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Abstract: This paper attempts to overcome the inefficiency of covariance model (CM) in the 

search for non-coding sequence. For this purpose, the members of non-coding RNA family 

were compared and the CM of the family was discussed in details. Next, the CM was improved 

for structural units in the secondary structure, through the addition of the upper and lower 

limits on subsequence length. Based on the length distribution of each structural unit, the 

improved model limits the number of insertions and deletions during the evolution  

of sequences in the same family. After that, the author put forward a novel non-coding RNA 

sequence alignment algorithm. The experimental results show that the proposed algorithm can 

greatly reduce the computing time of non-coding RNA sequence comparison. 
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Introduction 
Sequence alignment mainly measures the similarity or difference between two or more 

symbolic sequences. This task cannot be completed without a mathematical model. In fact, 

different models depict the features of sequences from different angles. The main basis of 

sequence alignment is the evolutionary theory. During the evolution of biological sequences, 

some residues remain unchanged, some mutate into other types, and some simply disappear.  

In addition, some new residues are inserted into or added to the ends of the sequence [1, 2, 7]. 

 

Biological sequences can be divided into nucleic acid (DNA and RNA) sequences and protein 

sequences. Both nucleic acids and proteins are 1D non-branched chain macromolecules.  

The former is polymerized by four nucleotides, and the latter, by twenty amino acids. Therefore, 

a biological sequence can be considered as a sequence of symbols selected from an alphabet of 

four or twenty characters, depending on its category. Despite its simplicity, this symbolic 

sequence contains the mysteries of life. 

 

Biological sequence analysis is the key and basic problem in bioinformatics, which mainly 

explores the sequences of various biological macromolecules and derives gene structure, 

function and evolution from abundant sequence information. Currently, the analysis on nucleic 

acid sequences mostly focuses on three issues: the gene information in coding and non-coding 

regions, the gene interactions and the similarity or difference between different types of 

genomic sequences. As a typical nucleic acid, the RNA is usually described as a linear 

unstructured sequence [16]. Many non-coding RNAs have advanced 3D structures, some of 

which may even catalyze biochemical reactions [12].  
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Non-coding has been proved to have a direct bearing on many biological processes, such as 

gene regulation [3, 8], chromosome replication [10] and RNA modification [9]. For a non-

coding molecule, the biological function mainly depends on its secondary structure. However, 

the secondary structures of many homologous non-coding sequences are similar or identical, 

although these sequences seem very different. Hence, the sequence analysis of non-coding RNA 

is much more complex than that of DNA or proteins, and thus cannot be completed satisfactorily 

by traditional tools for sequence analysis. 

 

There are three types of detection methods for new non-coding RNA in genomes, namely, the 

family specific approach, the pattern matching method and the statistical section method.  

The last approach has been increasingly applied in sequence analysis. Two strategies have been 

developed based on statistical section for the search of homologous non-coding RNA: easy 

RNA profile identification (ERPIN) [13] and covariance model (CM) [11]. The CM is the most 

widely used non-coding RNA sequence analysis model. 

 

The CM can simulate the secondary structure of the non-coding RNA family [15]. During 

sequence alignment, this method determines whether a sequence fragment in the genome 

belongs to the non-coding RNA family. Like the hidden Markov model (HMM), the CM 

describes the statistical distribution of nucleotides in each position or each position pair in a 

gene family sequence. The alignment between a single sequence and the CM of a single non-

coding RNA family can be calculated by a dynamic programming algorithm. Based on the 

statistics of the CM, the algorithm searches for the alignment with the highest probability, and 

judges whether the sequence belongs to the non-coding family according to the maximum 

probability. In this way, the primary sequence and secondary structure of the non-coding family 

can be illustrated in an accurate manner. 

 

The main bottleneck of the CM lies in the computing speed, because of the low space-time 

efficiency of the dynamic programming algorithm. In the CM, the computing time of the 

algorithm soars with the growth in the length of the target non-coding sequence. Since most 

genome sequences contain numerous nucleotides, it is very inefficient to search for long non-

coding sequences using the CM. To solve the problem, this paper compares the members of 

non-coding RNA family and analyzes the CM of the family. In light of the results, the CM was 

improved to compute the length constraint of structural units in the secondary structure, and 

then a novel non-coding RNA sequence alignment algorithm was developed. Finally, the 

proposed algorithm was verified through experiments. 

