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Abstract: Filtering noises/artifacts from the electrocardiogram (ECG) can sustain the efficient 

clinical decision making. Comparative analysis of several filtering techniques is proposed: 

two adaptive noise cancellation techniques, Least Mean Square (LMS), Recursive Least 

Square (RLS); Savitzky-Golay (SG) smoothing filter and Discrete Wavelet Transform (DWT). 

These methods are implemented on 60 Hz Power-Line Interference (PLI), ECG signals of 

FANTASIA database and MIT-BIH Arrhythmia Database. Here, Short-Term Fourier 

Transforms (STFT) and Continuous Wavelet Transform (CWT) is introduced as a graphical 

tool to measure the noise level in the filtered ECG signals and also to validate the filtering 

performances of the proposed techniques. Statistical evaluation is also performed calculating 

the Signal to Noise Ratio (SNR), Mean Square Error (MSE), the Root Mean Square Error 

(RMSE), Peak Signal to Noise Ratio (PSNR) and Peak to Peak Amplitude (P2P) change before 

and after filtering of the ECG signals. The graphical results (frequency domain analysis using 

STFT and CWT) and statistical observation suggest that the noise cancellation performance 

of DWT is better, over other techniques. 

 

Keywords: Power-line interference, Least mean square, Recursive least square; Savitzky-

Golay smoothing filter, Discrete wavelet transform, Short-term Fourier transforms, 

Continuous wavelet transform, Signal to noise ratio, Mean square error, The root mean square 

error, Peak signal to noise ratio, Peak to peak amplitude. 

 

Introduction 
Electrocardiogram (ECG) signal is non-stationary biosignal, which needs special attention 

towards noise cancellation [20, 33]. Donoho [8] and Bruce et al. [4] have proposed a powerful 

technique, i.e., thresholding in wavelet domain for signal noise cancellation. Analysis of heart 

functioning can only be possible by extracting the features from the noise free ECG signal, 

where filtering of ECG signal plays a significant role [19, 24]. Islam et al. [16] suggested a 

performance study of adaptive filtering using Least Mean Square (LMS) and Recursive Least 

Square (RLS) algorithm on several parameters like computational time, measure size and 

correlation coefficients. The ECG signal was combined with four types of AC and DC noises. 

These noises were nullified with the help of LMS and RLS algorithm. Hussain et al. [15] 

proposed a comparative study of different algorithms of adaptive filter. Normalized Least Mean 

Squares (LMS, NLMS) and Constrained Stability Least Mean Square (CSLMS) algorithms are 

used to real ECG signal from the MIT-BIH database and compared the operation of each filter 

outputs. Behbahani et al. [1] compared LMS algorithm of adaptive filter and the non-fault 
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tolerant adaptive filters. Chandrakar et al. [5] used RLS based adaptive filter for the noise 

removal of ECG signals. Lin et al. [23] employed a PLI detector which uses optimal Linear 

Discriminant Analysis (LDA) algorithm for decision making during the occurance of PLI in 

ECG signal [23]. 

 

The last decades another approach for PLI suppression has been reported and discussed  

[9, 21, 22]. The main stages of the so called subtraction procedure consist of: detection of linear 

segments (usually PQ and TP intervals with frequency band near to zero); moving averaging 

over them to remove and extract the interference; calculation of phase locked interference 

components to be further subtracted outside the linear parts of the ECG signals (e.g., QRS 

complexes and some high and steep T wave). 

 

Different approaches have already been considered for enhancing ECG signal with adaptive 

filters [28, 29, 32], which permit to detect time varying potentials and to cover the dynamic 

fluctuations of the signals. Various works have already been proposed using LMS based 

adaptive recurrent filter for acquiring the impulse response of normal QRS complexes and 

applied for arrhythmia detection in ambulatory ECG recordings respectively. Since the LMS 

adaptation algorithm is a simple and effective approach for Adaptive Noise Canceling (ANC) 

but it is not appropriate for fast-varying signals due to its slow convergence and due to the 

difficulty in choosing the correct value for the step size 𝜇 [10, 25, 36]. While frequency-domain 

representations of Savitzky-Golay (SG) filters have also been illustrated [3, 13], most 

presentationson SG filters (e.g., [28, 34]) have emphasized on time domain properties without 

reference to such frequency-domain features as pass band width or stop band attenuation. Non-

stationary signals it is not tolerable to use digital filters or adaptive method because of loss in 

information [27, 30, 31]. Digital filters and adaptive methods can be used to signal whose 

statistical characteristics are stationary in many instances. Recently, the wavelet transform has 

been proven as a useful tool for non-stationary signal analysis. 

 

In this context, the proposed four noise cancellations techniques, i.e., LMS, RLS, SG and 

Discrete Wavelet Transform (DWT) and their filtering performances are not only compared 

with the time domain scale, but also compared in frequency domain using Short Time Fourier 

Transform (STFT) and Continuous Wavelet Transform (CWT). 

