where    1, 2,  3,  4iT i   denotes the limits of the gradient intervals,    1, 2,  3,  4,  5iw i   is the 

statistical weighting coefficients (usually 1 2 3 4 5       w w w w w     due to the different 

contribution to the hand vein images contrast enhancement, the next half of Section 2 will 

discuss how to determine the optimal weighting coefficients). 

 
 

Fig. 3 Self-designed vein capture device 

 

(4). Compute the cumulative summation of the weighted statistical values of each gray level 

in different detailed regions: 

 

   
5

1

  i i

i

N r wn r


 , (5) 
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where  in r  is the number of pixels at the gray level r in a certain region.  N r  is the 

summation of all weighted statistical values of the gray level r in the five regions. It should be 

pointed out that the standard histogram is a special case of our new histogram, that is, when 

1 2 3 4 5        1w w w w w     , the components of the two types of histograms have the same 

value. 

 

Determination of the optimal parameters 
In the previous paragraph, we describe the basic procedure of constructing the new histogram. 

In order to obtain desired histogram shape for image contrast enhancement, several problems 

we met should be solved to get better enhancement result. Here, we list these problems as 

follows: 

(1). How to choose a proper number of the equal-sized regions. 

(2). How to choose a robust and precise method to evaluate the distribution of the detailed 

vein information. 

(3). How to choose the optimal weighting coefficients. 

 

As mentioned previously, we use a default value (i.e., 5) as the total number of the divided 

regions. The choice of this number is also based on the fact that the percentage area of the 

detailed regions in the entire image is usually in the changing range of 20-80% (e.g., the 

detailed region covers nearly 20% area in the simple hand dorsal vein images (Fig. 1b), but, 

over 70% in the palm vein image with rich vein information, as shown in Fig.1c. We choose 

the lowest limit (i.e., 20%) as the size of the region, and therefore the corresponding total 

number of regions is five. Moreover, from multiple trials, we found that the resulting 

histogram shape is not very sensitive to the number of the regions if the number is over 4, and 

a large number of divided regions would cost more computationally. 

 

The next problem is to develop a robust and precise method to evaluate the distribution of 

details in the captured vein images. This is important because it can provide useful 

information for estimating the regions’ contribution for the vein image enhancement. 

Here,  we propose a simple solution: we use the Canny edge detection technique to evaluate 

the distribution of the details. The Canny edge detection algorithm is a robust and accurate 

edge detection method. The motivation for this solution is that if a region contains many 

details, it generally has the larger number of edge points. In other words, the amount of the 

detailed information is equivalent to the number of edge points. Therefore, the distribution of 

details in different regions is executed as follows: (1) detect the edge of the hand vein images 

using the Canny edge detection operator; (2) count the number of edge points in different 

regions. Test examples are given in Fig. 4 on the hand dorsal vein images of the database. 

The results of edge detection are shown in Fig. 4a-c. The number of edge points in different 

regions is listed in Table 1. 

 

The final problem is how to choose appropriate weighting coefficients in order to perform the 

weighting process to yield a desired histogram shape for vein image contrast enhancement. 

One can specify these coefficients in an empirical way to yield satisfactory results, but this 

precludes the new histogram from being applied in many cases in which full automatic 

processing are needed. Furthermore, since there are five parameters, direct trial-and-error 

requires a lot of work. Here, we developed a simple method to overcome this problem. 

Our idea is to normalize the number of the edge points in different regions to generate their 

corresponding weighting coefficients. The equation can be represented as follows: 



 INT. J. BIOAUTOMATION, 2015, 19(2), 245-258 
 

250 

5

  ,  1, ...,  5i
i

N
w i

N
  , (6) 

 

where iN  is the number of edge points in region i, 5N  denotes the number of edge points in 

Region 5 which contains the biggest number of edge points. 

 

   

(a) (b) (c) 

Fig. 4 Test examples of dorsal hand vein image: (a) the enhanced dorsal hand vein 

image, (b) the corresponding edge detection result and (c) segmentation result of the 

proposed Region 5 

 

Table 1. The number of edge points in the different proposed 5 regions 

 Region 1 Region 2 Region 3 Region 4 Region 5 

Dorsal hand vein 0 0 2 25 36 
 

Using Eq. (6), normalized weighting coefficients for Fig. 5a-c are calculated and listed in 

Table 2. The later process results show that it is worth nothing that these results agree well 

with those of visual perception. 

 

Table 2. Normalized weighting coefficients for different proposed5 regions 

 1  2  3  4  5  

Dorsal hand vein 0 0 0.06 0.69 1 
 

Here, we have given the detailed procedure of constructing the gray-level information 

histogram, the fundamental characteristics of which is that the amplitudes of its components 

can objectively reflect the contribution of the gray levels to the representation of the image 

information, and it is of great significance for the later enhancement for the information-based 

images including the vein images. 

