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Abstract: Mathematical models of the stem cell populations in colonic crypts can contribute 

to a better understanding of basic mechanisms underlying tissue organization. We here study 

the complex dynamic behaviour of a time delay model that describes stem cells in the niche 

of colonic crypts. We analyze the conditions for the various regimes that would lead to 

oscillations. The work presented here the first description of a chaotic system describing 

stem cell population dynamics in colonic crypts. 

 

Keywords: Stem cells, Colonic crypts, Time delay model, Nonlinear analysis. 

 

Introduction 
Colorectal cancer (CRC) is a highly prevalent cancer that affects the colon [39, 42, 44].  

The colon consists of many millions microscopic structures called crypts [3, 12, 34, 38].  

At the base of the crypt are located stem cells which are undifferentiated cells. They can keep 

dividing and undergo an asymmetric differentiation process that transforms some of them into 

epithelial cells. The differentiating cells travel up the crypt, perform their function, and die by 

apoptosis after about a week [35, 41, 43]. This relatively short lifespan makes necessary the 

continuous division of the stem cells at the base to give rise to new differentiated cells in 

order to replenish the tissue. For this process to be in normal boundaries, it is crucial that the 

differentiated cells die by apoptosis. If the death of these cells fails, then a dysplastic crypt 
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appears due to the accumulation of transformed cells around the crypt (formation of a polyp 

called adenoma). Recent studies of the multi-stage progression of CRC indicate that 

dysplastic crypt is the first stage of this disease [16, 41]. On the other hand, one of the 

hypothesized molecular mechanisms linked to the emergence and progression of CRC is a 

dysfunction in the Wnt signalling pathway [21]. 

 

A question pertinent to the process of carcinogenesis on the tissue level is the homeostasis of 

the colonic crypt the balance between cell proliferation and differentiation which ensures that 

the number of epithelial cells of the crypt lining will remain constant. Under these 

circumstances, mathematical modeling is a useful tool to better understand the processes 

involved in carcinogenesis on both the cellular and molecular level. According to [13, 14, 24], 

there are three common approaches to modeling such processes: compartmental, simulation 

and stochastic models. 

 

The complex processes in physiology, biology and biochemistry can be described by delay 

differential equations (DDEs) or more generally functional differential equations when the 

functional components are affected by physiological or molecular events happened before in 

the temporal chain of events. Such phenomena are called delay or also genetic effects.  

Time delays, especially the discrete delays, emerge in various biological contexts [1, 20, 25, 

26, 28]. In artificial but also in biological systems, time delayed feedback control is a simple 

and convenient regulatory structure to stabilize unstable steady states or unstable periodic 

orbits [19, 31]. In many physiological systems this feedback performs the function of self-

regulation. In first order DDEs, the instability arises when the real part of at most one pair of 

eigenvalues becomes positive [4, 10]. The complex dynamics, as result of mode interactions, 

is known to occur in these equations when stable 2-tori emerge and delayed feedback loop is 

included [2, 20]. 

 

From mathematical point of view, the delay elements can be considered as a sequence of 

infinite aperiodic segments. An efficient way of studying an infinite-dimensional system near 

a bifurcation point is with the help of normal form theory (see Appendix), which consists in 

transforming a nonlinear system, in order to keep only the relevant nonlinear terms and to 

allow easier recognition of its dynamics. The center manifold theorem is a powerful result 

that allows us to drastically reduce the dimension of a problem at a bifurcation point.  

This theorem also essentially asserts that there is a local (nonlinear) change of coordinates 

that uncouples the nonlinear terms. 

 

Numerous mathematical models have been proposed to describe stem cell differentiation, 

amplification and death in the context of colonic crypts. For instance, some investigators have 

hypothesized that the relationship between cell types in colon crypt compartments will not be 

constant in strength or direction [36]. These studies include the compartment model proposed 

by Johnston and co-authors [13, 14], which is used to propose discuss the critical parameters 

and the underlying reasoning for the hypothesis. The parameters of the age-structured model 

are the proportions of the number of stem cells in crypt, N0; the number of semi-differentiated 

(transit-amplifying) cells, N1; and the number of fully-differentiated cells, N2.  

