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Abstract: The paper presents a novel fast, real-time and privacy protecting algorithm for fall 

detection based on geometric properties of the human silhouette and a linear support vector 

machine. The algorithm uses infrared and visible light imagery in order to detect the human. 

A simple real-time human silhouette extraction algorithm has been developed and used to 

extract features for training of the support vector machine. The achieved sensitivity and 

specificity of the proposed approach are over 97% which match state of the art research in 

the area of fall detection. The developed solution uses low-cost hardware components and 

open source software library and is suitable for usage in assistive systems for the home or 

nursing homes. 

 

Keywords: Ambient assisted living, Fall detection, Support vector machine. 

 

Introduction 
Falls are among the most frequent causes of injuries at the elderly with one third of the people 

aged 65 and over falling every year. Falls pose significant health risk for old adults, especially 

if they live on their own and cannot signalize for help. A situation in which the fallen person 

is lying on the floor without the ability to get up for one hour or more is known as the ‘long 

lie’ and can result in dehydration, hypothermia, etc. and has a very negative impact for the 

physical and emotional recovery of the fallen person.  

 

Ambient assisted living (AAL) systems are technological solutions that integrate sensors, 

actuators, processing and telecommunication units in or around the user’s home environment. 

The AAL domain’s main focus is to ensure higher quality of life to the independently living 

elderly. Due to the aforementioned reasons, automatic fall detection is one of the required 

modules for almost any AAL system and as such has been in the researcher’s focus for the 

past ten years.  

 

A recent trend that emerges in the field of automatic fall detection is the use of computer 

vision (CV) algorithms. Images and video provide a rich source of information that could be 

used to build a more robust and generic fall detection systems. The drawback of using 

computer vision for the purposes of fall detection is that computer vision algorithms are often 
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slow and resource-heavy and it is not always possible to run them in real-time, especially on 

embedded platforms. In addition to that they might be perceived by the users of an AAL 

system as too intrusive and may raise privacy concerns.  

 

Privacy protection is one of the important challenges that the designers of AAL systems need 

to fulfill. There are a number of additional requirements that have to be taken into account in 

order to ensure financial feasibility, maintainability and acceptance by the users. Table 1 

presents the most important of these requirements. 

 

Table 1. Specific requirements to AAL systems 

Requirement Description 

Privacy 
Users value privacy very high. 

There can be no constant video monitoring. 

Low-cost 
The price of the whole system should be low so 

that large scale adoption is possible. 

Real-time 
Systems should operate in real time, especially in 

cases of emergency detection. 

 

As it has been mentioned, privacy is very important to the users of AAL systems and 

consequently, the use of video in AAL systems is strongly discouraged. The other important 

requirements reflect some of the technological challenges to AAL systems – response time 

and suitability for large-scale home adoption. AAL systems, especially emergency detection 

(such as fall detection) systems, have to run in real-time in order to ensure that timely 

response and adequate action could be taken. In addition to that the cost of the system should 

be low so that mass adoption could be facilitated. All of these requirements have been 

reflected in the presented fall detection solution. 

 

The remainder of the paper is organized as follows: the next section discusses relevant work 

in the area of computer vision based fall detection, the third section details the presented 

system’s architecture; the forth section presents the human detection module of the system; 

the fifth and sixth sections provide overview of the silhouette extraction and fall detection 

modules; and the final section concludes the paper. 

 

Related work 

Fall detection 
In recent years there has been promising research applying CV techniques for fall detection. 

Support vector machines in particular have been used to classify postures and falls [4, 10, 15]. 

The approach presented by Qian et al. [10] trains a cascade of support vector machines 

(SVM) on features extracted from the minimal bounding rectangle (MBR) of a human in 

order to classify different postures, such as walking, sitting, crawling and lying. Foroughi et 

al. [4], and Yu et al. [15] extract features from the ellipse fitted around the human silhouette 

in order to train a multi-class SVM into classifying different postures. All three approaches 

use video sequences for the classification purposes.  

 

Another emerging trend has been the use of Microsoft Kinect™ and its RGB and depth 

sensors [6, 8, 14]. All of these approaches also use video sequences in the fall detection 

procedures. A completely different approach is presented by Feng et al. [2]. They use 



 INT. J. BIOAUTOMATION, 2016, 20(2), 237-252 
 

239 

silhouettes of humans from video frames in order to train a deep neural net to classify into fall 

and non-fall frames. 

