
INT. J. BIOAUTOMATION, 2019, 23(4), 403-420 doi: 10.7546/ijba.2019.23.4.000548

Efficient Filtering Framework
for Electrocardiogram Denoising

Tinouna Asma, Ghanai Mouna,
Ouali Mohammed Assam∗, Chafaa Kheireddine

LAAAS Laboratory, Electronics Department
Faculty of Technology
University of Batna 2 Algeria
E-mails: a.tinouna@univ-batna2.dz, m.ghanai@univ-batna2.dz,

mohamedassam.ouali@univ-msila.dz, k.chafaa@niv-batna2.dz

*Corresponding author

Received: February 19, 2018 Accepted: October 16, 2019

Published: December 31, 2019

Abstract: A simple and efficient method to remove white Gaussian noises and physiological
noises from electrocardiogram (ECG) signals is presented. It is based on simple tools usually
used in digital signal processing like moving average filter, median filter, baseline drift
removal and peak detection. We show by several simulations that the proposed algorithm
outperforms significantly conventional median filter and moving average filter and can be
considered as a valid concurrent to the standard wavelet-based method.
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Introduction
The electrocardiogram (ECG) which is the electric activity of the heart provides useful in-
formation for detection, diagnosis and treatment of cardiac diseases. An ECG signal can
be corrupted by different types of noises. In our investigation both white Gaussian noises
and real physiological noises are considered. Latest contributions in this subject are reported
in [4–6, 9, 13, 16, 18, 19].

In the last few years, many researchers have proposed methods and approaches for electrocar-
diogram denoisings [1,3,11,17]. Wavelet Transform is generally employed for ECG denoising
due its ability to characterize time-frequency domain information of a time domain signal. Ya-
dav et al. [19] has proposed a novel Non-local Wavelet Transform (NLWT) method for ECG
signal denoising by exploiting the local and non-local redundancy present in the signal. Smital
et al. [13] developed a method using dyadic Stationary Wavelet Transform (SWT) in the Wiener
filter and also in the estimation of a noise-free signal. The number of decomposition levels and
the impulse characteristics are the two most important factors considered in SWT.

A method based on Sparse Derivatives (SD) was presented in [9] where the artifacts are re-
duced by modeling the clean ECG signal as a sum of two signals whose second and third-order
derivatives are sparse respectively. Tracey and Miller [16] suggested using a Nonlocal Means
(NLM) approach to denoise ECG signals. This method can provide efficient denoising while
minimizing signal distortion. Lahmiri [6] in his work presented a comparative study of ECG
signal denoising by wavelet thresholding in Empirical Mode Decomposition - Discrete Wavelet
Transform (EMD-DWT) and Variational Mode Decomposition - Discrete Wavelet Transform
(VMD-DWT) domains. According to his work, the VMD can outperform the EMD in denois-
ing the ECG signal. In addition, the NLM technique was adopted as a reference model, which
was recently found to be effective in denoising ECG signals.
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Adaptive filtering has been recently proposed for ECG signal denoising. The method presented
in [4] is based on two algorithms. The first is a DWT for denoising, and the second is an Adap-
tive Dual Threshold Filter (ADTF). Wang et al. [18] presented a method based on the Adaptive
Fourier Decomposition (AFD). This method is based on the assumption that the energy of the
pure ECG signal is higher than that of the noise. Kumar et al. [5] proposed a method using
EMD with non-local mean (NLM) for the cancelation of noise. In this method the edges of the
ECG signal are successfully preserved.

I this paper, we propose a new framework for ECG enhancement based on some statistical tools
and basic digital signal processing filters like Median Filter (MF) and Moving Average Filter
(MAF).

Median filter and moving average filter are ones of the most popular methods extensively used
in noise removal. Their window sizes play an important role in their performances. Larger
or smaller windows lead to important distortions. For both filters we notice that if the win-
dow size is small, we get bad filtering performances for signals with slow variations and good
performances for signals with extreme values and fast variations. Unlike with large windows,
filtering is good for signals with slow variations and bad for signals with extreme values and
fast variations (See Table 1).

