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Abstract: Sequence alignment is a key link of bioinformatics analysis. The basic local 

alignment search tool (BLAST) is a popular sequence alignment algorithm with high 

accuracy. However, the BLAST is inefficient in comparing and analyzing a massive amount 

of gene sequencing data. To solve the problem, this paper designs a distributed parallel 

BLAST method called SparkBLAST, based on the big data technique Spark. Under the  

in-memory computing framework Spark, SparkBLAST identifies the task of sequence 

alignment, divides the sequence dataset, and compares the sequence data. The Apache 

Hadoop YARN was adopted to task scheduling and resource allocation. Finally, the 

SparkBLAST was compared with standalone BLAST through experiments. The results show 

that SparkBLAST realized the speedup ratio of 3.95, without sacrificing the accuracy.  

In other words, SparkBLAST greatly outshines the standalone BLAST in calculation 

efficiency. The research findings provide bioinformatics researchers a highly efficient tool 

for sequence alignment. 

 

Keywords: Sequence alignment, Basic local alignment search tool, Spark, Parallelization, 

Speedup. 

 

Introduction 
In the field of bioinformatics, the gene sequencing data are growing at an exponential rate, 

thanks to the next-generation sequencing technology. As a result, sequence alignment has 

become the key link of sequence analysis. One of the most popular algorithms for sequence 

alignment is the basic local alignment search tool (BLAST) [1]. However, the BLAST is 

inefficient in comparing and analyzing a massive amount of gene sequencing data. The low 

efficiency cannot satisfy the surging demand for the analysis of genetic data, slowing down 

the progress in bioinformatics. 

 

The BLAST algorithm has been repeatedly improved from the perspective graphics 

processing unit (GPU). In 2011, Vouzis and Sahinidis [20] modified the BLAST algorithm 

based on GPU technology, and created the GPU-BLAST algorithm, which is 3 times more 

efficient than the BLAST algorithm. In 2017, Ye et al. [22] developed the heterogeneous 

BLAST (H-BLAST) algorithm with 2 GPU threads, and verified that the H-BLAST is faster 

than the 16-thread BLASTX, which is developed by the National Center for Biotechnology 

Information (NCBI). In addition, the H-BLAST was found to be 1.5 to 4 times faster than 
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GPU BLAST. In 2011, Liu et al. [13] proposed the protein-protein BLAST (BLASTP) under 

compute unified device architecture (CUDA) based on GPU technology, and proved that the 

CUDA-BLASTP achieved a speedup of 2-3 times. In 2017, Khare et al. [9] created a new 

pattern search for DNA sequences called HCUDABLAST, which combines the multi-core 

parallelism of the GPU with the scalability of the Hadoop framework. In 2017, Rani and 

Gupta [19] put forward the CLUS-GPU-BLASTP algorithm. On a single computing node, the 

CLUS-GPU-BLASTP is 2.1 times faster than the GPU-BLAST; on a cluster of 12 computing 

nodes, the CLUS-GPU-BLASTP is 13.2 times faster than the latter. Moreover, the  

CLUS-GPU-BLASTP is 7.4-8.2 times faster than the standard single-thread NCBI-BLAST. 

 

In recent years, many have attempted to improve the BLAST algorithm based on distributed 

design, big data technology and cloud computing. In 2002, Bjornson et al. [3] proposed the 

TurboBLAST algorithm with a distributed design, which relies on distributed computing to 

realize efficient calculation. In 2009, Matsunaga et al. [14] developed the CloudBLAST 

method on a cloud computing platform. In the CloudBLAST, virtual machines (VMs) and 

virtual network cloud platforms are operated under the MapReduce computing framework, 

while subtask division is conducted to realize the parallel computing of the BNC2 gene 

provided by the NCBI. In 2011, Kent [8] invented the BLAST-like in the spirt of distributed 

computing: (1) The large task file and index database file of the large dataset are divided into 

blocks of the same size; (2) The query sequence is constructed into a word list; (3) The word 

list is scanned and compared in details. In 2012, Yang et al. [21] implemented the 

MapReduce-BLAST [10] algorithm based on Hadoop platform, and realized an efficient and 

scalable sequence alignment platform. In 2013, Meng et al. [15] created an efficient and 

reliable parallel BLAST algorithm under the Hadoop-based MapReduce computing 

framework. 