 

As it can be seen, most of the CV based fall detection approaches use videos which poses a 

problem to their adoption in an AAL system. Some of the algorithms use videos because it 

simplifies the human detection and silhouette extraction components. In fact, most of the 

background subtraction techniques used for segmentation between foreground and 

background rely on building a model of the background from video frames. As the use of 

videos in AAL systems is discouraged, the solution presented in this paper uses as input only 

single images and consequently a silhouette extraction algorithm had to be developed to 

accommodate this limitation. 

 

Human detection 
Human detection is a necessary step from a CV based fall detection algorithm, especially for 

on that does not use videos and background subtraction. However, the majority of the efforts 

in human detection domain have been concentrated in the development of algorithms that 

detect humans in videos and to a lesser extent in images. The images or videos are typically 

captured by standard digital or web cameras.  

 

Lately researchers have started combining other sensor modalities with visible spectrum 

imagery in order to achieve better accuracy of detection and faster algorithms runtime. One 

strong direction of research, particularly in the robotics domain, is the fusion between visible 

light and thermal or depth imagery in order to enhance computer vision algorithms [5, 9]. 

Depth images are often obtained through the range camera of the Microsoft Kinect™ kit [5, 9, 

11, 13]. Other researchers use thermal cameras that provide very high-resolution thermal 

images but have prohibitively high prices for use at home environments [1, 3]. An interesting 

alternative is the approach presented in [7], which is most similar to the idea adopted in the 

presented fall detection system. The authors in [7] use simple low-cost infrared (IR) sensor 

which is spatially and temporally aligned with the color imagery from a digital camera in 

order to track multiple humans in a home environment.  

 

As it can be seen from the review of related research, a lot of the approaches to fall detection 

and human detection use video and/or expensive hardware components. The approach 

presented in this paper is targeted towards a low-cost solution which nevertheless ensures 

high reliability of the provided results and at the same time uses single images.  

The architecture of the presented system is detailed in the following section. 

 

System architecture 
The proposed solution is a novel, reliable, real-time, low-cost, and privacy preserving fall 

detection system based on computer vision. The system uses a standard web camera for 

obtaining visible light imagery and an inexpensive infrared sensor array for gathering infrared 

data. The architectural overview of the system is presented at Fig. 1.  

 

As it can be seen from the figure, the system is split into two components: a home component 

and a remote component. The home component comprises the sensors, home gateway and 

software installed in the user’s home, whereas the remote component includes a remote 

medical server and the accompanying infrastructure for notification of interested parties in 

case of a fall alert. The two components communicate over the internet using a secure 

cryptographic channel.  
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Fig. 1 System architecture of proposed fall detection solution 

 

The fall detection algorithm executes on the home gateway which serves as a control unit for 

the home component and is also responsible for the communications to the medical server. 

The algorithm processes standalone still images only – video is not captured by the system.  

In addition to that all data processing of the images is done locally, only silhouettes are 

transmitted over the Internet to the remote medical server. This confines the processing of 

sensitive information to the user’s home and enables better protection of his/her privacy. 

Moreover, the user receives sound notification prior to image capturing and is able to switch 

off the module if he/she is not in a state of helplessness. This is measure to prevent 

unnecessary breach of the user’s privacy. 

 

For the purposes of fall detection every pose in which the user is located on the floor such as 

lying, kneeling, sitting or crawling on the floor is considered a fall. Positions in which the 

user is upright or lying on a bed or sofa are considered non-fall positions due to activities of 

daily living. 

 

The computer vision based module can be used as a standalone fall detection module or  

as a fall verification tool for fall detection based on other less reliable sensor modalities.  

A flow chart of the CV module is presented at Fig. 2. 