 

The baseline drift elimination was not executed to evaluate the filtering performances and to 

remain the signal undisturbed in power domain. The DWT as a filtering technique is proven to 

be a better option than other three techniques for non-stationary ECG signal. 

 

ECG data sets 
The proposed filtering techniques have been evaluated over ECG signals of 5 healthy subjects 

from the FANTASIA database [17] and ECG recording of 5 arrhythmic patients from MITDB 

[11] having a first row (signal) with the 300 samples (one complete ECG waveform).  

The ECG signals of both the databases are mixed with 60 Hz Power-Line Interference (PLI). 

These noise components are visually not identified as powerful PLI, but submerged with the 

ECG signals. The single ECG waveforms are selected from 5 recordings of both the databases 

for uniform processing and valuation. However the proposed techniques are tested over 1 hour 

ECG recording (Figs. 14-19). But the statistical evaluations are performed on single ECG 

waveform and different filtering techniques, performances are tabulated in Table 1A and B. To 

make uniformity in graphical decision making and analysis, the “data # f1o07” from 

FANTASIA database are selected which also suffer from 60 Hz PLI. The evaluation has been 
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done on both the health and arrhythmic sets of databases and the observed statistical measures 

are tabulated (Table 1A and B). 

 

Table 1A. Statistical observation of filtered ECG signals 

Fantasia SNR MSE RMSE PSNR P2P(A) 

LMS 

f1o02 17.7201 0.0106 0.1027 67.9316 0.1958 

f1o05 17.4614 0.0099 0.0996 68.2011 0.2400 

f1o06 17.7696 0.0100 0.1002 68.1472 0.2032 

f1o07 17.4264 0.0095 0.0976 68.3720 0.2852 

f1o09 17.3190 0.0096 0.0978 68.3540 0.2903 

RLS 

f1o02 22.8093 0.0034 0.0580 72.8993 0.2122 

f1o05 22.7797 0.0030 0.0548 73.3920 0.2900 

f1o06 22.1615 0.0037 0.0604 72.5395 0.2643 

f1o07 21.8129 0.0037 0.0606 72.5145 0.2891 

f1o09 21.9138 0.0035 0.0589 72.7679 0.3004 

SGY 

f1o02 43.6857 2.9357e-05 0.0054 93.4877 0.1552 

f1o05 36.5204 1.2824e-04 0.0113 87.0845 0.2134 

f1o06 38.9705 7.6076e-05 0.0087 89.3523 0.2079 

f1o07 41.2386 4.1548e-05 0.0064 91.9793 0.2219 

f1o09 39.7177 5.7101e-05 0.0076 90.5983 0.0735 

DWT (at Level 4) 

f1o02 45.1550 2.1140e-05 0.0046 94.9137 0.2375 

f1o05 37.0775 1.1263e-04 0.0106 87.6484 0.3038 

f1o06 38.9970 7.5521e-05 0.0087 89.3841 0.2268 

f1o07 44.4385 2.0040e-05 0.0045 95.1458 0.2652 

f1o09 41.8587 3.4938e-05 0.0059 92.7319 0.2761 

DWT (at Level 8) 

f1o02 43.8693 2.8416e-05 0.0053 93.6292 0.2275 

f1o05 35.7015 1.5443e-04 0.0124 86.2775 0.2938 

f1o06 37.0852 1.1699e-04 0.0108 87.4831 0.2168 

f1o07 42.9400 2.8295e-05 0.0053 93.6478 0.2254 

f1o09 40.1881 5.1244e-05 0.0072 91.0684 0.2462 

 

Short time fourier transform 
Oppenheim et al. [27] and Press et al. [31] have stated that the STFT is the technique for non-

stationary signal analysis that transforms, signal information from time domain into the time – 

frequency domain. The main concept of the STFT is to consider a non-stationary signal as a 

stationary signal over short periods of time within a window function [27, 31]. The computation 

of STFT can be defined as Eq. (1): 

 

𝑇(𝑓, 𝜏) = ∫ [𝑥(𝑡)𝑤(𝑡 − 𝜏)]𝑒−𝑗2𝜋𝑓𝑡𝑑𝑡
∞

−∞
, (1) 

 

where 𝑤(𝑡 − 𝜏) is the window function.  
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Table 1B. Statistical observation of filtered ECG signals 

Fantasia P2P(B) MITDB SNR MSE RMSE PSNR P2P(A) P2P(B) 