 

RNA structure 
The RNA structure can be divided into primary structure, secondary structure and tertiary 

structure. The primary structure is a finite linear sequence of four different nucleotides arranged 

in a single RNA chain. The four nucleotides, adenine (A), cytosine (C), guanine (G) and uracil 

(U), can form hydrogen bonded base pairs like G-C, A-U and G-U. These base pairs 

respectively have three, two and one hydrogen bonds. Since the number of hydrogen bonds is 

positively correlated with stability, G-C and A-U are usually referred to as typical pairings, and 

G-U, as atypical pairing. The continuous pairing of bases produces a double helix structure 

known as stem, which stabilizes the secondary structure [6]. By contrast, the noncircular 

structure of the RNA molecule weakens structural stability. The secondary structure of RNA 

strikes the balance between the stabilizing and weakening effect. The seven sub-structural types 

of the secondary structure of RNA are listed in Table 1 below. 
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Table 1. The seven sub-structural types of the secondary structure of RNA 

Name Description 

Stem 
A continuous pair of right-handed double helices formed by 

hydrogen bonds in complementary chains 

Single strand Unpaired nucleotide chains between two stems 

Hairpin loop A stem ended with unpaired nucleotides 

Terminal bulge An unpaired nucleotide chain at stem ring junction 

Lateral bulge An unpaired nucleotide chain on steam ring 

Internal bulge The absence of a classical pair of nucleotides between two chains 

Multibranched loop A group of nucleotides linked to the base of several stems 

 

The secondary structure is normally illustrated by a 2D graph. For example, the secondary 

structure of yeast alanine transfer RNA is shown in Fig. 1, where each dot stands for a base 

paring and each number means the ordinal number of bases. 

 

 
Fig. 1 The secondary structure of yeast alanine transfer RNA 

 

Almost all base pairs in the secondary structure appear to be nested. In some cases, however, 

the base pairing may take a cross nested form, constituting a pseudoknot. A typical pseudoknot 

is shown in Fig. 2. In general, the RNA secondary structure has fewer pseudoknots than base 

pairs. As a result, the pseudoknot information can be neglected to improve the search efficiency. 

 

 
Fig. 2 Pseudoknot structure 
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Due to the base complementarity of RNA, the secondary structures of many homologous non-

coding sequences are similar or identical, although these sequences seem very different. Taking 

the sequence UUUUGGGAAAA for instance, the base pairs of UUUU and AAAA are paired 

into the stem, while the unpaired GGG forms signal chain rings. This sequence has the same 

secondary structure with other sequences like GGGGAAACCCC and GCGCAAACGCG. 

Despite the difference in primary structure, the secondary structures of these sequences 

gradually resemble each other through evolution, especially at the occurrence of multiple 

mutations. Hence, it is more accurate to compare the secondary structures rather than the 

primary structures in multi-sequence alignment. During the search for homologous RNA, the 

traditional models that only consider sequence similarity are no longer applicable, and should 

be replaced with novel tools like the CM. 

 

The covariance model 
The CM is a probabilistic model capable of describing the secondary structure [5]. Fig. 3 shows 

the structure of a non-coding RNA family. 

 

 
Fig. 3 An example of RNA structure 

 

For a non-coding RNA without pseudoknot, the base pairs appear nested in the structure.  

As shown in Fig. 4, the paired bases are connected by lines that do not intersect each other. 

 

 
Fig. 4 Five example sequences of different animals with the same structure 

 

The CM was extended from the stochastic context-free grammars (SCFG) model [4]. The latter 

can align multiple sequences of RNA without vacancies and model secondary structure of 

uniform sequences. Let 𝑝(𝑥|𝜃) be the probability that SCFG model 𝜃  produces a different 

string x. Then, the probabilities of all production formulas derived from the same nonterminal 

will total 1. 
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The alphabet of the SCFG model can be expressed as {A, U, C, G}. The model contains six 

states: pair launch (P), left launch (L), right launch (R), branch (B), start (S) and end (E).  

 

The production rule of these states is specified in Table 2, where 𝑊 is a nonterminal character 

and it is any of the six states. 

 

Table 2. The production rule of SCFG states 

State Production rule 

P (16 pairs of launch probability) 𝑃 → 𝑎𝑊𝑏 

L (4 single launch probabilities) 𝐿 → 𝑎𝑊 

R (4 single launch probabilities) 𝑅 → 𝑊𝑎 

B (the probability is 1) 𝐵 → 𝑆𝑆 

S (the probability is 1) 𝑆 → 𝑊 

E (the probability is 1) 𝐸 → ϵ 

 
If each nonterminal character is generated for a uniform sequence, then SCFG model can be 

obtained for families as Table 3. 