Table 1. MF and MA window sizes influence on denoising ECG waves

 Moving average filter Median filter 

Small 

window 

size 

QRS waves Good 
QRS 

waves 
Good 

P, T waves Bad P, T waves Bad 

Large 

window 

size 

QRS waves Bad 
QRS 

waves 
Bad 

P, T waves Good P, T waves Good 

Since ECG signals contain both types of variations, slow variations (P and T waves) and fast
variations (QRS waves), so the simple use of MAF or MF cannot be efficient for the denoising
of such signals (with large sliding windows, filtering is good for P and T waves but R-peaks
are strongly attenuated, but with small sliding windows, filtering is bad for P and T waves but
R-peaks are conserved (see Fig. 1).
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Fig. 1 MAF and MF influence on noised ECG
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To address this problem, we propose in this investigation a framework in which we combine
these two filters (MAF with small window size and MF with large window size) with a post-
filter containing a thresholding operation having as a task the restoration of R-peaks attenuated
by MF. To show the effectiveness of the introduced denoising method, several experimentations
were performed over ECG records taken from MIT-arrhythmia database.

Method
The block diagram of the proposed ECG denoising method is shown in Fig. 2. This system is
constituted of three stages: a moving average filter, median filter and a post-filter. In this work,
three key ideas play a crucial role in the extraction of high-resolution cardiac signals from a
noisy ECG: (1) Arrangement of MAF and MF; (2) Sizes of the sliding windows of MAF and
MF and (3) R-peaks restoration.
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filter 

 

Post-filter 
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ECG1 

ECG2 

Threshold  

statistical estimation 

TH 

Clean 

 ECGc 

whole ECG2 

Offline 

Fig. 2 Block diagram of the proposed method

Arrangement of the filters
In this work we have set the filters MAF and MF in series, by putting MA filter in the first
position. There is no rule to do this choice, but according to extensive simulations and tests
based on changing their positions (in some simulations, MA was set in the first position and in
other simulations MA was set in the second position) it was found that when MAF occupy the
first position the performances will be better.

Therefore, the arrangement of MF and MAF must be done as we show in Fig. 2, which means
that the noised ECG must pass first by MAF and then pass through MF (we notice that with the
opposite arrangement, performance degrades).

MAF design
A common technique for improving the signal-to-noise ratio of signal evolving with time is the
MAF. In essence, the kth value is replaced with the arithmetic mean of all the values in the range
(k− r) to (k+ r) of a moving window of rank r and width (2r+ 1).

Our experimental results show that MAF has a good performance for QRS segments denoising
when using low level of window sizes (see Table 1), which confirm the fact that MAF with
small window size can be very benefit for the denoising of these segments. Therefore, this
configuration is very efficient for denoising segments in ECG with high variations such as QRS
segments.
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In this first stage as shown in Fig. 2, moving average filtering is done with window size 3
(r = 1), which is a low size in order to obtain good performances for denoising QRS segments.
Mathematically, this filter is given by:

ECG1(k) =
1
3

1

∑
i=−1

ECGn(k+ i), (1)

where ECGn is the input noised ECG signal, ECG1 the output ECG signal obtained by passing
ECGn through MAF.

Note that this stage does not denoise effectively the P and T segments, and this is the reason to
consider the second stage (see Fig. 2) which will be discussed in the following subsection.

MF design
The median filter is a nonlinear digital filtering technique, often used to remove noise from
signals. It’s a nonlinear local filter whose output value is the middle element of a sorted array of
amplitude values from the filter window (it replaces the signal value with the median of those
values).

This filter is set to be a second stage in the proposed framework in order to overcome the
drawback of the first stage which is the low denoising quality for segments P and T. Note that
based on our simulated experimentations on real ECG signals, it is found that for choosing large
window size for this filter, the denoising performances are very satisfactory for the denoising
of segments P and T. This fact confirms that this construction is very efficient for denoising
segments in ECG with low variations.