LMS 

f1o02 0.2469 100 17.7105 0.0104 0.1019 67.9992 0.2429 0.2434 

f1o05 0.3155 105 17.5448 0.0101 0.1006 68.1150 0.2830 0.2756 

f1o06 0.2488 109 17.5898 0.0102 0.1012 68.0610 0.3000 0.3144 

f1o07 0.2939 111 18.0864 0.0111 0.1053 67.7181 0.1961 0.2052 

f1o09 0.3063 112 17.9152 0.0112 0.1058 67.6770 0.2178 0.2280 

RLS 

f1o02 0.2469 100 22.0874 0.0039 0.0622 72.2917 0.2395 0.2434 

f1o05 0.3155 105 20.4877 0.0053 0.0726 70.9469 0.2554 0.2756 

f1o06 0.2488 109 20.5512 0.0063 0.0791 70.1968 0.2408 0.3144 

f1o07 0.2939 111 22.5345 0.0043 0.0656 71.8239 0.1618 0.2052 

f1o09 0.3063 112 22.3028 0.0042 0.0645 71.9763 0.2261 0.2280 

SGY 

f1o02 0.2469 100 48.6345 8.6459e-06 0.0029 98.7967 0.2200 0.2434 

f1o05 0.3155 105 46.8314 1.2334e-05 0.0035 97.2539 0.2602 0.2756 

f1o06 0.2488 109 51.2953 5.4558e-06 0.0023 100.7962 0.2357 0.3144 

f1o07 0.2939 111 50.8260 6.1006e-06 0.0025 100.3111 0.1864 0.2052 

f1o09 0.3063 112 51.3213 5.2680e-06 0.0023 100.9483 0.2049 0.2280 

DWT (at Level 4) 

f1o02 0.2469 100 50.9803 5.0113e-06 0.0022 101.1653 0.2391 0.2434 

f1o05 0.3155 105 50.2069 5.6485e-06 0.0024 100.6455 0.2668 0.2756 

f1o06 0.2488 109 51.5212 6.0974e-06 0.0025 100.3134 0.3022 0.3144 

f1o07 0.2939 111 50.5669 7.6821e-06 0.0028 99.3100 0.1912 0.2052 

f1o09 0.3063 112 50.1548 8.3631e-06 0.0029 98.9411 0.2168 0.2280 

DWT (at Level 8) 

f1o02 0.2469 100 49.7622 6.6721e-06 0.0026 99.9222 0.2293 0.2434 

f1o05 0.3155 105 48.4097 8.5188e-06 0.0029 98.8610 0.2563 0.2756 

f1o06 0.2488 109 48.2458 1.0927e-05 0.0033 97.7797 0.3015 0.3144 

f1o07 0.2939 111 49.2092 8.8065e-06 0.0030 98.7167 0.1925 0.2052 

f1o09 0.3063 112 48.1301 1.1029e-05 0.0033 97.7393 0.2078 0.2280 

 
From Eq. (1) the STFT maps signal  𝑥(𝑡)  into two-dimensional function in time,  𝜏  and 

frequency, 𝑓. The energy surface distribution of STFT called spectrogram can be computed 

from Eq. (2): 

 

𝐸(𝑓, 𝜏) = |𝑇(𝑓, 𝜏)|2 . (2) 

 

Here, the STFT is implemented to evaluate the changes in the input/original ECG signal and 

the filtered signal in frequency domain. Figs. 3, 6, 9, 12, 15 and 19 describe frequency domain 

changes of the filtered ECG signals as well as evaluate the performances of the different 

filtering methods. 

 

Continuous wavelet transform 
The CWT –𝑊𝑓(𝑠, 𝜏) is the inner product of a time varying signal 𝑓(𝑡) and the set of wavelets 

Ψ(𝑠, 𝜏)(𝑡) given by [12, 18]: 
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𝑊𝑓(𝑠, 𝜏) =< 𝑓,𝛹𝑠,𝜏 >=
1

√𝑠
∫ 𝑓(𝑡)𝛹∗(

𝑡−𝜏

𝑠
)𝑑𝑡. (3) 

 

The scaling and shifting the mother wavelet ( 𝛹 ) with factors of s and 𝜏  (with s > 0), 

respectively, generate a family of functions called wavelets given by: 

 

𝛹𝑠,𝜏(𝑡) =
1

√𝑠
𝛹 (

𝑡−𝜏

𝑠
). (4) 

 

The filtering performance and distortion level of PLI before and after noise cancellation can be 

analyzed in time-frequency domain (Figs. 4, 7, 10, 12, 17, 20 and 21). The noise level can be 

visually analyzed with changing the scale. 

 

Adaptive noise cancellation system 
Mollaei presented in his article [26] that the ANC system (Fig. 1) composed of two separate 

inputs, a primary input or ECG signal source which is shown as 𝑠(𝑛) and a reference input that 

is the noise input shown as 𝑥(𝑛). The primary signal is corrupted by noise 𝑥1(𝑛). The signal 

 𝑥1(𝑛) is highly correlated with noise signal or reference signal  𝑥(𝑛). Noisy signal  𝑑(𝑛) 

results from addition of primary signal  𝑠(𝑛)  and correlated noise signal  𝑥1(𝑛) .  

