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Abstract: In order to reduce the possible economic loss brought by variant seedlings in 

tissue culture, we propose a pattern recognition approach using fitness to dynamically 

monitor subculture seedlings of kiwifruit based on adaptive Genetic Algorithm. By coding, 

selection, mutation and crossover the selected primer pairs of the subculture seedlings, we 

simulate the process of optimizing the kiwifruit’s genomic DNA polymorphism. The result 

shows that fitness values of kiwifruit’s subculture seedlings can better maintain their genetic 

stability from the first to the ninth generation in the simulation. But from the tenth 

generation, the rapid change of the fitness values of subculture seedlings happen. It is in 

accord with the experimentation, which uses optimized AFLP system for analyzing genetic 

diversity of 75 samples of seventh to eleventh 5 generations of kiwifruit subculture seedlings. 

 

Keywords: Kiwifruit, Variant seedling, Tissue culture, Adaptive genetic algorithm, Fitness 

function.  

 

Introduction 
According to the basic theory of genetics, chromosomes in the nucleus of gene determine the 

physical characteristics of the organism, and the survival of the fittest chromosomes 

(individuals) are selected for reproduction in [11] and [13]. DNA is the genetic material 

containing the whole information of an organism to be copied into the next generation of the 

species, and the reproduction is actual a DNA replication process. Genetic variation could 

appear in the process. Variation can negatively affect the quality of individuals. If necessary 

measures are not taken in time, the number of variation individuals will grow exponentially. 

In [15] and [6], researchers point out that DNA is stable and predictable in its reactions and 

can be used to encode information for detecting variation. Based on a genetic algorithm (GA), 

dynamic monitor of kiwifruit’s variant seedlings in tissue culture is discussed as an example 

in this paper.  
 

In [9], some researchers presented that cuttings, grafting, seeding and tissue culture are four 

kinds of kiwifruit cultivation methods. The tissue culture is mainly used to breed elite 

varieties of kiwifruit. In the process of tissue culture, different vitro conditions, plant growth 

regulators, medium osmotic pressure, culture temperature and time, and so on could cause 

genetic variation in seedlings. Some variations are not easy to be found in the tissue culture 

process, and if it is found in the later of planting in the field, the economic loss is even 

greater. Some researchers indicated that for reducing the economic loss caused by variant 

seedlings, the variation is needed to be monitored [3]. 
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It is obviously that tissue culture of kiwifruit subculture seedlings is an optimal process that 

the kiwifruit seedlings adapt to environment. Researchers’ works show GA is one of the 

promising methods as an adaptive probabilistic optimization algorithm that is based on 

biological genetic evolutionary mechanisms for searching the survival of the fittest individual 

[1, 4, 7, 12]. It simulates the natural process of genetic recombination and evolution, 

performing operations similar with natural selection, crossover and mutation to get the final 

optimization result after repeated iterations. In GA, fitness function is proposed to evaluate 

the quality of individuals. The fittest individual is chosen by ranking individuals according to 

a pre-defined fitness function, which evaluated each member of a population. The individuals 

with high fitness values therefore represent better solution to the problem than lower one. 

Following the initial process, the crossover and mutation operations are used, while the 

individuals in the current population produce offspring. And then, a new population will have 

been formed and the generational counter is increased by one. In [8], research work showed 

the process of selection, crossover and mutation is continued until a termination condition is 

met. In conventional mutation operator, mutation probability is fixed and the operation is 

performed by not paying any attention to whether it is necessary or not. As in conventional 

crossover operator, the probability of crossover, which determines the number of exchanged 

segments, is commonly given by user, depending on experience. The adaptive mutation and 

crossover operator are used to instead of the fixed mutation and crossover probabilities.  