In this second stage, ECG1 is passed through a median filter with large window size 11. This
operation is implemented by sliding the window of size 11 over signal ECG1 one sample at
time. MF procedure is given by:

ECG2(k) = median[ECG1(k−5), ECG1(k−4), . . . ,
ECG1(k), . . . , ECG1(k+ 4), ECG1(k+ 5)],

(2)

where ECG2 is the output ECG signal obtained by passing ECG1 through the MF.

It is known in the literature that the MF truncate the high peaks of any signal (see Fig. 3) [14],
therefore, it will destroy the R-peaks due their fast variations, as a consequence, R-peaks are
severally attenuated (the reason is they are considered as outliers by MF), which will cause
the loose of some signal details. To address this problem, a post filtering processing is needed
which is the purpose of the next subsection.

Stages MAF and MA are summarized in Table 1 in which we show their advantages and draw-
backs.

Post-filter design and R-peaks restoration
Note that the signal ECG2 is well denoised except it has R waves truncated, which gives a
distorted ECG signal (See Fig. 4). So, the main goal of the third stage is to allow the restoration
of loosed R-peaks caused by the median filter. The third stage is constituted of two blocks, a
post filter block (Fig. 5) and a threshold statistical estimation block (Fig. 6).

Post-filter. Post-filter block is composed of a thresholding processing and another MF with
small window size. Thresholding sub block has three inputs: the clean but distorted ECG2
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Fig. 3 Truncation effect of MF
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Fig. 4 MF effect on R-peaks

signal, the noised ECGn signal and a threshold value T H (delivred from the threshold statisti-
cal estimation block) and one output denoted by ECG3 (Fig. 5). During thresholding process,
loosed R-peaks are restored via a thresholding module using a threshold value T H which phys-
ically represents an ECG amplitude measured in [mV] or in binary level.

Restoration is achieved by the following thresholding process on both ECG2 and ECGn as
follows:

ECG3(k) =

{
ECG2(k) if ECG2(k) < T H
ECGn(k) if ECG2(k) > T H

(3)

Eq. 3 works as follows: since R-peaks are strongly attenuated in ECG2, we can fix some
threshold T H located on R-wave amplitude of the denoised ECG2 with which we can do the
following correction:
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Fig. 5 Internal framework of the post-filter

• ECG2(k) smaller than T H means that we can conserve ECG2(k) amplitudes for all
ECG’s waves (ECG3(k) = ECG2(k)).

• ECG2(k) greater than T H means that R-peaks of ECG2(k) are attenuated, consequently,
we must restore them by replacing ECG2(k) R-peaks by those of measurements ECGn(k)
(ECG3(k) = ECGn(k)).

Eq. (3) can introduce discontinuities or spikes during R-peaks restoration. To overcome this
problem, another MF with small window size is added after the thresholding processing block
in order to smoothing such discontinuities.

Threshold estimation
The threshold T H is used to restore the loosed R-peaks as given in Eq. (3). It is determined
automatically in an off line manner by the threshold statistical estimation block shown in Fig. 6
using the whole noised signal ECGn as an input.

 

R-peaks  

detection 

Statistical estimation 

and threshold selection 

noised 

ECGn 

IB-DCTFM-based 

baseline removal   

TH 

Fig. 6 Threshold statistical estimation (offline operation)

Let’s define the threshold T H as a function of amplitudes of R-peaks in ECGn, so an R-peak
detection is needed and will be performed by the second sub block in Fig. 6.