The reference signal  𝑥(𝑛) is fed into adaptive filter and its output 𝑦(𝑛) is subtracted from noisy 

signal 𝑑(𝑛) . Output of the sum block is then fed back to adaptive filter to update filter 

coefficients. This process is run recursively to obtain the noise free signal which is supposed to 

be the same or very similar to primary signal 𝑠(𝑛). 

 

 

Fig. 1 ANC System 

 

Least mean square algorithm 
The LMS algorithm is also known as gradient-based algorithm [28]. Slock [34] suggested that 

the LMS is one of the simplest algorithms in adaptive structures and the output 𝑦(𝑛) of FIR 

filter structure can be formulated by Eq. (5). 

 

𝑦(𝑛) =  ∑ 𝑤(𝑚)𝑥(𝑛 − 𝑚)𝑁−1
𝑚=0 , (5) 

 

where 𝑛 is the number of iteration. 

 

Error signal is calculated by Eq. (6) 

 

𝑒(𝑛) = ∑𝑑(𝑛) − 𝑦(𝑛).  (6) 
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The filter weights are updated from the error signal 𝑒(𝑛) and input signal 𝑥(𝑛) as in Eq. (7). 

 

𝑤(𝑛 + 1) = 𝑤(𝑛) + 𝜇𝑒(𝑛)𝑥(𝑛), (7) 

 

where 𝑤(𝑛) is the current weight value vector, 𝑤(𝑛 + 1) is the next weight value vector, 𝑥(𝑛) 

is the input signal vector, 𝑒(𝑛) is the filter error vector and 𝜇 is the convergence factor which 

determine the filter convergence speed and overall behavior. 

 

Normalized least mean square algorithm 
Tandon et al., [35] discussed that, at large convergence factor 𝜇  the LMS algorithm faces 

gradient noise amplification problem. For rectifying such problem, NLMS algorithm is 

implemented where, the correction applied to the weight vector 𝑤(𝑛)  at iteration  𝑛 + 1 .  

This is “normalised” with respect to the squared Euclidian norm of the input vector 𝑥(𝑛) at 

iteration  𝑛 . The NLMS algorithm can be viewed as time-varying step-size algorithm by 

formulating 𝜇 as in Eq. (8): 

 

𝜇(𝑛) =
𝛼

𝑐+∥𝑥(𝑛)∥2 , (8) 

 

where 𝛼  is the NLMS adaption constant, 0 < 𝛼 < 2  and 𝑐  = constant for normalization,   
𝑐 < 0. The Filter weights can be updated by the Eq. (9) 

 

𝑤(𝑛 + 1) = 𝑤(𝑛) +
𝛼

𝑐+∥𝑥(𝑛)∥2 𝑒(𝑛)𝑥(𝑛).             (9) 

 

The LMS filter is applied to the noisy single ECG waveform and the graphical filtering 

evaluation is done using STFT (Fig. 3) and CWT (Fig. 4). The output filtered ECG signal shows 

the amplitude shifting (i.e., both elevation and deviation) in isoelectric ST segment (Fig. 2). 

The STFT spectrum of input-desired-output is also studied (Fig. 3), where the PLI at 60 Hz is 

still present in the output signal (can be compared with desired signal) which also suppressing 

the frequency components (i.e., ranges between 0.1 to 50 Hz). The same can be analyzed using 

sample versus the scale in CWT (Fig. 4), and the distortion (with small spikes) can easily be 

visualized (at 0-5 scale) in output signal. 

 

 
 

Fig. 2 Filtering with LMS for FANTASIA data # f1o07 
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Fig. 3 Evaluation of LMS with STFT 

 

 
Fig. 4 Evaluation of LMS with CWT 

 

Recursive least square algorithm 
RLS algorithms perform well in time-varying conditions but the computational complexity and 

stability increases. The filter tap weight can be updated using the following Eq. (10): 

 

𝑤(𝑛) = �̅�𝑇(𝑛 − 1) + 𝑘(𝑛)�̅�𝑛−1(𝑛).    (10) 

 

Eq. (11) and (12) gives the intermediated gain vector for computing tap weights. 
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𝑘(𝑛) =
𝑢(𝑛)

𝜆+𝑥𝑇(𝑛)𝑢(𝑛)
 , (11) 

 

𝑢(𝑛) = 𝑤𝜆
−1̅̅ ̅̅ ̅̅ (𝑛 − 1)𝑥(𝑛), (12) 

 

where 𝜆 is a small positive constant very close to but smaller than 1. 

 

The filter output is calculated from filter tap weights of previous iteration and the current input 

vector as in Eq. (13). 

 

�̅�𝑛−1(𝑛) = �̅�𝑇(𝑛 − 1)𝑥(𝑛), (13) 

 

�̅�𝑛−1(𝑛) = 𝑑(𝑛) − �̅�𝑛−1(𝑛). (14) 

 

RLS Algorithm requires higher memory because of estimating the previous samples of output 

signal, error signal and filter weight. 