The adaptive mutation maintains GA to have random nature and the adaptive crossover leads 

to keep an individual with high fitness in the next population, which is discussed in [14] and 

[16]. Thus, the adaptive genetic algorithm can be more enable to simulate evolution of tissue 

culture process. Normally, the termination condition of GA is the fitness values reach a 

highest value and (or) convergence in a finite number of repeated iterations. Thus, if the 

fitness values appear obviously various after convergence, it could indicate there are gene 

variations in tissue culture, and imply detecting kiwifruit’s variant seedlings. 

 

The model of detecting variant subculture seedlings 

Individuals’ encoding mode 
The nuclear DNA is located within the nucleus of eukaryotic cells. The biochemical structure 

of the DNA containing the polynucleotide base alphabet {A, G, C, T} (A, adenine;  

G, guanine; C, cytosine; T, thymine) includes the genetic information necessary for the 

preservation of the base sequences. In mathematics, it means using a character set containing 

four characters , , ,( )A G C T  to encode information. A numerical sequence could be 

obtained by mapping the base of DNA to the frequency of the base in the sequence.  

Here, the numbers 0, 1, 2, 3 are used to denote G, A, T, C respectively, i.e., G = 0(00),  

A = 1(01), T = 2(10), C = 3(11). 

 

Individual evaluation method 
Tissue culture is an optimal process. In information technology, many fitness functions are 

always used to simulate optimization problems. The Rosenbrock function is a single peak 

function, and always taken for evaluating the optimization problems. We use the function for 

mimic the tissue culture as example in the study. The Rosenbrock function is given as below: 

2 2 2
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In this paper, r = 2 is implemented. The evaluation model is: 
2 2 2

2 1 2 2 1 1( , ) 100( ) (1 ),f x x x x x     
1 22.048 , 2.048x x   . (2) 
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For this problem, variables x1, x2 can be represented with 6 bits of binary encoding string.  

The definition of x1, x2 is discretized into 1023 equal areas, forming 1024 discrete points, 

which includes the end of point. Let discrete points from –2.048 to 2.048 correspond to binary 

encoding from 000000 to 111111. In decoding process, the 12 bits long binary string of 

encoded kiwifruit genomic DNA is cut off for two 6 bits binary encoding strings, and then 

they are converted to the corresponding decimal integer code y1 and y2 respectively.  

The code yi and xi decoding formula is: 

6
4.096 2.048, 1, 2

2 1

i
i

y
x i   


. (3) 

 

Selection, mutation and crossover operator 
The probability of being chosen individual is proportional to its fitness. Here we use the 

roulette selection strategy way to dynamically monitor of kiwifruit’s variant seedlings in 

tissue culture to choose the individual which the fitness is enough big to cultivate in [2]. 

 

The crossover operator is the operator to be in needs of a population and increases variety of 

solution. The cross operation uses a single point crossover operator, the type of mutation 

operation uses the basic bit mutation operator. At a certain probability, two individuals were 

randomly selected from the population, and some of them were partially exchanged. 

Crossover methods usually adopt one point, two points, more points and uniform crossover. 

The function of crossover is to produce a new gene, that is, the new chromosome.  

The adaptive crossover is operated by fitness of individuals as presented in Eq. (4): 
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where fmax is the maximum fitness in population, favr is the average; f is the fitness values of 

the variant individual. k3 and k4 are in interval (0, 1). In the scope of adaptive approach,  

the probability of crossover pc is determined according to formulation of which characteristic 

form has been introduced in [14], where f is the lowest fitness between parents. pc decreases if 

its’ parent fitness increases. Increment of fitness of individual decreases the probability of 

crossover, so this leads to keep an individual with high fitness in the next population.  

This manner assists elitist strategy, which means that the best individual sustains its 

preference in the next generation.  

 

The role of mutation operator in GA is to prevent GA to suboptimal solutions by restoring lost 

or unexplored genetic material into population. The suboptimal solutions result from 

premature convergence. For enabling the operator can play the role attractively, a mutation 

operator should be applied by controlling the degree of goodness (i.e. fitness) in the 

individuals. In [16] Yoshimoto use the method developed by Srinivas and Patnaik to 

determine the probability of the adaptive mutation operator, given as Eq. (5):  
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Here, fmax is the maximum fitness value of individuals in population, favr is the average,  

f   is the larger of two individual fitness values to cross, k1 and k2 are in interval (0, 1). 