 

 

Fig. 2 Flow chart for computer vision based module 

 

The first step of the module is to detect the user (Human presence detection). The IR sensors 

array is used in order to detect human thermal emissions. Once the user has been detected a 

picture of him/her can be captured by the web camera. The system captures images of the 

background regularly throughout the day when the room is not occupied for later usage during 

fall detection. In order to use these images in the silhouette extraction step, the system has to 

know which background image corresponds to the image with the user (step 2 – Background 

matching). An innovative approach for background detection based on keypoints matching 

has been developed. Once the matching background has been determined, the system moves 

on to the third step – Silhouette extraction. A simple silhouette extraction algorithm has been 

designed and evaluated as part of this step. The next step is Feature extraction, during which 
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the features used for detection are extracted (geometric properties of the silhouette), followed 

by step 5  Fall detection. A machine learning approach based on linear support vector 

machines has been adopted. Finally, if a fall has been detected the system sends an alarm and 

other significant data, such as an image of the extracted silhouette to the remote medical 

server. 

 

Hardware setup 
The proposed system uses ARM-based board A13-OlinuXino-WIFI with A13 microcontroller 

by Allwinner which runs Debian Linux distribution and has a variety of interfaces such as 

universal serial bus (USB) ports and inter-integrated circuit (I2C). There is one visual unit 

(web camera + infrared sensor) per room. The unit is wall mounted and rotational. A standard 

web camera connected to the board through USB is used. It captures grayscale images with 

resolution of 640480 pixels. For gathering IR data a low-cost, low-resolution IR array 

MLX90620 by Melexis has been used. The IR sensor has 416 pixels and is connected to the 

development board via I2C. All implementations of image processing algorithms are used 

from the free and open source software library OpenCv 2.4.9. 

 

Human detection 

Spatial alignment 
Before the two computer vision signal inputs, namely the inputs from the web camera and 

from the IR array, can be used, they have to be aligned spatially. The IR sensor has a field of 

view of 60 degrees, whereas there isn’t any information about the field of view of the web 

camera. The spatial alignment procedure used in the presented solution is illustrated at Fig. 3.  

 

 

Fig. 3 Spatial alignment of the web camera and IR sensor 

 

The lens of the web camera and the IR sensor are positioned as close as possible so that they 

can have maximum overlap of their fields of view. Four incandescent light sources placed as 

shown at the figure have been used. As incandescent light sources emit light in the visible as 

well as in the IR spectrum, they can be detected in both images and consequently the two 

sensors can be aligned. It has been discovered that only 14 out of the 16 IR pixels per row are 

needed and that the height of the area covered by the IR sensor corresponds to approximately 

2/3 of the height of the area covered by the web camera. 

 

Human presence detection 
In this step the algorithm evaluates whether there is a human present in the aligned field of 

view of the IR sensor. The IR sensor and web camera are placed on a platform which is 

automatically rotated by 10° until it covers the whole room. The algorithm which has been 

developed checks whether there is a source of IR emission in the temperature interval that is 
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representative for the temperature of the human body. The temperature of the human body is 

typically measured in the range of 35-38 °C. However, due to the presence of clothing, partial 

occlusions, differences in ambient temperature and the uneven distribution of temperature 

along the body (e.g. limbs have typically lower temperature than the head), the algorithm has 

to account for significant variations to the lower interval boundary. Experimental evaluation 

of 4 different temperature ranges has been performed in order to determine the best range for 

human presence detection. In order to conduct the experiments 20 positions for which a 

human is in the field of view of the infrared sensors and 15 in which there is no human in 

view are used per temperature range. Results of the experiment are presented in Table 2. 

 

Table 2. Human presence detection results 

Interval, °C Sensitivity, % Specificity, % Accuracy, % 

24-38 88.24 87.5 88 

25-38 100 94.44 98.08 

26-38 100 87.5 95.83 

27-38 100 94.12 97.78 

 

The results are evaluated in terms of sensitivity, specificity and accuracy. Sensitivity in this 

case can be defined as the percentage of the successfully detected human presences and is 

calculated as: 

 

FNTP

TP
ysensitivit


 , (1) 

 

where TP is true positives, and FN are false negatives. 

 

Specificity indicates the percentage of non-presences that are detected as non-presence and is 

calculated as: 

 

FPTN

TN
yspecificit


 , (2) 

 

where TN is true negatives, and FP is false positives. 