 

After implementing an RLS filter on the single noisy ECG waveform, the graphical filtering 

performance is analyzed using the STFT (Fig. 6) and CWT (Fig. 7). The output filtered ECG 

signal shows (Fig. 5) the time shifting of about 0.1 sec towards right. The STFT spectrum of 

input-desired-output is also studied (Fig. 6), where the PLI at 60 Hz is still present in the output 

signal (can be compared with desired signal) which also suppressing the frequency components 

(i.e., ranges between 0.1 to 40 Hz). The signal be plotted in sample versus scale using CWT 

(Fig. 7), and the distortion (with small spikes) can easily be visualized (at 0-5 scale) in output 

signal. 

 

 
Fig. 5 Filtering with RLS for FANTASIA data # f1o07 
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Fig. 6 Evaluation of RLS with STFT 

 

 
Fig. 7 Evaluation of RLS with CWT 
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Savitzky-golay smoothing filters 
SG smoothing filters are producing a full degree of smoothing and preserving useful high 

frequency components of these parts of ECGs. Another feature of these filters as an FIR filter 

is their ability to preserve nonlinear features from a reconstructed phase space. These filters 

which are also known as polynomial smoothing or least-square smoothing filters are 

generalizations of the FIR averaging filters that optimally fit a set of data points to polynomials 

of different degrees. 

 

In order to smooth parts of the ECG which lie between QRS complexes by a SG filtering 

method, these intervals are divided into subintervals containing an odd number of data points 

(span) 𝑁. The SG filter then fits the set of 𝑁 = 2𝑀 + 1 data points x to a polynomial 𝑥⏞𝑚 of 

degree 𝑑: 

 

𝑥 = [𝑥−𝑀, … , 𝑥0, … , 𝑥𝑀]𝑇, (15) 

 

𝑥⏞𝑚 = ∑ 𝑐𝑖𝑚
𝑖 ,    − 𝑀 ≤ 𝑚 ≤ 𝑀𝑑

𝑖=0 .   (16) 

 

The points 𝑥⏞−𝑀 , 𝑥⏞−𝑀+1 , … , 𝑥⏞𝑀 which are the projections of the points 𝑥−𝑀, 𝑥−𝑀+1, … , 𝑥𝑀 on 

the polynomial may be presented as follows: 

 

 

[
 
 
 
 
 

�̂�−𝑀

�̂�−𝑀+1

⋮
𝑥0

�̂�𝑀−1

�̂�𝑀 ]
 
 
 
 
 

−

[
 
 
 
 
 
 1
1
⋮
1
⋮
1
1

 

−𝑀
−𝑀 + 1

⋮
0
⋮

𝑀 − 1
𝑀

 

…
………
…
………
…

 

(−𝑀)𝑑

(−𝑀 + 1)𝑑

⋮
0
⋮

(𝑀 − 1)𝑑

𝑀𝑑 ]
 
 
 
 
 
 

− [

𝐶0

𝐶1

⋮
𝐶𝑑

]         (17) 

 

or, in short  

 

�̂� = 𝑆𝑐. (18) 

 

Here 

 

𝑆 = (𝑚𝑖)
𝑁×(𝑑+1)

: − 𝑀 ≤ 𝑚 ≤ 𝑀: 0 ≤ 𝑖 ≤ 𝑑.       (19) 

 

The coefficients 𝐶0, 𝐶1, … , 𝐶𝑑  of the polynomials are unknown and must be determined.  

To determine these, the equation 𝑥 − �̂� = 0 needs to be solved to find the vector 𝐶. This leads 

to solving the following matrix equation 𝑆𝑐. 

 

𝑥 = 𝑆𝑐. (20) 

 

The least-square solution to an inconsistent system 𝑥 = 𝑆𝑐 satisfies the following equation: 

 
𝑆𝑇𝑥 = 𝑆𝑇𝑆𝑐.  (21) 

 

The coefficient vector 𝐶 and the fitted data vector �̂� may then be calculated as follows: 

 



 INT. J. BIOAUTOMATION, 2019, 23(3), 259-282  doi: 10.7546/ijba.2019.23.3.000500 
 

269 

𝐶 = (𝑆𝑇𝑆)−1𝑆𝑇𝑥, (22) 

 

�̂� = 𝑆(𝑆𝑇𝑆)−1𝑆𝑇𝑥.   (23) 

 

SG smoothing filter is applied to the noise and the input-output relationship (Fig. 8) of time 

domain analysis. The filtered result shows that there is an amplitude degradation of R-peak 

(Fig. 8). The STFT spectrum of input (noisy) and output (noise free) ECG signal is also studied 

(Fig. 9), where the unfiltered PLI at 60 Hz is still present in the output signal also suppressing 

the frequency components (i.e., ranges between 0.1 to 30Hz). The same can be analyzed using 

sample versus scale in CWT (Fig. 10), and the distortion can easily be visualized (at 0-5 scale) 

in output signal. 