The compartments and the parameters of the continuous model are the rates of conversion 

measured in h
-1

. In Fig. 1, the compartmental model of Johnston is shown. 
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Fig. 1 Illustration of a colonic crypt: stem cells differentiate into semi-differentiated cells, 

which in turn differentiate into fully-differentiated cells (adapted from [13, 14]) 

 
Later, this model was modified by Nikolov et al. [29] with time delays 1 and 2 for the 

renewal process of stem and semi-differentiated cells populations (Fig. 2). The time delay 

model has the form 
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 (1) 

 

where all variables and parameters are as [13, 14]. On can see that first equation for N0 into 

system (1) is independent from the second and the third one. Also, the first two equations in 

system (1) are independent from the third one. In this paper, we investigate the modified 

version of first equation in system (1) and identify several different dynamic regimes. 

 

 
 

Fig. 2 Saturating feedback.  

The maximum per-capita rate of differentiation is assumed. 

 
In [40], stem cells where defined as cells with the capacity for unlimited or prolonged  

self-renewal that can produce at least one type of highly differentiated descendant. In any 

α3 – delay τ2 β3 – delay τ1 

N0  N1 N2 

-(α1+α2) -(β1+β2) 
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case, it seems obvious that stem cells (or their differentiated progeny) are regulated through 

mechanisms involving positive and negative feedback loops. According to [6, 37] for Hydra 

stem cells is experimentally proven that the population size is controlled by negative feedback 

from the neighbouring cells. Here we assume that when the population size of stem cells 

increases, the self-renewal rate of the stem cells decrease in order to maintain homeostasis. 

This leads to a feedback loop in the form  

 

 



 tNm

k
lp

l

11

1

00

0 , (2) 

 

where here 2 = . In several experimental and theoretical papers (based on general biological 

principles) the dependence of the renewal rate on the stem cells density was modelled by a 

logistic curve [5, 9, 15]. In case that  = 1, the first differential equation into system (1) has 

the form 

 

   
 

 1

0 00
1 2 0 3 0

0 01

l

l

k N t τdN
α α N α N t τ

dt m N t τ


     

 
, (3) 

 

where N0 is the proportion of the number of stem cells in the crypt; i (i = 13) are the net 

per-capita growth rates of the stem cell population; k0 is nonnegative dimensionless constant 

which presents the speed of response of the feedback (with large (small) k0 indicating a fast 

(slow) feedback response from the system); m0 is dimensionless constant represent feedback 

saturation. In the following calculations and simulations we assume that l = l1 = 10. 
 

Qualitative analysis of model (3) 
The equilibrium (steady state) points of model (3) can be analytically estimated and are 

defined by the following set of algebraic equations including the constants of the model: 

 

(1) 10 90
0 0 0

0 0

1
0, 0

k
N N N

m m
   


, (4) 

 

where  = 3  1  2. From a physiological point of view, all equilibrium points must be 

real non-negative. According to the Descarte’s rule [17] the second equation in (4) has always 

only two real positive roots, which ensure that the system (3) has only three physiologically 

feasible fixed points. 

 

Investigation of first equilibrium state (1)

0 0N   

Let us consider a small perturbation (linearization) around the fixed point(s) (4) of the model 

(3) defined by 0 0N N x  . Thus, we obtain the original model in local coordinates 

 

         
10 20

1 2 3 0 0 0 0 0x x x t k N x t k m N x t                . (5) 

 

Here we note that the feedback loop is expanded as a MacLaurin series, truncated to only 

linear terms, i.e. 

 2 31 1
1 ...

1 1
  


    


, (6) 
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where   
10

0 0m N x t    .  

 

In case that 
_

(1)
0 0 0N N   for Eq. (5) we have 

 
20

00

10

0312 
 xmkxkxxx  , (7) 

 

where  


 txx  and 
2112

  .  

 

Thus, the characteristic equation of (7) has the form 

 

  0312    . (8) 

 

Because 0
312´
 ,  = 0 cannot be a root of Eq. (8) and a stability switch (or cross of the 

imaginary axis) necessarily occurs with .0,  nin  It is well-known [8] that all roots of  

Eq. (8) have negative real parts if and only if 

 

12 3 31, 0, sin cosτ α α α τ ξ ξ τ ξ      , (9) 

 

where  is the root of tan , 0ξ τ ξ ξ π   , and 
2


   if  = 0. Since in our case  is always 

positive, the region defined by Eq. (9) is illustrated in Fig. 3 as the hatched one. Therefore, the 

equilibrium (1)

0 0N   in this case is locally asymptotically stable. Because Eq. (8) has a finite 

number of solutions with zero real part, and all others solutions have negative real part then 

bifurcations occur for parameter values on these two curves.  

 
Fig. 3 Stability diagram for the steady state (1)

0 0N  .  

The hatched region corresponds to the region of stability. 