 

To sum up, there are two ways to improve the BLAST algorithm: GPU-based improvement 

and big data-based parallelization. The GPU-based improvement greatly enhances the 

computing efficiency. However, few institutes can afford to buy the costly GPUs required for 

the improvement. The big data-based parallelization is easy and cheap to implement, because 

the distributed design has a relaxed requirement on hardware. But the parallelization mostly 

takes place under the MapReduce computing framework. This disk-based framework has 

input/output (IO) limitations, and faces a low computing efficiency, if the disks are read and 

written frequently. 

 

To overcome the defects of the above methods, this paper proposes a distributed parallel 

BLAST algorithm called SparkBLAST, based on Spark [2, 13]. Under the in-memory 

computing framework Spark, SparkBLAST identifies the task of sequence alignment, divides 

the sequence dataset, and compares the sequence data. The Apache Spark YARN [17] was 

adopted to task scheduling and resource allocation. Finally, the SparkBLAST was compared 

with standalone BLAST through experiments. The results show that the proposed algorithm 

can improve the computing efficiency, without sacrificing the accuracy [6]. The research 

results greatly promote the development of bioinformatics. 

 

Spark-based parallelization of BLAST 
Spark is an open-source distributed computing framework developed at the University of 

California, Berkeley’s AMP Lab. There are multiple advantages of this famous framework. 

First, Spark enables in-memory data sharing across Directed Acyclic Graph (DAG). Second, 

Spark adopts a memory cache mechanism, which reduces frequent IO reads and writes and 

improves computing efficiency. Third, Spark supports many operating modes, and its 
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resources can be managed by YARN and Apache Mesos [16]. Fourth, Spark supports various 

distributed file systems, e.g. Hadoop distributed file system (HDFS) and the Cassandra file 

system (CFS) [12]. Fifth, Spark is compatible with multiple languages, namely, Scala, 

Python, and Java.  

 

Official tests show that Spark has a much better computing framework than MapReduce: 

Spark in-memory computing is more than 100 times faster than MapReduce; even if  

disk-based computing is adopted, Spark remains 10 times more efficient than MapReduce.  

As a result, Spark-based parallel computing could achieve a high efficiency. 

 

Based on NCBI’s BLAST+ [4, 18], this paper develops a highly accurate distributed parallel 

BLAST algorithm, using the machine learning pipeline of Spark, and the Spark cluster.  

The proposed algorithm, denoted as SparkBLAST mainly consists of two parts: data 

preparation and parallel computing. Before data processing, the data format was unified as 

FASTA. 

 

Data preparation 
Two files should be inputted for comparison in BLAST: the target database file and a 

sequence alignment file. The former helps to set up the index database, while the latter 

contains multiple data on nucleic acid or protein sequence in FASTA format. In this research, 

the Spark cluster is composed of one master node (name node) and four slave nodes (data 

nodes). The name node manages the data of the cluster, while data nodes are responsible for 

data storage.  

 

Before parallel computing, an index database of the reference genome was established on the 

local file system of the name node, and then distributed to the same directory of all data nodes 

in the cluster through remote secure copy (scp-r). Next, the sequence alignment file was 

uploaded to the HDFS as the input of parallel computing. As shown in Fig. 1, a data source is 

provided for parallel computing. 

 

 

Fig. 1 Distribution of target database files 

 

Distributed parallel computing of SparkBLAST 
As shown in Fig. 2, the distributed parallel computing of SparkBLAST stores the sequencing 

data in HDFS in a scalable and distributed manner. The YARN serves as the cluster resource 

manager for task scheduling and resource allocation. The in-memory computing framework 

Spark is taken as the data processing framework to split the input sequence file into 

fragments. Meanwhile, the machine learning pipeline of Spark is adopted to call the external 

application BLAST+ to perform distributed parallel computing on the fragmented data.  

The computed results were combined and written to the local disk. Overall, the distributed 

parallel computing of SparkBLAST is implemented in four steps: task division, task 

allocation, parallel computing, and file merging. 
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Fig. 2 Distributed parallel computing of SparkBLAST 
 

Task division 

First, the sequence file for comparison is uploaded to the HDFS via the user terminal by file 

transfer tools. Then, the sequence file serves as a shared data source for all computing nodes. 