 

 
Fig. 8 Filtering with SG for FANTASIA data # f1o07 

 

 
Fig. 9 Evaluation of SG with STFT 
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Fig. 10 Evaluation of SG with CWT 

 

Discrete wavelet transform 
Cohen et al. [7] have discussed a very common discretization of the CWT which consists of 

setting the scale and shift value as: 𝑠 = 𝑠0
𝑖  and 𝜏 = 𝑘𝜏0𝑠0

𝑖  with 𝑖 and 𝑘 are integers and 𝑠0 is a 

real value >1. A practical choice of 𝜏0  and 𝑠0  consists on setting 𝑠0  to 2 and 𝜏0  to1 that is  
𝑠 = 2𝑖 and 𝜏 = 𝑘.2𝑖. This is called dyadic wavelet transform and the wavelet functions become: 

 

𝛹𝑖,𝑘(𝑡) = 2−
1

2𝛹(2−𝑖𝑡 − 𝑘).     (24) 

 

The setting form of scale and shift parameters constitutes an orthonormal basis for L²(R) that 

is: 

 

𝑑𝑖,𝑘(𝑡) ≡< 𝑓(𝑡), 𝛹𝑖,𝑘(𝑡) >≡ ∫𝑓(𝑡)𝛹𝑖,𝑘(𝑡)𝑑𝑡    (25) 

 

and 

 

𝑓(𝑡) = ∑ ∑ 𝑑𝑖,𝑘(𝑡) ∙𝑘𝑖 𝛹𝑖,𝑘(𝑡). (26) 

 

Truchetet [37] has illustrated that the DWT consists of applying the discrete signal to a bank of 

octave filters based on low and high pass filters 𝑙(𝑛) and ℎ(𝑛) respectively; more precisely, the 

function 𝑓(𝑡) would be expressed as follows: 

 

𝑓(𝑡) = ∑ 𝑎𝐿(𝑘)𝜙𝑙,𝑘(𝑡) + ∑ ∑ 𝑑𝑗(𝑘)𝛹𝑗,𝑘(𝑡)       𝑘=𝑍
𝐿
𝑗=1𝑘=𝑍  (27) 

 

with 

 

𝑑𝑗(𝑛) =< 𝑓,𝛹𝑗,𝑛 ≥ 𝛴𝑘𝑔,(2𝑛 − 𝑘)𝑎𝑗−1(𝑛), (28) 

 

𝑎𝐿(𝑛) =< 𝑓, 𝜙𝑗,𝑛 >= 𝛴𝑘ℎ,(2𝑛 − 𝑘)𝑎𝐿−1(𝑛), (29) 

 

where 𝜙(𝑡) is the scaling function and 𝛹(𝑡) is the wavelet function, which is governed by the 

following condition: 
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∫𝜙(𝑡)𝑑𝑡 = 1.       (30) 

 

The objective of wavelet based denoising process is to estimate the signal of interest 𝑠(𝑡)  

(Eq. (9)) from the composite one 𝑓(𝑖) by discarding the corrupted noise 𝑒(𝑖) [14]: 

 

𝑓 (𝑖) =  𝑠(𝑖) +  𝑒(𝑖). (31) 

 
Donoho [8] has presented that the underlying model for the noisy signal is the superposition of 

the signal 𝑠(𝑖) and a Gaussian zero mean white noise with a variance of 𝜎2. The threshold value 

is computed according to the model of the signal of interest to be estimated 𝑠(𝑖) and the 

corrupted noise 𝑒(𝑖). Donoho and Jonhstone proposed the universal “VisuShrink” threshold 

given by: 

 

𝑇ℎ𝑟 = 𝜎√2. 𝑙𝑜𝑔(𝑁)       (32) 

 

In the case of white noise, its standard deviation can be estimated from the median of its detail 

coefficients (𝑑𝑗), with 𝑗 = 1,… , 𝐿, and is computed as follows: 

 

𝜎 =
𝑀𝐴𝐷(|𝑑𝑗|)

0.6745
 , (33) 

 

where MAD is the median absolute deviation of the corresponding sequence. Two algorithms 

of thresholding exist: Hard and Soft thresholding algorithms (𝑇𝑠𝑜𝑓𝑡  and 𝑇ℎ𝑎𝑟𝑑  respectively) 

formulated as follows: 

 

𝑇𝑠𝑜𝑓𝑡 = 𝑠𝑔𝑛(𝑥). (|𝑥|. 𝑇ℎ𝑟), (34) 

 

𝑇ℎ𝑎𝑟𝑑 = 𝑥. 1(|𝑥| > 𝑇ℎ𝑟).   (35) 

 

Applying the classical wavelet denoising technique [8], i.e., the universal threshold and “soft” 

strategy, at level 8 appears no significant change in P and T waves whereas the R waves undergo 

minute distortion (amplitude loss), but at level 4, it seems to have considerably less/no loss. 