 

Accuracy gives us the percentage of the correctly classified human presence vs. non-presence 

emissions and is calculated as: 

 

FNTNFPTP

TNTP
accuracy




 . (3) 

 

The most important metric to maximize is sensitivity, e.g. no human should be left 

undetected. As it could be seen from the results in Table 2, the interval from 25 °C to 38 °C 

gives the best results along these terms. Once a human is detected, the web camera takes  

a picture and passes it to the second stage of the algorithm – human silhouette extraction. 
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Human silhouette extraction 
The aim of the human silhouette extraction phase is to confirm the result from the human 

presence phase, and to extract the silhouette so that any subsequent processing could use only 

the silhouette instead of the whole image. This module has three distinct inputs: the image 

captured by the web camera in the human presence stage; the coordinates of the possible 

human IR emission in this image; and a set of background images of the room.  

The background images are taken at every 10° of the room through rotation of the web 

camera at fixed times throughout the day when the room was empty. 

 

Background detection 
From the above inputs the exact background image that corresponds to the image obtained 

from the human presence module has to be found. In order to do this, a novel background 

matching approach has been proposed [12]. It uses keypoints matching between the potential 

human image and all the backgrounds in order to find the pair with the highest number of 

matching keypoints. Different combinations between keypoints detectors, descriptors and 

matchers have been tested. The best combination in terms of accuracy was found to be 

Features from Accelerated Segment Test keypoints detector, Binary Robust Independent 

Elementary Features keypoints descriptor and Fast Library for Approximate Nearest 

Neighbors keypoints matcher. With the upgrade to the OpenCV 2.4.8 software library, this is 

also the fastest combination (with 1.8 seconds for processing of an image pair). An example 

for the matching between correct backgrounds is presented at Fig. 4. 

 

 

Fig. 4 Keypoints matching for background detection 

 

Simple silhouette extraction 
Once the correct background has been identified, the algorithm proceeds with the silhouette 

extraction module. As it has been mentioned above, there are a number of 

foreground/background segmentation algorithms, however the majority of them rely on  

a video input in order to build a model of the background. The proposed module implements  

a simple human extraction silhouette which takes as an input the image with the user, 

captured by the human presence detection module and the matching background detected by 

the background detection module. A flow chart for the algorithm is presented at Fig. 5. 
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Fig. 5 Simple human silhouette extraction 

 

The silhouette extraction algorithm starts by blurring both input images with a Gaussian filter 

which aims to reduce high frequency noise from the images. The Gaussian function used to 

calculate a kernel with which to convolve the image is defined in Eq. (4): 

 
2 2

22

2

1
( , )

2

x y

G x y e 






  (4) 

 

where G(x, y) is the Gaussian function for two dimensions, x and y are the distances from the 

origin of the horizontal and vertical axes (which is the center of the kernel), and σ is the 

standard deviation of the Gaussian (normal) distribution. After experimentation with various 

Gaussian kernels calculated with the above function, a 2121 kernel obtained for σ = 1.1 was 

determined as the one producing optimal results. 

 

After the blurring, a difference image is formed taking the difference of the two blurred input 

images. The resulting grayscale difference image roughly reflects the changes in the scene 

introduced by the presence of the human, i.e. the human silhouette. In order to be able to 

calculate the geometric properties of this silhouette it has to be transformed into a binary 

image. Otsu thresholding, which is an algorithm for automatic detection of the threshold 

value, has been used for this task. Its application to the difference image produces a binary 

image in which the human silhouette is white and the background is black.  

 

At this stage of the algorithm the produced silhouette contains a lot of small white regions 

even though the high frequency noise has been removed. These regions are produced by 

furniture and objects displacement, shadows due to illumination changes, etc. In order to 

reduce the number of these regions two approaches can be adopted. The first approach relies 

on morphological operations such as erosion and dilation to remove the unnecessary regions 

from the binary image. This approach is effective for small regions removal but it introduces 

considerable distortions in the shapes of the remaining regions. The second approach is to 

calculate the area of all white regions in the image and to remove small regions. The latter 

approach has been adopted in the proposed algorithm. The area of an image region is given by 

its order image spatial moment M00: 

 


yx

yxIM
,

00 ),( , (5) 
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where x and y are the coordinates within the image coordinate system and I(x, y) is the value 

of the pixel at position (x, y). 

 

After the removal of small regions the resulting image contains larger white regions which are 

grouped into clusters with the larger cluster representing the human silhouette. In order to 

leave only the regions that belong to the human silhouette a distance based clustering 

algorithm has been designed and implemented. It separates the white regions into clusters 

based on the distance between the regions. Once the image is separated into clusters, the 

convex hulls of the clusters are calculated and only the cluster whose convex hull has the 

highest area is preserved. 