 

Table 3. SCFG model 

 Stem 1 Stem 2 

𝑺𝟎 → 𝑳𝟏… 𝑆3 → 𝑃4 𝑆10 → 𝐿11 

𝑳𝟏 → 𝜶𝑩𝟐… 𝑃4 → 𝜇𝑅5𝛼… 𝐿11 → 𝑔𝑃12… 

𝑩𝟐 → 𝑺𝟑𝑺𝟏𝟎 𝑅5 → 𝑃6𝑐 … 𝑃12 → 𝑔𝑃13𝑐 … 

 𝑃6 → 𝑔𝑃7𝑐 … 𝑃13 → 𝜇𝑃14𝛼… 

 𝑃7 → 𝛼𝐿8𝜇 … 𝐿14 → 𝑐𝐿15… 

 𝐿8 → 𝑐𝐸9… 𝐿15 → 𝛼𝐿16… 

 𝐸9 → 𝜖… 𝐿16 → 𝑔𝐸17… 

  𝐸17 → 𝜖… 

 
After linking up the nonterminal characters, SCFG analysis tree can be set up as Fig. 5.  

The SCFG analysis tree, as a graphic representation of the SCFG model, offers a simple yet 

intuitive depiction of the structure of the target RNA family. Nevertheless, the SCFG model 

ignores the vacancies in the sequence, as compared with the alignment family sequence in  

Fig. 4. The direct application of the non-vacant SCFG model will overlook many homologous 

sequences. This calls for extension of the SCFG model. 

 

Inspired by the extension of the HMM to profile HMM [17], the SCFG model was expanded 

into the CM to handle state insertion and deletion. The CM was constructed in the following 

steps: setting up the non-vacant SCFG analysis tree for uniform sequence, expanding and 

matching the nodes of the tree, inserting and deleting states, and linking up the states by state 

transition lines. The directed state graph thus obtained is the CM. The node extension rule of 

the CM is provided in Table 4, where MP, ML and MR are matching states, IL and IR are 

insertion states and D is a deletion state. 
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Fig. 5 SCFG analysis tree 

 

Table 4. Node extension rule of the CM 

SCFG state Node type Extended state 

P MATP MP, D, ML, MR, IL, IR 

L MATL ML, IL, D 

R MATR MR, IR, D 

S 

ROOT S, IL, IR 

BEGL S 

BEGR S, IL 

B BIF B 

E END E 

 

Taking the nodes L11 and P12 in Fig. 5 for instance, the extended internal state transition 

structure of the two nodes is described in Fig. 6 below. 

 

 
Fig. 6 Internal state transition structure of nodes L11 and P12 

 

As shown in Fig. 6, the internal state of each node has one or two layers. The upper layer usually 

includes all states other than the insertion state, while the lower layer contains the insertion 
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state. The transition probability can be expressed by the thickness of state transition lines.  

For example, the thick line above ML11 indicates the high probability of the transition from the 

previous state to ML11. The character G at ML11 means this character is more likely to be 

generated than any other character in the state ML11. 

 

The final CM is a directed state graph of K different states. Different states are linked up by 

state transition lines. Each state has its own state transition probability and character generation 

probability. Note that character generation probability describes how likely each nucleotide or 

base pair appears at that location. The different states of the CM, plus their character generation 

probabilities and state transition probabilities, are listed in Table 5, where Δ𝐾
𝐿  and Δ𝐾

𝑅  are the 

number of characters generated to left and right in state v, respectively, 𝑒𝐾(𝑎, 𝑏)  is the 

probability that characters a and b are matched in state k, 𝑒𝐾(𝑎) is the probability that character 

a is generated in state k, and 𝑡𝐾(𝑌) is the transition probability from state k to state Y. 