 

The proposed contrast enhancement method based on the self-designed 

gray-level information histogram 
In this section, we propose a novel contrast enhancement method based on the previously 

proposed gray-level information histogram, which involves two important modules: 

a histogram separation module and an intensity transformation module. First, the proposed 

histogram separation module is a combination of the proposed prompt multiple thresholding 

procedure and an optimum PSNR calculation to separate the histogram in small-scale detail. 

As the final step of the proposed process, the use of the intensity transformation module can 

enhance the image with vein topological structure and brightness preservation for each 

generated sub-histogram. 
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Gray-level histogram separation 
Each M N  discrete input image xyI  can be defined as an M-by-N matrix, where xy 

denotes an arbitrary pixel in the spatial domain. The matrix of the original vein image xyI  is 

expressed as follows: 

 

0,0 0, 1

1,0 1, 1

N

xy

M M N

I I

I

I I



  

 
 

  
 
 

  (7) 

 

(1) Prompt multiple threshold selection: Suppose that an input image I is composed of G 

discrete intensity levels: thus, the statistical histogram   of an input image I is expressed as 

follows: 

 

      0, 1,  2,  ...   1, ,hH h n h G     (8) 

 

Note that hn  represents the number of pixels that correspond to the intensity h of the input 

image I. Based on the statistical histogram H of the input image I, the mean value   can be 

calculated using the following mean function: 

 

 

 

b

h a
b

h a

h H h

H h

 








 (9) 

 

After the mean value   is calculated, the standard deviation function   is expressed as 

follows: 

 

   

 

1/2
2

 
b

h a
b

h a

h H h

H h


 



  
 
 
 




 (10) 

 

Notice that [a, b] represents the interval of calculation, which is initialized as [0, 255]. 

According to the calculated mean value and standard deviation, three threshold values, 

,     and   , can be defined to further separate the histogram. 

 

(2) Optimum recursion level: For each recursion level, the low boundary is set to    and 

the high boundary b is set to   . According to the new calculated interval [a, b], mean 

function, and standard deviation, the two new threshold values    and    are 

calculated as an addition to the thresholds, and then, the existing threshold is replaced with 

  when it is closet to the new mean value. 

 

In order to accurately decide the appropriate number of sub-images, we calculate the peak 

signal-to-noise ratio (PSNR) at each recursion level. The PSNR defined as the follows: 
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10

255
PSNR 20 log

RMSE
 , (11) 

 

where RMSE is the root-mean-square error, defined as follows: 

 
1/2

1 1 2

0 0

1
RM ˆSE

M N

xy xy

x y

I I
MN

 

 

 
     

 
   (12) 

 

Here, I  and Î  are the original and enhanced images of size M N  respectively. 

Note that a higher PSNR value represents a better image quality. And the optimum recursion 

level can be determined when the increasable PSNR is lower than a particular value of 0.1 

which tends to saturate the sub-histograms generation by separating the image histogram. 

 

Intensity transformation 
Based on the histogram separation, the optimum number of sub-images can be expressed as 

follows: 

 

 1| ,k

xy xy k xy k xyI I S I S I I     , (13) 

 

where 0, 1,  2,  , 1k t  , and 
k

xyI  represents each sub-image. 

 

(1) Probability density function and cumulative distribution function: For each sub-image kI , 

the probability density function (pdf) is expressed as follows: 

 

 k h

h

n
pdf h

n



, (14) 

 

where 
11, 2, ...,k k kh S S S    .  

 

Notice that  kpdf h  is associated with the histogram of the k-th sub-image to represent the 

frequency of a specific input intensity h. Then, the cumulative distribution function (cdf) is 

expressed as follows: 

 

    
1k

h
k k

e S

cdf h pdf e
 

    (15) 

 

(2) Transformation mapping function: Finally, the transformation mapping function is used 

for enhancing the original image. This is characterized by utilizing the kcdf  of sub-image 
kI  for k segments. Then, the transformation mapping function is defined as follows: 

 

     1k k k k kT h S S S cdf h    , (16) 

 

where 0, 1,  2, ...,  1k t   and 
11, 2, ...,k k kh S S S    . 
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Experimental results and discussion 
For a robust visual quality and good performance of contrast enhancement method, some 

specific properties are extremely desirable in an effective contrast enhancement method. 

These are the noise tolerance ability, original feature information preservation after 

enhancement, convenient implementation and improvement on performance of later process. 

In order to demonstrate the advantages of the proposed method for the necessary specific 

properties, this section presents a comparison of the proposed method with some of the 

aforementioned classical existing methods. Experimental results are produced on the 

self-established databases of hand vein images. 