 

An example for the original user and background images can be seen at Fig. 6a and Fig. 6b, 

for the difference image – at Fig. 6c and for the image after Otsu thresholding and small 

regions removal – at Fig. 6d. The clusters of the clustering algorithm are illustrated at Fig. 6e 

and the final result from silhouette extraction – at Fig. 6f. As it can be seen from the figure, 

the resulting silhouette is imperfect – there are shadows and part of the legs are removed 

during the extraction process. Despite this, the result is a good approximation of the human 

silhouette, especially taking into account that it is extracted from a single image and without 

explicit model of the background. 

 

   
a b c 

   

   
d e f 

Fig. 6 Silhouette extraction phases: (a) original user image; (b) original background image;  

(c) difference image; (d) silhouette after removal of small regions;  

(e) clusters of the silhouette image; (f) final image. 

 

The runtime of the silhouette extraction algorithm has been measured on the A13-OlinuXino 

board. The average runtime is 0.18 seconds which make this algorithm is particularly well 

suited for real-time scenarios. 

 

Fall detection 
The fall detection algorithm that is presented in this paper is based on a linear support vector 

machine. It uses features derived from the human silhouette obtained from the human 

silhouette extraction module. Similar approaches have been presented in literature but with 

varying success. The presented approach is novel in its privacy protecting use of silhouettes 

and single images instead of the more intrusive video. 
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Feature extraction 
The input to the fall detection module is the silhouette image produced by the silhouette 

extraction module. The silhouette is appropriate for human inspection but in order to be used 

in a computer vision algorithm it has to be approximated by a simpler geometric shape.  

The MBR and the fitted ellipse are two good candidates for silhouette approximation.  

The MBR and fitted ellipse for an example silhouette image are presented at Fig. 7. 

 

 

Fig. 7 Hull (green), fitted ellipse (orange), and minimal bounding rectangle  

for a silhouette image 

 

The MBR is the minimal rectangle that encloses the silhouette. Its height h, width w, and tilt 

angle θ are obtained by the iterative rotated calipers method. The parameters of the general 

quadratic curve representation of the fitted ellipse are obtained through the direct least squares 

algorithm. The general quadratic curve has the form:  

 

0222 22  gfydxcybxyax , (6) 

 

where x and y are the coordinates of a point lying on the ellipse, and (a, b, c, d, f) are the 

parameters returned by the algorithm. In order to calculate the major and minor axes as well 

as the tilt angle of the ellipse the Eqs. (7)-(9) are used: 

 
2 2 2

2 2 2

2( 2 )
'

( ) ( ) 4 ( )

af cd gb bdf acg
a

b ac a c b a c

   


     
 

, (7) 

 

where 'a  is the major semi-axis; 
 

2 2 2

2 2 2

2( 2 )
'

( ) ( ) 4 ( )

af cd gb bdf acg
b

b ac a c b a c

   


      
 

, (8) 

 

where 'b  is the minor semi-axis; 
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, (9) 

 

where θ is the tilt angle of the fitted ellipse. 

 

In order to train the SVM the following features derived from the silhouette image have been 

used: the area of the human silhouette; the coordinates of the topmost, bottommost, leftmost 

and rightmost points of the silhouette; the width, height and tilt angle of the MBR along with 

the aspect ration (the ratio of the width to the height of the MBR); the major and minor axis 

along with the tilt angle and the aspect ratio of the fitted ellipse. These features form  

a 17-dimensional feature vector which is prepared for feeding into the classifier. 

 

However, before the SVM can be trained, the training and testing data have to be 

standardized. The process of standardization, also known as Z-score normalization, yields 

features that are rescaled in the interval [1; 1] and centered at 0, thus having the properties of 

a standard distribution with mean μ' = 0 and standard deviation σ' = 1. The standard scores 

(also called z-scores) of the features are calculated as: 

 

j

i

j

ii
i

x
z




 , (10) 

 

where zi, i = {1, …, n} is the standardized feature, n is the number of features in the feature 

vector (in this case 17), xi is the value of the feature prior to standardization, j

i  is the mean 

of the feature xi over all j image samples, and j

i  is the standard deviation for the feature xi 

over all j image samples. The standardization is a general pre-processing requirement for 

many machine learning algorithms, including SVMs. In order to have correct classification 

results both training and test data have to be standardized. 