 

The top boundary curve in Fig. 3 is characterized by setting  = in into Eq. (5) (i.e. it is an 

Andronov-Hopf bifurcation curve). After separating Eq. (8) in terms of its real and imaginary 

parts, we obtain 

 

τ 

1 

α3 

α3=α12 

0 
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12 3

3

cos

sin

α α nτ

n α nτ



 
. (10) 

 

By squaring the two equations into (10) and then adding them, it follows that 

 
2 2

3 12n α α   . (11) 

 

The right-hand boundary curve is characterized by setting  = 0 in Eq. (8). This substitution 

gives 3 = 12, i.e. this right boundary line in Fig. 3 is a line where the characteristic Eq. (8) 

has a single zero root. According to [32] in the point (12, ) = (3, 1) where Andronov-Hopf 

bifurcation curve crosses single zero root line, Eq. (8) has a double zero root and  

Takens-Bogdanov bifurcation takes place. 

 

To understand the behavior of system (5) near Andronov-Hopf bifurcation (i.e. to understand 

the stability of the resulting periodic orbits), we need to include the effects of the nonlinear 

terms of the Eq. (5). We follow the standard procedure, calculating the centre manifold near 

an arbitrary Andronov-Hopf bifurcation point as a function of n.  

 

Let we suppose that (0, 0) is a point on the top boundary curve in Fig. 3. In this case  

Eq. (11) has a pair of purely imaginary roots, and all other roots have negative real parts.  

We rewrite Eq. (10) as 

 

           

 

10 20

12 0 0 0 0 0 0 0 0 ,

0,

d
x t α x t α x t τ μx t τ k x t τ k m x t τ

dt

d
μ t

dt

         



 (12) 

 

where we have set 3 =  + 0 and  = 0 is the Andronov-Hopf bifurcation value for  

Eq. (10).  

 

The linearization of Eq. (12) at the trivial equilibrium is 

 

     

  .0

,
0012





t
dt

d

txtxtx
dt

d





 (13) 

 

A basis for the centre subspace of the linear system (13) can be written in the from 

 

   0 0sin cos 0
Φ

0 0 1

n θ n θ 
  
 

, (14) 

 

where 2 2

0 0 12n     by Eq. (11). To determine the coordinates of the centre manifold near 

the trivial equilibrium, a bilinear form (see (A.6)) reduces to  
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       








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0
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Let 
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 
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1
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2
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0
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b θ
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ρ





 
    

  
            
  
 

 
 
 

 (16) 

 

be a basis for the transposed system to Eq. (13).  

 

Here 
   

2 2

0 0 0

4

1
ρ

τ n τ

  
 

. 

 

It can be easily shown that matrix 

 

0

0

0 0

0 0

0 0 0

n

B n

 
 

  
 
 

, (17) 

 

satisfies relation (A.10) (see Appendix). Write  
T

1 2, ,z z z   for the local coordinates on the 

centre manifold. The nonlinear terms in Eq. (12) are given by 

 

            
T

10 20T

1 2 2 1 0 0 1 0 0 0 1 0, 0 , 0F v v v v k v k m v        
 

. (18) 

 

Substituting the results above into (A.9), we obtain the following ordinary differential 

equations on the centre manifold 

 

      

         
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d
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d
z n z b μ n τ z n τ z

dt

k n τ z n τ z k m n τ z n τ z

d
μ

dt

     

     


    

     




 (19) 
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Now, we consider the linear part (in (z1, z2)) of first and second equations into Eq. (19),  

as we redefine z such that  
T

1 2,z z z  

 

,
1
zBz

dt

d
  (20) 

 

where 
       

        













0020020

0010001

1
cos0sin0

cos0sin0
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B . 

 

In case that      0det4
1

2

11
 BBtr , i.e. the complex eigenvalues take place, we can 

write 1 = c1 + ic2 and 2 = c1  ic2, where           
00100211

sin0cos0
2

1

2

1
 nbnbBtrc   

and  
12

2

1
c . Hence, the matrix B1 can be brought into the following Jordan normal 

(canonical) form 






 


12

21

2
cc

cc
B . It is seen that the eigenvalue crossing speed 1

0

c









 on the 

Hopf curve is positive, so the crossing condition is always satisfied.  

 

Investigation of the equilibrium state 0 0N   

In this case for the system (5) we have 

 

......4

4

3

3

2

2112
tohxxxxxx 


 , (21) 

 

where 

 

   

   

9 10 8 10

1 3 0 0 0 0 2 0 0 0 0

7 10 6 10

3 0 0 0 0 4 0 0 0 0

10 2 1 , 5 38 9 ,

60 19 2 , 15 323 14 .