 

 
Fig. 11 Filtering with DWT at level 4 for FANTASIA data # f1o07  

(30 sec data selected out of 1 hour recording for better visualization) 
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Fig. 12 Evaluation of DWT at level 4 with STFT for FANTASIA data # f1o07 

 

 
Fig. 13 Evaluation of DWT at level 4 with CWT for FANTASIA data # f1o07 

 

 
Fig. 14 Filtering with DWT at level 4 for MITDB data # 101  

(30 sec data selected out of 1 hour recording for better visualization) 
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Fig. 15 Evaluation of DWT at level 4 with STFT for MITDB data # 101 

 

 
Fig. 16 Evaluation of DWT at level 4 with CWT for MITDB data # 101 

 

Chouakri et al. [6], performed the filtering of MIT-BIH Arrhythmia database ECG signals using 

DWT with wavelet function “Symlet 8”. Whereas, by determining the best suitable wavelet 

function for the proposed filtering approach; finally, it has led to use the wavelet function “db4” 

based on the reduced value of the Signal to Noise Ratio (SNR), Mean Square Error (MSE), the 

Root Mean Square Error (RMSE), Peak Signal to Noise Ratio (PSNR) and Peak to Peak 

Amplitude (P2P) values obtained. The filtering process of DWT with level 4 performs the 

following steps: 

1. DWT to the noisy ECG signal at level 4 and identify the resulting 4 detail sequences 

(cD1, cD2, cD3, and cD4) and the approximation sequence (cA4); 

2. To apply the DWT to the estimated Noisy signal and identify the 4th level detail 

sequence (cDN4); 

3. To generate the 4th level detail sequence of the ECG free noise (cDF4) given by: 
cDF4 cD4 –  cDN4;  

4. To compute the used denoising threshold (T), given 

     T 2*log N 1  / 2 * median abs cD1 / 0.6745 , where N is the length of the ECG 

signal; 
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5. To threshold the set of the detail sequences (cD1, cD2, and cD3), with respect to the 

computed threshold (T), which results the set of the sequences (cDT1, cDT2, and 

cDT3); 

6. To reconstruct the denoised ECG signal (Fig. 20) using the Inverse Discrete Wavelet 

Transform (IDWT) giving the 4 detail sequences (cDT1, cDT2, cDT3, and cDF4) and 

the approximation sequence (cA4). 

 

The above procedure was also applied to get level 8 noise-free ECG signals (cDF8) respectively 

(Fig. 18). 

 

 
Fig. 17 Filtering with DWT at level 4 for FANTASIA data # f1o07 

 

 

 
Fig. 18 Filtering with DWT at level 8 for FANTASIA data # f1o07 
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Fig. 19 Evaluation of DWT at level 4 with STFT 

 

 
Fig. 20 Evaluation of DWT at level 4 with CWT 

 

 
Fig. 21 Evaluation of DWT at level 4 with CWT (Zooming @ 20 scales) 
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Statistical analysis 

Signal to noise ratio 
Signal quality could be evaluated from the SNR result. System performance is better if the SNR 

value is higher. The SNR can be computed from the following equation as: 

 

𝑆𝑁𝑅 = 10𝑙𝑜𝑔10 [
∑ (𝐹𝑖𝑙𝑡𝑒𝑟𝑒𝑑 𝑠𝑖𝑔𝑛𝑎𝑙)2𝑁

𝑖

∑ (𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑠𝑖𝑔𝑛𝑎𝑙−𝐹𝑖𝑙𝑡𝑒𝑟𝑒𝑑 𝑠𝑖𝑔𝑛𝑎𝑙)2𝑁
𝑖

]. (36) 

 

Mean square error 

The MSE of the filtered ECG signal may be computed from: 

 

𝑀𝑆𝐸 =
1

𝑁
∑ (𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑠𝑖𝑔𝑛𝑎𝑙 − 𝐹𝑖𝑙𝑡𝑒𝑟𝑒𝑑 𝑠𝑖𝑔𝑛𝑎𝑙)2𝑁

𝑖 . (37) 

 

The root mean square error 
The RMSE of the noise free ECG signal is given by: 

 

𝑅𝑀𝑆𝐸 = √
1

𝑁
∑ (𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑠𝑖𝑔𝑛𝑎𝑙 − 𝐹𝑖𝑙𝑡𝑒𝑟𝑒𝑑 𝑠𝑖𝑔𝑛𝑎𝑙)2𝑁

𝑖 . (38) 

 

Peak signal to noise ratio 
PSNR calculate the peak signal to noise ration of original signal and noise free signal which 

can be formulated from the below equation as: 

 

𝑃𝑆𝑁𝑅 = 10𝑙𝑜𝑔10 (
𝑃2

𝑀𝑆𝐸
), (39) 

 

where 𝑃 = 256, constant considered to calculate PSNR. 