 

Table 5. The CM states, character generation probabilities and state transition probabilities 

State Rule 𝚫𝑲
𝑳  𝚫𝑲

𝑹  

Character 

generation 

probability 

State 

transition 

probability 

MP 𝑃 → 𝑎𝑌𝑏 1 1 𝑒𝐾(𝑎, 𝑏) 𝑡𝐾(𝑌) 

ML 

𝐿 → 𝑎𝑌 

1 0 𝑒𝐾(𝑎) 𝑡𝐾(𝑌) 

IL n 0 ∏𝑒𝐾(𝑎𝑖)

𝑛

𝑖=1

 𝑡𝐾(𝑌) 

MR 

𝑅 → 𝑌𝑎 

0 1 𝑒𝐾(𝑎) 𝑡𝐾(𝑌) 

IR 0 n ∏𝑒𝐾(𝑎𝑖)

𝑛

𝑖=1

 𝑡𝐾(𝑌) 

D 𝐷 → 𝑌 0 0 1 𝑡𝐾(𝑌) 
S 𝑆 → 𝑌 0 0 1 𝑡𝐾(𝑌) 
B 𝐵 → 𝑆𝑆 0 0 1 1 

E 𝐸 → 𝜖 0 0 1 1 

 

A novel non-coding RNA sequence alignment algorithm 

Improvement of the CM 
According to the recent studies on non-coding RNA families, the optimal alignment of a family 

member’s RNA sequence with the family’s CM is like the length of a consistent structure in 

any state of the model. Here, the ByeB non-coding RNA family is cited to improve the CM 

[14]. This family has 15 members, whose mean length is about 100. 

 

The author constructed a CM and removed the nodes S, B and E, forming a compressed CM 

with 88 nodes. Next, all 15 non-coding RNA sequences were adjusted according to the CK.  

On this basis, the length difference was computed between the subsequences and the uniform 

structure at each state. The results show that the subsequences and the uniform structure had 

basically consistent lengths in each state. 

 

If using the traditional CM, all subsequences need to be compared in the meantime of dynamic 

programming. In the ByeB non-coding RNA family, the upper limit of subsequence length D 

is 150. If the CM is adopted to compute the 88th node, all subsequences whose length deviations 
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between -1 and +149 should be compared. According to the test results of the ByeB family, 149 

of the 150 search sites are useless. 

 

Based on the above analysis, the traditional CM was improved by dividing the secondary 

structure of RNA family into several basic structural units, each of which represents a stem or 

a loop. The basic structural units in the secondary structure of RNA family are presented in  

Fig. 7, where each stem is the cumulation of successive symmetrical bases and each loop is a 

chain sequence bounded by base pairs. 

 

 
Fig. 7 Basic structural units in the secondary structure of RNA family 

 

In Fig. 7, each structural unit is associated with a pair of integers, which are the lower and upper 

limits on the length of the structural unit. The two limits form an interval on the length of each 

structural unit. The addition of the limits is the only difference between the improved CM and 

the original CM. 

 

Algorithm construction 
This subsection mainly develops a non-coding RNA sequence alignment algorithm, which 

enables the improved CM to determine whether a single RNA sequence L belongs to the target 

family. In the algorithm, the length interval of the subsequences derived from each state in the 

CM can be derived from the length limit of each structural unit.  

 

For the improved CM, if state S(k) is not a branch state (B), then the corresponding length 

interval can derived as [𝑑𝑚𝑖𝑛, 𝑑𝑚𝑎𝑥]. In this case, the dynamic programming only needs to 

cover all the subsequences whose length is 𝑑𝑚𝑖𝑛 < 𝑑 < 𝑑𝑚𝑎𝑥 in L. The required computing 

time is 𝑂((𝑑𝑚𝑎𝑥 − 𝑑𝑚𝑖𝑛)𝐿). 
 

Let [𝑠𝑚𝑖𝑛, 𝑠𝑚𝑎𝑥] and [𝑙𝑚𝑖𝑛, 𝑙𝑚𝑎𝑥] be the two states corresponding to state S(k), when the latter 

is a branch state (B). Then, the length interval of the subsequences derived from S(k) is [𝑠𝑚𝑖𝑛 +
𝑙𝑚𝑖𝑛, 𝑠𝑚𝑎𝑥 + 𝑙𝑚𝑎𝑥]. For each sequence whose length falls within the interval, the branch point’s 

position cannot fall beyond 𝑏 = min{𝑠𝑚𝑎𝑥 − 𝑠𝑚𝑖𝑛, 𝑙𝑚𝑎𝑥 − 𝑙𝑚𝑖𝑛}. In this case, the required 

computing time is 𝑂((𝑠𝑚𝑎𝑥 + 𝑙𝑚𝑎𝑥 − 𝑠𝑚𝑖𝑛 − 𝑙𝑚𝑖𝑛)𝑏𝐿). 
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Considering all the K states in the model and the length interval of the derivable subsequences, 

the total computing time required for dynamic programming cannot surpass 𝑂(𝐾∆2𝐿), where 

∆ is the maximum length of all these length intervals. 