γ α k N m N γ k N m N

γ k N m N γ k N m N

    

   
 (22) 

 

Thus, the characteristic equation becomes 

 

  .0
112

    (23) 

 

We hereafter use the same method of the previous section. Hence, we rewrite Eq. (23) as 

 

           

     

 

2 3

12 0 0 0 2 0 3 0

54

4 0 0 ,

0.

dx
α x t α x t τ μx t τ γ x t τ γ x t τ

dt

γ x t τ O x t τ

d
μ t

dt

          

   



 (24) 

 

The nonlinear terms in Eq. (24) are given by 

 



 INT. J. BIOAUTOMATION, 2015, 19(1), Suppl. 1, S51-S68 

 

 S59 

                 
T

2 3 4T 5
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 

. (25) 

 

Substituting the results above into (A.9), we obtain the following ordinary differential 

equations on the centre manifold 

 

           
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d
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dt
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d
μ

dt

        


  


       


  




 (26) 

 

After a nonlinear change of variables the equations on the centre manifold can be brought into 

normal form and truncated at third order to give 

 

     2 2 2 2

1 1 1 2 1 2 1 2 2

d
z c a z z z c b z z z

dt
      , (27) 

     2 2 2 2

2 2 1 2 1 1 1 2 2

d
z c b z z z c a z z z

dt
      , (28) 

 

where  
41000

,,,,  na  and  
41000

,,,,  nb  are constants, and are such that  

Eq. (10) is satisfied. 

 

Eqs. (27) and (28) are a normal form for the standard Hopf bifurcation provided that the first 

Lyapunov coefficient a(0) and the eigenvalue crossing speed 1

0

c









 are both finite and  

non-zero [8, 32].  

 

Numerical analysis 
In the previous section, we proposed the analytical tools and used them for a qualitative 

analysis of the system, obtaining predictions about dynamics (stability and non-regularity) of 

the system. In this section, we perform a numerical analysis of model (3), based on the results 

previously obtained. The parameter values used in the numerical analysis were selected 

according to [13, 14, 20, 27, 42]. However, we do not know the exact time point at which the 

stem cells begin to renew and assume that they take a little bit longer; hence, we set  

  [1, 33] hours [42]. The analytical results stated in the previous section permit us to predict 

how the properties of the system vary as the parameters in the model (3) are modified. 

 

In Fig. 4a, the stable solution for the number N0 of stem cells in the crypt is shown for  = 1.  

It is evident that after several (fast fluctuations) for stem cells in the crypt, the number N0 

approaches a constant value (equilibrium state). In other words, in this case, the steady states 

of system (3) are locally asymptotically stable and time delay   is lower than the critical one. 
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Here we note that the governing equation of the model, represented by Eq. (3), was solved 

numerically using MATLAB [22], when the system is with saturating feedback in stem cells, 

i.e. we used the following fixed values for the system parameters:  

 

a1 = 0.1, a2 = 0.3, a3 = 0.69, k0 = m0 = 0.1, l = l1 = 10. (29) 

 

On the other hand, Fig. 4b depicts the dynamics for the case of time delay higher than the 

critical value b. We observe oscillating solutions, with period falling in the range of 11 hours 

to 14 hours. This behavior is in accordance with the data in [13, 14] (and references there in), 

where the stem cells are assumed to have a cycle time of between 12 and 32 h with an average 

of 24 h. Mathematically, this state corresponds to a loss of stability. According to analytical 

results obtained in previous section we can conclude that stable limit cycle (self-oscillations) 

occurs after an Andronov-Hopf bifurcation. From biological point of view, the occurrence of 

oscillations with period one implies that stem cells populations is in normal condition, but not 

robust. 

   
Fig. 4 Stable and periodic solution of the system (3) at: (a)  = 1 and (b)  = 3.  

Here we note that in both cases l = l1 = 10 and the time is in hours. 

 

Figs. 5 and 6 demonstrate the dependence of oscillations period on the time delay . 

Comparing Fig. 5 and Fig. 6 we see that for smaller value  = 5.1 the period of oscillations is 

also smaller with respect to those obtained at  = 6.1 in Fig. 6. The magnitude of N0 becomes 

approximately equal in both cases. From a bifurcation point of view, the secondary  

Hopf bifurcation takes place and the system (3) has oscillations for  = 6.1 with period three. 