Increment of fitness of individual decreases the probability of mutation. In conventional 
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mutation operator, however, mutation probability is fixed and the operation is performed by 

not paying any attention to whether it is necessary or not. In other words, adaptive mutation 

operator used in this study gives opportunity of survival to an individual having lower fitness 

than the others in the population by eliminating its bad design variables.  

 

Normally, the use of the adaptive crossover and the adaptive mutation operators carries out 

that the individual having the greatest fitness is placed in the next generation, which can be 

viewed as elitist strategy. Hence, the adaptive approach covering the adaptive crossover and 

the adaptive mutation operators is preferred in the study. 

 

The genetic data of the individual is initialized from an input file at the beginning of the 

algorithm. Based on their different genetic search strategy, individuals search the plane at 

different directions. At the same time, gene is evolved with crossover and mutation by using 

individual fitness information, and the search strategy is constantly adjusted. Finally, the best 

individual is maintained. Iteration continues until termination condition is reached.  

 

Experiment 
The monitor of kiwifruit subculture seedlings is taken as example to verify the proposed 

method. Fig. 1 is electrophoretogram of kiwifruit subculture seedlings, which is provided by 

the key laboratory of biodiversity conservation of China state forestry administration.  

 

 

Fig. 1 Electropherogram of genomic DNA of kiwifruit subculture seedlings 

 

Fig. 2 is the experimental results obtained by using 8 genomic prime pairs to detect the 

variation of tissue subculture seedlings of the kiwifruit in [10]. 

 

 

Fig. 2 The relationship between the number of generations  

and the rate of variation of tissue cultures seedlings of kiwifruit with 8 prime pairs 
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Based on electrophoresis as Fig. 1, 8 prime pairs of kiwifruit genomic DNA are filtered from 

64 primers: E-AGG+M-CAT, E-ACT+M-CAG, E-AGG+M-CAG, E-ACG+M-CTG,  

E-AAG+M-CTG, E-ACG+M-CAA, E-AAG+M-CAA, and E-ACG+M-CAG, which the 

numbers of bands are the richest in 64 primer pairs in experiments. The experimental 

subculture seedlings are randomly chosen from every subculture generation, 1-2 fresh leaves 

of per plant are picked, put in zip lock bag and marked respectively, preserved under 80 °C, 

which use 300 mg genomic DNA marked on AFLP for endonuclease digestion with 4h and 

adding 1U T4-DNA ligase, 1.5 uL Adapter and 2 uL ATP to link. In this teat, dosage  

pre-amplification primer is 0.8 uL and the selective amplification of Tap polymerase is  

0.25 uL. The corresponding 12 bits encoding genomic DNA of kiwifruit primer pairs are as 

following: 010000110110, 011110110100, 010000110100, 011100111000, 010100111000, 

011100110101, 010100110101, and 011100110100. The selected 8 prime pairs have been 

used to evaluate the polymorphism of kiwifruit genes in other research work in [9] and [5],  

so it can be used to identify variations of subculture seedlings in our study. 

 

The initial operating parameters of the proposed algorithm are as follows: population scale  

M = 8, termination generation T = 12. Debugging with Java programming, the corresponding 

simulated results of the first three evaluations are listed in Table 1 to Table 4. In order to 

obtain better result to evaluate variations of the 8 primer pairs, fitness is instead by relative 

fitness, which is calculated with each fitness value divided by total fitness values. 