There is an unavoidable difficulty that one can encounter in R-peaks detection which is the
presence of low-frequency component in ECG (from 0.05 Hz to 0.5 Hz), causing the wandering
of the isoelectric line called baseline. This base line wandering is caused by patient breathing
or movement, cable moving during the recording, etc. This phenomenon will also cause the
wandering of the R-peaks as shown in Fig. 7. which will make the task of R-peaks detection
more difficult.
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Baseline wandering removal
Baseline wander (BW) is a common low frequency artifact in electrocardiogram signals. To fa-
cilitate R-peaks detection, BW needs to be reduced or removed. This removing action will be
assured by sub block 1 in Fig. 6. Generally, methods used to reduce this kind of disturbance
can be divided into two groups: methods based on BW estimation and methods based on high-
pass filtering. The second approach will be adopted in this paper where we consider the index
blocked DCT filtering method (IB-DCTFM) [12] in which the frequency index K is chosen as:

K = 2×N× f0/Fs, (4)

where N is time domain data length, f0 frequency of index K and Fs the sampling frequency.
By choosing f0 = 0.5 Hz which is the max of low-frequency components in ECG, we can
eliminate the frequency range of the ECG in which the baseline wandering lie just by changing
all DCT indexes bellow K with zero. By using inverse DCT transformation, an ECG signal
ECG2 without baseline wandering is obtained (DCT filtered).

R-peaks detection
Noised ECGn DCT-filtered will be passed to R-peaks detection sub block (second sub block in
Fig. 6) which will give us a vector Rp of ECGn R-peaks with length N. For more details about
the used R-peaks detection method, see our recently published method in [10].

Threshold estimation
Assuming that components of Rp are normally distributed (which is checked by plotting his-
tograms of Rp for most considered ECG signals in MIT-BIH arrhythmia database), then expec-
tation value and variance of Rp will be µ = E(Rp) and σ2 = E[(Rp−µ)2], respectively.

Expectation value is estimated by using the following mean formula:

µ =
∑

N
i=1 Ri

p

N
. (5)

It is known in statistics that 99.74% of Rp components fall within µ±3σ , therefore the follow-

409



INT. J. BIOAUTOMATION, 2019, 23(4), 403-420 doi: 10.7546/ijba.2019.23.4.000548

ing threshold T H is proposed:

T H = µ−3σ . (6)

Intuition behind choosing this threshold is shown in Fig. 8. This choice will assure that TH will
be below 99.74% of peaks.
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Fig. 8 R-peaks wandering and its influence on TH selection

Mean value estimation and threshold selection are done in the third sub block of threshold
statistical estimation (Fig. 6). Equation. 6 will guarantee that 99.87% of attenuated R-peaks
will be restored.

Simulation results
ECG signals used in this experiment are taken from MIT-BIH arrhythmia database which is
recorded at a sampling rate of 360 Hz and resolution of 11 bits/sample [7].

In order to check denoising performances, we compare our results with those obtained with
MAF, MF and wavelet-based method.

First we use record 103.dat as a clean ECG signal, and then we add to it a white noise and two
real noise records taken from MIT-BIH noise stress test database [8] to generate a noisy ECG
with various input SNRs (signal to noise ratio). The used noise stresses are the muscle artifact
“ma” record and the electrode motion “em” record.

For evaluation purposes, Signal to Error Ratio (SNR) and Mean Squared Error (MSE) criterions
will be used. These evaluators are defined as follows:

SNRin = 10× log
(

∑i |xc(i)|2

∑i=1 |n(i)|2

)
, (7)

SNRout = 10× log
(

∑i |xc(i)|2

∑i=1 |xc(i)− x̂(i)|2

)
, (8)
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MSE = ∑
i=1

(xc(i)− x̂(i))2

N
, (9)

where, xc is the clean ECG signal, x̂ is the denoised ECG signal, and n is the noise and N the
number of samples.

Experiment results for record 103.dat are shown in Fig. 9, where for each input SNR, 100 monte
Carlo runs are performed to obtain an average output SNR value for each filter.
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Fig. 9 Average output SNR (dB) versus different input SNRs (dB)
of ECG record 103.dat for discussed filtering methods

Fig. 9 shows clearly the superiority of the proposed method compared to MAF and MF, and
how can be very close to wavelet-based method implemented here as proposed in [?, 15] with
4-level discrete wavelet transform (DWT) decomposition, using bior4.4 wavelet (CDF 9/7) and
hard universal thresholding.

Table 2 lists the SNRs of the proposed algorithm and wavelet-based method where for the
real ECG signals 103.dat, 113.dat, 122.dat and 221.dat. We can see that the proposed method
achieves performance better (or similar) than wavelet-based method.