   

Fig. 5 Dynamic behaviour of system (3) for  = 5.1 

(a) unstable regime (oscillations with period two), (b) phase space 

(a) (b) 

(N0)n 

(N0)n+40 

(a) (b) 
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Fig. 6 Dynamic behaviour of system (3) for  = 6.1 

(a) unstable regime (oscillations with period three), (b) phase space 

 
In Fig. 7 we show that system (3) is capable of producing chaotic behaviour too, for values of 

time delay  larger than 13.  

 

Chaotic motions are based on homoclinic (heteroclinic) structures with instability 

accompanied by local divergence and global contraction. Meanwhile, the transition from 

stability to instability requires the vanishing of stable equilibrium states and of stable periodic 

motions or sufficiently large increase in the periodic ones [7, 18, 23, 33].  

 

Stable periodic motions and equilibrium states can lose stability or vanish only in several 

specific ways [23], i.e., we can speak of different routes to chaos: (i) either a stable 

equilibrium state or a periodic motion merges with the corresponding unstable motion, and 

then both states vanish; (ii) either an equilibrium state or a periodic motion loses stability, 

simultaneously generating a stable periodic motion or a stable two-dimensional toroidal 

manifold with periodic or quasi-periodic coil, respectively; (iii) a stable periodic motion either 

contracts to a point, generating a stable equilibrium, or merges with an equilibrium, or merges 

with an equilibrium, generating a doubly asymptotic curve (being the intersection of its 

integral manifolds W  and W ); (iv) a periodic motion loses stability, simultaneously 

generating a stable periodic motion with period twice as large. The stability loss can be 

repeated many times, forming an infinite period-doubling (tripling) bifurcation series.  

This model demonstrates a period-doubling route to chaos (iii). As one increases  from  = 3 

(till  = 5), system (3) has oscillations with period one. As  increases further, the period-

tripling bifurcations occur and at  > 5.1 (to  = 8.6) the system has only solutions with period 

two and three. Finally, at  > 12.6 (after period doubling bifurcations) the system’s behavior 

becomes chaotic.  

 

A confirmation of our conclusions is the results shown in Fig. 7 and the obtained maximal 

Lyapunov exponent (per unit time) max = +0.04750.026 at  = 13. For the numerical 

calculation of max, we use the TISEAN software package [11]. The bifurcation diagram of 

system (3) in the interval   [3, 33], is shown in Fig. 8. 

 

(N0)n 

 

(N0)n+40 

 

(a) (b) 
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Fig. 7 Time evolution of stem cell population 

(a) chaotic behavior, (b) phase space (strange attractor) of system (3) at  = 13, l = l1 = 10  

 

 
Fig. 8 Bifurcation diagram (N0)n versus  generated by computer solution of system (1)  

at l = l1 = 10, a1 = 0.1, a2 = 0.3, a3 = 0.69, k0 = m0 = 0.1. Note that   [3, 33]. 

 

The chaotic behaviour shown in Figs. 7 and 8 require additional comments. Experiments with 

chimeric mice and with mutagen agents have shown that crypts, initially polyclonal for one 

marker, eventually become monoclonal, which suggests that symmetric division occasionally 

occurs and leads to a niche succession by stochastic (non-regular) extinction of stem cell 

lineages [25]. The stem cell population dynamics in human colon crypt is of interest to cancer 

because: 1) the stochastic processes are the same in all crypts, except for the age of the crypts; 

2) the number of stem cells is stable and the loss of a stem cell is compensated by the 

symmetric division of one of the other stem cells. Stem cell losses are not compensated by 

new stem cells originating from another layer of stem cells. These assumptions are intended 

to be as reasonable as possible, and the demonstration that data are compatible with our 

simple model (3). Hence, we can formulate the hypothesis that chaotic behaviour of stem cells 

population in human colon crypts is characteristic of before pathological (cancer) condition. 

 

(a) (b) 

 
n

N
0  

τ 
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Conclusions 
Despite a number of studies reporting the occurrence of various chaotic cancer structures, 

there is yet little known about mechanisms underlying bifurcation scenarios, which could give 

rise to clinically observed chaotic patterns. Additionally, little is known about how such 

patterns are embedded in the parameter space of the cancer models with so-called strange 

(chaotic) attractors. The reader can find a wealth of information on this in the original  

paper [30]. 

 

In this work we investigated a time delay model of stem cells populations in human colonic 

crypts. The presented time delay model is the first construction of a chaotic system 

representing stem cell population dynamics in colonic crypts.  