 

Qualitative evaluation 
We adopt the proposed contrast enhancement method on all the vein images of the databases 

and it gets good effect, and here we just list one of the vein images to show the extremely 

good enhancement results compared with other aforementioned histogram-based 

enhancement methods. Fig. 5 shows the dorsal vein images (Fig. 5(a)) and the corresponding 

contrast-enhanced versions (Fig. 5(b-f)). Fig. 5(b) shows the traditional histogram equalized 

vein image of the original dorsal hand vein image. An extreme contrast of the image can be 

observed between the background and the vein topological information. We can see that all 

the aforementioned methods cannot achieve good contrast enhancement result, but the 

proposed contrast enhancement method not only enhance the contrast between the 

background and the statistical vein topological information but also keep the original vein 

information well without importing fake vein information. 
 

   

(a) (b) (c) 

   
(d) (e) (f) 

Fig. 5 Dorsal hand vein images: (a) the original dorsal hand vein images captured by 

self-designed device, (b) the traditional HE method, (c) the BBHE method,  

(d) the DSIHE method, (e) the RSIHE method, and (f) the proposed method 

 

Quantitative evaluation 
In addition to the qualitative evaluation, accuracy measurement is necessary for a further 

comparison between the proposed method and other state-of-the-art methods, and according 

to the later process and image processing demand, we calculate the cross points change and 

PSNR value to show the advantage of the proposed methods to other classical histogram 
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equalization-based enhancement methods, the results are shown in Table 3, the experiment 

result are carried out on the self-established databases of hand vein images which includes 

altogether 500 images and the final values are being processed by mean function. 

 

Table 3. Comparison of cross points values and PSNR values  

for all considered contrast enhancement methods 

Evaluation Period HE BBHE DSIHE RSIHE Ours 

Cross 

points 

Before 
process 

9 9 9 9 9 

After 
process 

10 11 8 8 9 

PSNR 

value 

Before 
process 

10.0583 10.0583 10.0583 10.0583 10.0583 

After 
process 

10.0494 14.9109 13.2561 13.4218 29.9760 

(all the values are the mean of the processed 500 images of the database) 

 

From the statistical value in the above chart, we can see that: 

(1). The proposed contrast enhancement method achieve the highest PSNR value because 

the method enhances the images by equalizing the optimum sub-histograms in great 

small-scale detail, the enhanced images obtained using the proposed method produce 

neither noise artifacts nor over-enhancement. 

(2). The proposed contrast enhancement method achieves the effect of both original vein 

structure information and the global brightness preservation, while the other classical 

histogram equalization-based enhancement methods result in losing the original vein 

information or importing the fake vein information both of which have great influence on 

the later process. 

 

Recognition rate improvement evaluation 
In this part of evaluation, we adopt the recognition rate change after the enhancement process to 

compare the performance of the proposed contrast enhancement method and other classical 

methods including HE, BBHE, DSIHE, RSIHE, and the procedure is that we adopt the contrast 

enhancement methods in the pre-process section and then we design the following process 

methods including ROI (region of interest) extraction, segmentation, deburring, and template 

forming process, in the end we carried out the experiment of template matching [3, 15] (on the 

mode of 1:N) on the self-designed databases and calculate the recognition rate to compare the 

performance of the contrast enhancement methods.  

 

The specific recognition procedure is as shown in Fig. 6 and the evaluation values comparison 

is shown in Fig. 7, both the trend curve and recognition rate bar chart can show that the 

proposed enhancement method improve the recognition effect to a certain extent and is a 

state-of-the-art HE-based contrast enhancement method used for biometrical images especially 

for vein images compared with other classical HE-based contrast enhancement methods such as 

BBHE, DSIHE and RSIHE. 
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Fig. 6 Vein template matching process 

 

 

Fig. 7 Comparison of recognition rate values  

for all considered contrast enhancement methods 

 

Conclusion 
In this paper, we propose a novel gray-level information histogram equalization method for 

enhancing the contrast of an image. First, we propose the new concept of gray-level information 

histogram, the fundamental characteristic of which is that the amplitudes of the components can 

objectively reflect the contribution of the gray levels and information to the representation of 

image information. Then the original gray-level information histogram was separated into 

several sub-histograms automatically by using the proposed histogram separation module. 

The generated sub-histograms were then equalized by the intensity transformation module to 

achieve an accurate and useful contrast enhancement. Experimental results revealed that the 

proposed method generated very high-quality and well information preservation enhancement 

vein images, as demonstrated using a qualitative visual inspection, quantitative PSNR and cross 

points evaluations and template-matching-based recognition rate performance, as compared to 

the other classical methods, it can increase the PSNR value from 10.0494 to 29.9760 and the 

recognition rate from 87% to 92.8% with the experiment carried out with the processed 

500 images of the database. 
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