The same ascertainment is also confirmed from Table 3 where we use another type of perfor-
mance measure which is the MSE.

For a visual inspection, we show in Figs. 10-13 the denoising efficiency of the proposed method
on records 103.dat, 113.dat, 122.dat and 221.dat, respectively.
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Table 2. Denoising performance (SNR) of the proposed method and wavelet-based method for
several records taken from MIT-BIH database

ECG 

file 

Input SNR 

-2dB 

Input SNR 

5dB 

Input SNR 

10dB 

Proposed DWT Proposed DWT Proposed DWT 

103.dat 7.0461 5.3553 13.2733 12.1109 16.8924 16.1826 

113.dat 5.1634 5.8560 12.1568 12.5063 16.6713 16.4477 

122.dat 7.0983 5.9144 13.3726 12.2962 17.3730 15.7040 

221.dat 7.0713 6.3926 13.5739 11.8226 17.8490 16.6016 

 

Table 3. Denoising performance (MSE) of the proposed method and wavelet-based method for
several records taken from MIT-BIH database.

ECG 

file 

Input SNR 

-2dB 

Input SNR 

5dB 

Input SNR 

10dB 

Proposed DWT Proposed DWT Proposed DWT 

103.dat 1870.5 2086.8 260.2584 382.0813 120.6819 162.1919 

113.dat 3827.2 3504.8 589.2843 639.3415 142.3947 197.1289 

122.dat 2209.3 2398.5 480.9522 550.4340 98.2579 192.1519 

221.dat 1395.4 1461.1 195.0584 302.1061 86.5746 114.9457 
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Fig. 10 ECG denoising using the proposed method with input SNR=5 dB for ECG 103.dat

413



INT. J. BIOAUTOMATION, 2019, 23(4), 403-420 doi: 10.7546/ijba.2019.23.4.000548

0 500 1000 1500 2000 2500 3000 3500 4000 4500
−200

0

200

400

600
Original 113.dat clean ECG signal

E
C

G
 A

m
pl

itu
de

Samples

0 500 1000 1500 2000 2500 3000 3500 4000 4500
−200

−100

0

100

200
Corrupting noise with SNR = 5 dB

N
oi

se
 A

m
pl

itu
de

Samples

a)

0 500 1000 1500 2000 2500 3000 3500 4000 4500
−400

−200

0

200

400

600

Samples

E
C

G
 A

m
pl

itu
de

Corrupted 113.dat ECG signal

0 500 1000 1500 2000 2500 3000 3500 4000 4500
−200

0

200

400

600

Samples

E
C

G
 A

m
pl

itu
de

Denoised 113.dat ECG signal

b)

414



INT. J. BIOAUTOMATION, 2019, 23(4), 403-420 doi: 10.7546/ijba.2019.23.4.000548

0 500 1000 1500 2000 2500 3000 3500 4000 4500
−200

−100

0

100

200
E

rr
or

 A
m

pl
itu

de

Samples

Error between the original clean ECG and denoised ECG

1300 1400 1500 1600 1700 1800 1900
−200

0

200

400

E
C

G
 A

m
pl

itu
de

Samples

Zoomed superposition of the corrupted ECG and the denoised ECG

 

 

Denoised ECG
Corrupted ECG

c)

Fig. 11 ECG denoising using the proposed method with input SNR=5 dB for ECG 113.dat
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Fig. 12 ECG denoising using the proposed method with input SNR = 10 dB for ECG 122.dat
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Fig. 13 ECG denoising using the proposed method with input SNR = 10 dB for ECG 221.dat

Conclusion
In this paper we have shown that with judicious combination of conventional digital signal
processing tools like median filter, moving average filter, R-peaks detection, and statistical esti-
mation, satisfactory ECG denoising results have been obtained.

The results obtained with this structure outperforms the results obtained with moving average
or median filter taken alone and can be an important concurrent to the state of the art standard
wavelet-based method implemented in Matlab.
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