 

Table 1. The coding result of initial population 

No. 
Binary coding  

of initial 8 prime pairs 
X1 X2 Relative fitness 

1 010000110110 -1.008  1.463  0.024  

2 011110110100 -0.098  1.333  0.179  

3 010000110100 -1.008  1.333  0.014  

4 011100111000 -0.228  1.593  0.243  

5 010100111000 -0.748  1.593  0.112  

6 011100110101 -0.228  1.398  0.185  

7 010100110101 -0.748  1.398  0.075  

8 011100110100 -0.228  1.333  0.168  

 

Table 2. The simulated result of 1st evolution of the 8 primer pairs 

No. 
Evaluation results  

of primer pairs 
X1 X2 Relative fitness 

1 001110111001 -0.228  1.333  0.125  

2 001110111001 -0.228  1.333  0.125  

3 010101110101 -0.748  1.398  0.055  

4 001110111001 -0.228  1.333  0.125  

5 101110001001 -0.098  1.333  0.133  

6 101110001001 -0.098  1.333  0.133  

7 010100110101 -0.228  1.593  0.180  

8 011100110100 -0.228  1.333  0.125  
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Table 3. The simulated result of 2nd evolution of the 8 primer pairs 

No. 
Evaluation results  

of primer pairs 
X1 X2 Relative fitness 

1 101010111001 -0.228  1.333  0.123  

2 100011011110 -0.098  1.333  0.131  

3 101010111001 -0.228  1.333  0.123  

4 101010111001 -0.228  1.333  0.123  

5 101010111001 -0.228  1.333  0.123  

6 101010111001 -0.228  1.333  0.123  

7 101010111001 -0.228  1.333  0.123  

8 100011011110 -0.098  1.333  0.131  

 

Table 4. The simulated result of 3rd evolution of the 8 primer pairs 

No. 
Evaluation results  

of prime pairs 
X1 X2 Relative fitness 

1 110110011011 -0.228 1.398 0.129 

2 010001010111 -0.748 1.593 0.078 

3 011100111000 -0.228 1.593 0.169 

4 010001010111 -0.748 1.593 0.078 

5 011100111000 -0.228 1.593 0.169 

6 011100111000 -0.228 1.593 0.169 

7 110110011011 -0.228 1.398 0.129 

8 010001010111 -0.748 1.593 0.078 

 

The best individuals of 12 repeated iterations are as following: 

 

Table 5. The simulated results of the 8 primer pairs after 12 iterations 

No. 
Binary coding  

of each best individual 
X1 X2 Relative fitness 

R1 011100111000 -0.228  1.593 0.199 

R2 011100111000 -0.228  1.593 0.153 

R3 011100111000 -0.228  1.593 0.148 

R4 011100111000 -0.228  1.593 0.130 

R5 011100111000 -0.228  1.593 0.130 

R6 011100111000 -0.228  1.593 0.125 

R7 111010010100 -0.228  1.593 0.125 

R8 110100111110 -0.228  1.593 0.125 

R9 111011100000 -0.228  1.593 0.125 

R10 001100110101 1.788  0.033 0.375 

R11 001100110101 1.788  0.033 0.175 

R12 001100110101 1.788  0.033 0.138 
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From Fig. 3, the variations of the R4 to R9 generations are relative stable. But the variation 

rate of the R10 generation changes rapidly. In conclusion, the 1st to 9th generations of 

kiwifruit subculture seedlings can better maintain the genetic stability, but variation occurred 

from the 10th generation. 

 

 
 

Fig. 3 The fitness variation of 12 generations’ kiwifruit subculture seedlings  

in simulated tissue culture process 

 

Conclusion 
The result is accordance with subculture seedlings R7, R8, R9, R10, R11 (the earliest sample 

is R0, and R1 to R11 as subcultures) of kiwifruit ‘Hort 16A’ as experimental materials 

illustrated in Fig. 1 and Fig. 2. The study is also based on our pre-work that using normal GA, 

non-adaptive, which probability of crossover and mutation are fixed, and the similar result is 

also obtained. It shows the proposed method is a reasonable way to monitor of kiwifruit’s 

variant seedlings in tissue culture with information technology. 
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