 

The length interval of a structural unit can be estimated roughly as follows. Let n and 𝛿 be the 

contribution of each nucleotide in the subsequence to the mean and variance of the interval, 

respectively. If the mean length of the structural unit is l, then every length value 𝑙′in its length 

interval must satisfy: 

 

|𝑙′− 𝑙|/𝑙𝛿 ≤ 𝑐/√𝑛. 

 

Since n, c and 𝛿  are constants, the above formula indicates that the length interval of the 

structural unit is not more than 2𝑐𝑙𝛿/(𝑛√𝑁) = 𝑂(1/√𝑁). If N = 𝑙2, then the length interval 

must be a constant. 

 

Based on the above discussion, the time complexity of dynamic programming can be derived 

as: 

 

∆= 𝑂(𝑔), 
 

where 𝑔 is the number of branch states in the model. Hence, the computing time of dynamic 

programming is not more than 𝑂(𝐾𝑔2𝐿), which is much shorter than that of the traditional CM. 

 

Experimental analysis 
The proposed algorithm was contrasted with the CM-based search algorithm through  

a simulation experiment, using the data from the Rfam database. For each genome family,  

a maximum of 60 sequences were selected. The similarity between every two sequences was 

lower than 80% of the minimum similarity between the seed sequences. Several RNA 

sequences from the same genome family were inserted into randomly generated sequences with 

the same base composition. Then, the proposed algorithm and the CM-based search algorithm 

were applied to search for the inserted sequences. To determine the length limit of each 

structural unit, it is assumed that the lengths of structural units obey the normal distribution. 

The confidence p and constant c were set to 0.01 and 3, respectively. 

 

The precision of the two algorithms was measured by two indices: sensitivity and specificity. 

The sensitivity reflects the percentage of non-coding RNA sequences that can be identified by 

an algorithm out of all sequences in the family. The specificity refers to the percentage of non-

coding RNA sequences correctly identified by an algorithm out of all sequences in the family. 

The sensitivities and specificities of our algorithm and the CM-based search algorithm are 

compared in Table 6 below. 

 

Table 6 shows that our algorithm achieved comparable or high precision, compared with the 

CM-based search algorithm, on all tested non-coding RNA families. This means our approach 

manages to reduce the number of candidate configurations in sequence structure alignment, 

without sacrificing alignment accuracy. 
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Table 6. The comparison of sensitivity and specificity between the two algorithms 

RNA 
Mean 

length 

Sensitivity  

of our 

algorithm 

Specificity  

of our 

algorithm 

Sensitivity  

of the CM-

based search 

algorithm 

Specificity  

of the CM-

based search 

algorithm 

Entero_CRE 62 0.76 0.96 0.82 1 

Entero_OriR 72 0.92 1 1 1 

Let_7 82 1 1 1 1 

Lin_4 69 1 1 1 1 

Purine 101 0.93 0.98 0.91 1 

SECIS 66 0.92 0.86 1 0.96 

S_box 108 0.88 1 1 1 

Tymo 82 1 1 1 0.96 

 

Table 7 compares computing times of our algorithm and the CM-based search algorithm.  

It is obvious that our algorithm computed faster than the contrastive algorithm on all tested non-

coding RNA families. 

 

Table 7. The comparison of the computing time between the two algorithms 

RNA 
Computing time  

of our algorithm 

Computing time  

of the CM-based 

search algorithm 

Entero_CRE 2.32 56.32 

Entero_OriR 3.56 101.76 

Let_7 8.77 151.68 

Lin_4 1.38 128.75 

Purine 3.61 176.21 

SECIS 6.78 182.37 

S_box 22.67 721.89 

Tymo 2.68 180.21 

 

Conclusions 
This paper improves the traditional CM to speed up the non-coding sequence alignment.  

The traditional CM describes the sequence and secondary structure of the non-coding RNA gene 

family through statistical method. In our research, the length of each structural unit in the 

secondary structure was limited, based on the CM’s description of sequence components and 

secondary structure of non-coding RNA genes. The addition of length constraint aims to shorten 

the computing time required for sequence alignment. The experimental results show that our 

approach achieved the same accuracy as the traditional CM in the search for non-coding RNA 

in the genome, despite consuming much less computing time. 
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