 

Peak to peak amplitude 
The Peak to peak amplitude change can be calculated using the following equation: 

 

𝑃2𝑃 = |𝑀𝑎𝑥. 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑎𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒 𝑜𝑓 𝑠𝑖𝑔𝑛𝑎𝑙 −
𝑀𝑎𝑥.𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑎𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒 𝑜𝑓 𝑠𝑖𝑔𝑛𝑎𝑙 |. (40) 

 

Here Peak to Peak Amplitude After filtering, i.e., P2P(A) and Before filtering, i.e., P2P(B) are 

tabulated in Table. 1. 

 

The statistical attributes are plotted in bar charts (Fig. 22 and Fig. 23) where, the significant 

difference can be observed between DWT and other methods. The SNR, PSNR, MSE, RMSE 

values of DWT based filtered ECG signal has comparatively higher than the result obtained 

from other methods. The amplitude change after filtering is minimized for DWT; whereas the 

other three techniques have been suppressing the QRS complex during filtering of noises. 
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Fig. 22 Bar chart of mean (SNR, PSNR) of filters 

 

 
Fig. 23 Bar chart of mean (MSE, RMSE, P2P (A), P2P (B)) of filters 

 

Naive bayes’ classifiers 
The applied filters and their classification, based on their filtering performances are projected 

on a 3D plane (Fig. 24). After filtering of ECG signal, the P2P (A) and P2P (B) versus SNR 

and MSE values of four different filters are introduced to the Naive Bayes’ classifier [2] and 

the distinct probabilistic classification result is obtained (Fig. 24). 
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Fig. 24 Classification probability of filters 

 

Discussion 
ECG signals are non-stationary, pseudo periodic in nature and whose behavior changes with 

time. The unwanted additional noise or power-line artifacts corrupted the original information 

of the ECG signal. The presented approach discusses the performances of four noise 

cancellation techniques. The PL frequency and amplitude variation also presented and 

comparative analysis of the implanted techniques have been formulated. These implemented 

filtering techniques for noise cancellations also have some effect on time domain and frequency 

domain. Though it has already been proven that wavelet has better advantages over other 

methods for noise elimination, here the frequency domain analysis as well as the observational 

parameters were also calculated to evaluate its performance. The PLI of about 60 Hz is likely 

to be present (analyzed using STFT) for the LMS, RLS and SG based filtering ECG waveform 

and moreover the frequency component is suppressed. The possible detection of discontinuities 

is analyzed using CWT and its scale can be adjusted; e.g. higher scale  stretched wavelet  

slowly changing, coarse features   Low frequency. Fig. 20 shows the difference in 

discontinuity of noisy and filtered ECG signal (at scale = 150). CWT detects both the abrupt 

transitions and oscillations in the ECG signal. The abrupt transitions affect the CWT 

coefficients at all scales and clearly separate themselves from smoother signal features at small 

scales. Low scale  compressed wavelet  rapidly changing details  High frequency. The 

same discontinuity changes (Fig. 21) can be clearly analyzed at scale of 20 and the significant 

changes in ECG signal after filtering is evaluated. The graphical results (using STFT and CWT) 

are statistically verified and tabulated in Table.1 and these results are comparatively analyzed 

with the bar charts (Fig. 22 and Fig. 23). Although the DWT is proven to be better, the level 4 

and level 8 decomposition based filtering is comparatively analyzed. The QRS complex peak 

to peak amplitude change in the filtered ECG signal is marginally better for DWT at level 4 

(Fig. 17) than level 8 (Fig. 18). This time domain maximum peak (peak amplitude) is a 

quantifying feature as well as correlatively supports the evaluation of frequency domain 

techniques. Here, the performance of filtering is only evaluated with STFT and CWT, but time 

domain approaches along with these frequency domain evaluations will be clubbed for different 

acute and chronic cardiac conditions (like arrhythmia) where, R-R interval changes and ectopic 

beats present are signals along with the noise components. Moreover, the DWT is proved to be 

a good approach for noise cancellation with arrhythmia signals as depicted and statistically 

highlighted.  
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Conclusions 
The ECG signal gets corrupted during the acquisition process due to different types of motion 

artifacts and interferences like Power-Line Interference. Here the proposed techniques are 

meant for cancelling these unwanted signal components from the desired ECG signal, so that 

further processing and disease detection can be done uninterrupted. In the present paper effort 

has been made to perform the comparative analysis of two adaptive filters (i.e., LMS and RLS), 

SG smoothing and DWT filters for suppression of Power-Line Interference. The filtering 

performances (frequency domain) are analyzed graphically using STFT and CWT and 

statistical analysis have also implemented to validate the result. The SNR, MSE and other 

parameters are suggesting that the DWT filtering performance is better as compared to other 

methods. Fast filtration of ECG not only helps in further processing, but also improves 

efficiency in patient monitoring system. Here the purpose of filtering of ECG signal is to 

support the further diagnosis process by early and reliable analysis of cardiac abnormalities at 

different conditions. 
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