 

Algorithm 
The algorithm that is used for fall detection is a linear SVM which has as input  

17-dimensional standardized feature vectors. The support vector machine transforms these 

vectors to a higher dimensional space in which the vectors are linearly separable, and then 

tries to build an optimal separating hyperplane which separates the training feature vectors 

into classes. Any new test feature vector is classified based on its position with regards to the 

hyperplane. There may be infinitely many hyperplanes that separate the training set but the 

optimal hyperplane is the one that has the largest functional margin, i.e. the largest minimum 

distance to the training examples. The optimal hyperplane separated the classes with the 

highest degree of generalization. 

 

Let us have a training set defined as:  
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 ( , ), 1,..., , , { 1, 1}d

i i i ix y i n x R y     , (11) 

 

where xi are the input feature vectors of the training set, and yi are the labels corresponding to 

these feature vectors. There are only two classes of samples – class –1 and class +1 (in this 

case corresponding to non-fall and fall). Let H denotes the new feature space and Ф denotes 

the mapping of the feature vectors from Rd to H, so that: 

 

HRd  : . (12) 

 

Thus, a training example (xi, yi) becomes (Ф(xi), yi). Then, we search for a hyperplane in H,  

so that a transformed feature vector Ф(xi) lies on one side of the hyperplane if yi = –1 and on 

the other side of the hyperplane if yi = +1. The equation of this hyperplane in H can be 

represented in terms of a vector ω and a scalar b as: 

 

0)(  bx , (13) 

 

where · is the dot product. 

 

It is proven than ω is the normal to the hyperplane and |b|/||ω|| is the distance of the 

hyperplane from the origin. Since there are finite number of training samples, if a hyperplane 

separates the training set, than each training sample must be at least β away from the 

hyperplane for some β > 0. Then, we can renormalize (13) to require that: 

 

01))((  bxy ii     for i = 1, …, n. (14) 

 

In general, it may be impossible to separate linearly the training data with a hyperplane,  

even in H. However, it can be searched for a hyperplane that separates the data as much as 

possible while also trying to maximize the margin. In order to do this, a relaxation variable ξi, 

ξi  0 for i = 1, …, n is introduced so that the following is satisfied: 

 

01))((  iii bxy     for i = 1, …, n. (15) 

 

The relaxation variables ξi, also called slack variables, measure the degree of misclassification 

of the data xi, i.e. the distance between the wrongly classified xi and its correct classification 

region. In essence they add a penalty for violating the classification constraints.  

 

If d+ is the distance from the support vectors to the hyperplane for the class +1 and d is the 

distance form the support vectors to the hyperplane for the –1 class, then d+ = d = 1/||ω|| and 

the margin between the two classes is d+ + d = 2/||ω||. In order to maximize the margin, thus 

to have a better generalization of the classification, ||ω||, or equivalently ||ω||2 has to be 

minimized. In order to account for the relaxation variables, a penalty term of the form 

i iC  , where C is some appropriate constant, has to be added. Thus, searching for an 

optimal hyperplane results in solving the following optimization problem: 
 

minimize 
i

iC 
2

  

 

subject to 01))((  iii bxy     for ξi 0, i = 1, …, n. (16) 
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Through solving the optimization, the values of ω and b are returned and the equation of the 

hyperplane is found. This process of solving the optimization and obtaining the hyperplane is 

the process of training. Once the SVM is trained, new (unseen during training) feature vectors 

x, thus new images, are classified by checking on which side of the hyperplane they fall. 

During training an optimal value of the regularization constant C has to be established 

through experimentation. Typically, large values of C produce solutions to the optimization 

margin that result in smaller margins and less misclassification errors. An opposite – small 

values of C result in solutions with large margins and more classification errors.  

Thus, a balance should be looked for on a case by case basis. 

 

The fall classification model is trained on a server and once trained is transferred to the home 

gateway situated in the user’s home. During fall detection, the module forms a feature vector 

out of the current silhouette image and fits it into the model in order to check on which side of 

the hyperplane it is. If the image is recognized as a fall image, a fall alarm is issued. 