 

A major motivation for development and investigation of this time delay model is the 

stimulation of further theoretical and experimental studies aimed at forming progressively 

more complete and accurate models of the complex process of colon cancer. 
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Appendix 

Centre manifold reduction for first order DDEs 
Here we explain the most essential facts relevant to our work about using the normal form 

method and the center manifold theorem [4, 31]. Without loss of generality we consider  

one-dimensional autonomous DDE of the form (7).  

 

We begin with construction of the centre manifold for Eq. (7). In standard notation [8] Eq. (7) 

can be rewritten as 

 

   t tu t Lu F u  , (A.1) 

 

where     1 1 1, 0, , 0 , , :p p

tu x t θ R h θ C C h R L C R           is a bounded linear 

operator and pRCRF  1:  is some smooth nonlinearity with F(0) = 0 and DF(0) = 0.  

Here Eq. (A.1) should be viewed as a suspended system where the p parameters are included 

as dynamic variables with trivial dynamics. For our purposes, the dimension p of parameter 

space for the suspended system will equal 1 or 2, depending on the bifurcation under study. 

The linearization of Eq. (A.1) about the some equilibrium is given by 

 

  , 0tu t Lu t  . (A.2) 

 

Since L is a bounded linear operator, it follows from Riesz’s representation theorem that L can 

be written by Riemann-Stieltjes integral 

 

      
0

T

1,L d C


    


        , (A.3) 
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where   , 0 ,η θ τ θ    is a (1 + p)(1 + p) matrix function whose elements are bounded 

variation. We note that in case of discrete delays the function () (which express L as an 

integral operator) is just the Dirac delta “function”, i.e.  

 

   



0



 dxtx
t

,    and     
0, 0

1, 0

θ
δ θ

θ


 


 . 

 

We may then rewrite Eq. (A.2) in the following form 

 

     
0

, 0u t d u t t


    


   . (A.4) 

 

If  *1 pR   is a space of row vectors, then we define     1 *' 0, ,
p

C C τ R


 . Hence,  

the transpose of Eq. (A.4) is 

 

     
0

'

0, 0,u t u t d t u C


   


        . (A.5) 

 

For   C and   C', the following bilinear form is defined 

 

           




dd 



0

0

00, , (A.6) 

 

where (0)(0) represents the usual scalar (dot) product of two vectors. 

 

Since Eq. (A.1) has p components with trivial dynamics, then the characteristic equation 

corresponding to Eq. (A.2) always has p eigenvalues on the imaginary axis. Thus, at a 

bifurcation, 1 + p eigenvalues on the imaginary axis exist and we assume that all other roots 

of characteristic equation are with negative real part. Then there an (1 + p)-dimensional centre 

subspace P  C for Eq. (A.4) exists which is invariant under the semi-flow for Eq. (A.2).  

We will denote a basis for P by the (1 + p)(1 + p) matrix  (all columns of are the basis 

vectors). There is corresponding (1 + p)-dimensional subspace P' of C' with solutions to the 

transposed Eq. (A.5). We will denote also a basis for P' by the (1 + p)(1 + p) matrix '. 

Because the (1 + p)(1 + p) matrix '' ,  is always non-singular [7] then a new basis  for 

P' by '
1

' , 


, where  is normalized by I, . At a point in parameter space 

(where the linear Eq. (A.2) possesses one eigenvalue with zero real part), there exists a 

splitting of the space C = P  Q, where Q is infinite dimensional and invariant under the flow 

associated with Eq. (A.2). Further, it can be shown using integral manifold techniques [8] that 

there exists an (1 + p)-dimensional centre manifold FM  for Eq. (A.1) given by 

 

  1: , , in a neighbourhood of zero in p

FM C z h z F z R      , (A.7) 

 

where h(z, F)  Q for each z and is a C' function of z. The flow on this centre manifold is 

 



 INT. J. BIOAUTOMATION, 2015, 19(1), Suppl. 1, S51-S68 

 

 S67 

    Φ ,tu z t h z t F  , (A.8) 

 

and z satisfies the ordinary differential equation  

 

    FzhzFBzz ,0
.

 . (A.9) 

 

In Eq. (A.9), (0) is determined from the solution of the equation adjoined to Eq. (A.1) and  

B is the (1 + p)(1 + p) matrix of eigenvalues of Eq. (A.2) with null real part, i.e. matrix B 

satisfies the relation 

 

B
d

d





. (A.10) 

 

The flow of Eq. (A.9) approximates well the long term behavior of the flow of the full 

nonlinear system (A.1) near the origin. 
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