 

Experimental evaluation 
The algorithm has been trained and tested on a dataset of fall and non-fall images. The dataset 

consists of 1829 labeled images of 5 volunteers (ages 27 to 81 years old) in different poses. 

784 images represent falls in different positions and orientations while the remaining  

1045 images represent different activities of daily living. Any image in which the person is 

lying, kneeling, sitting or crawling on the floor is considered as a fall image. Images in which 

the person is lying on a couch or bed are considered as no-fall images. 

 

Before the SVM is trained an appropriate value for the regularization constant C has to be 

determined – this is the so called hyperparameter tuning. During the tuning the goal is to 

maximize the important evaluation metrics, in this case the sensitivity, while also getting as 

high specificity and accuracy as possible. It was experimentally determined that the best value 

for C is 1.0 as can be seen from Fig. 8. 

 

 
Fig. 8 Hyperparameter tuning for SVM based fall detection 

 

In order to evaluate the SVM performance and how well it generalizes to independent 

(previously unseen) data, the technique of cross-validation has been used. The goal of  

cross-validation is to use three datasets in order to obtain the highest performing and most 

unbiased classifier. The datasets that are used are: one training dataset which is used for 

training; one validation dataset which is used to tune the hyperparameters of the classifier; 
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and one test dataset to evaluate the performance of the classifier on previously unseen data.  

In order to divide the initial dataset, first some of the data samples are randomly selected for 

the test dataset. The remaining training data samples are split into training and validation 

datasets. There are various methods to split the training dataset into training and validation 

sets. In this algorithm was chosen stratified 10-fold cross-validation which splits the training 

set into 10 equal folds with roughly the same class distribution. Every fold participates 

exactly once as a validation fold in a total of 10 rounds of the cross-validation run. 

 

In the evaluation of the presented algorithm, 20% of the data samples have been used as a test 

dataset with the remaining 80% for 10-fold stratified cross-validation. The initial dataset 

contains 1829 data samples, 784 out of which represent falls and the remaining 1045 – 

activities of daily living (ADLs). After the split 366 samples are randomly left for testing  

(156 falls and 210 ADLs) and the remaining 1463 for cross-validation (628 falls and  

835 ADLs).  

 

The SVM is first trained on the training set, and then tested on the testing set. The achieved 

results are: 

 sensitivity – 97.96%; 

 specificity – 97.89%; 

 accuracy – 97.92%; 

 average runtime (A13-OlinuXino) – 0.068 seconds. 

 

These results are very good – sensitivity of almost 98% while also having very high 

specificity of over 97.5% matches state of the art fall detection algorithms. Moreover, these 

results are achieved by a machine learning algorithm which is much more generic than a 

threshold based solution. Additionally, the runtime for fitting is under 1 second. Overall,  

the whole algorithm – human presence detection, background detection, silhouette extraction 

and fall detection, runs in under 1 minute on an embedded device like the A13-OlinuXino 

which makes it suitable for real-world emergency detection systems. 

 

Conclusion 
This paper presents a novel machine learning based fall detection solution with particular 

focus on privacy protection. Several original contributions have been presented in the area of 

personal assistive systems. The proposed approach makes use of a fusion between visible 

light and infrared imagery in order to detect humans. In addition to that a new method for 

background detection has been proposed and developed. The paper presents a simple human 

silhouette extraction algorithm which is based only on single still images. The silhouettes 

obtained from this module have been integrated in a linear SVM algorithm in order to build a 

robust and reliable fall detection system. 

 

The reliability in terms of sensitivity, specificity and accuracy as well as the average runtimes 

on an embedded platform have been experimentally evaluated. The results from the 

experiments show that the proposed system as a whole, and each of its components, achieve 

very high sensitivity and specificity of detection. In addition to that the runtimes allow the 

usage of the system in real time solutions. The proposed solution is build with low-cost 

hardware components and uses free and open source software which makes it suitable for 

mass scale home installation. 

 



 INT. J. BIOAUTOMATION, 2016, 20(2), 237-252 
 

251 

Moreover, the whole system is focused on delivering reliable results without compromising 

the privacy of its users. This would allow better acceptance by the elderly and faster adoption 

of the end product. 
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