Scala is chosen as the development language, for its high operating efficiency and 

performance on Spark. Before BLAST parallel computing, the Spark application driver is 

started programmatically. Then, the sequence file from HDFS is read, and the task of the 

sequence file is divided by the regular delimiter between sequences. The resulting subtasks 

are grouped into different task sets, according to the number of computing nodes in the 

cluster. The task sets are of the same size, because Spark adopts even partitioning by default. 

The main objective of this step is to split large tasks into fine-grained subtasks. 
 

Task allocation 

The YARN resource manager is adopted to allocate resources and distributes tasks. Before 

running Spark cluster, the operating mode of YARN is specified to set up a resource manager 

for cluster computing. Then, YARN will perform resource allocation and task distribution, 

according to the user-defined cluster parameters or the preset parameters of computing 

resources. In this step, the task sets obtained in the first step are distributed to each computing 

node in the cluster, preparing for parallel computing. 
 

Parallel computing 

The machine learning pipeline of Spark is started to pass the execution commands to the all 

computing nodes in Spark cluster, triggering the calculation script of the BLAST. Then, all 

computing tasks are initiated by calling the local application BLAST+ on each node.  
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Each task is executed in multiple processes, i.e. the set of subtasks is processed in parallel by 

the corresponding node. Finally, the result files are stored in the specified HDFS file 

directory. 
 

File merging 

The getmerge command of Hadoop is called to merge the result files of each computing node. 

The merged files are stored in the local file system of the master node, which are easy to view 

and download. 
 

Advantages 
This parallel computing method, denoted as SparkBLAST, enjoys the following advantages:  

1) The parallel computing of the BLAST is realized without changing the NCBI’s 

BLAST+ software application.  

2) The HDFS of Hadoop cluster was taken to store the files, creating a highly reliable 

and scalable storage system for sequencing data.  

3) The parallel computing of the BLAST was implemented under the in-memory 

computing framework Spark, providing a convenient and efficient tool for 

bioinformatics comparisons. 

4) The analyst only needs to upload the comparison/query file through the user terminal. 

The parallel computing method is simple and highly automatic. 

5) The flexible and versatile design supports all BLAST algorithms in BLAST+ 

software, namely, BLASTn, BLASTP [7] and BLASTX [5].  
 

Comparative analysis 
To verify its performance, the SparkBLAST with a four-node cluster was compared with the 

standalone BLAST through 10 experiments. The results of the two algorithms are contrasted 

in Fig. 3, where the speed is the mean value of the ten experiments. As shown in Fig. 3, when 

the data files were small, SparkBLAST was slightly less efficient than the standalone BLAST, 

for the Spark cluster spends time in network communication between data nodes. With the 

growing size of data files, however, SparkBLAST became increasingly superior to the 

standalone algorithm. For example, when the data files were about 1 GB in size, the 

computing efficiency of SparkBLAST was 3.95 times that of the standalone BLAST, close to 

the theoretical value of 4. The results show that the Spark cluster-based parallelization can 

greatly enhance the computing efficiency of the BLAST.  

 

 
Fig. 3 Speed comparison between standalone BLAST and SparkBLAST 
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Sequence alignment experiments 

Experimental data 
For BLAST alignment experiments, the human gene sequencing data published by the NCBI 

were selected as the sequence file, and the human reference genome data 

(GCF_000001405.37_GRCh38.p11_genomic.fna, data size 3.2 GB) were taken as the target 

database file. The selected sequence files are of different sizes: 6.1 MB, 68 MB, 158.7 MB, 

503.5 MB, and 1024 MB. For comparability, each sequence was controlled at 200 bp in 

length. For the 9.4 MB file, no data of the length of 200 bp was found in humans. Thus, the 

300 bp was set as the length of that sequence. The details of each sequence file are given in 

Table 1 below. 

 

Table 1. Details on sequence files 

Name 
Number of sequences, 

(strips) 

Sequence length, 

(bp) 

File size, 

(MB) 

SRR4253374 32635 300 9.4 

SRR7351575 341512 200 68.6 

SRR7359601 793898 200 158.7 

SRR7369074 2560486 200 503.5 

SRR7368879 5102574 200 1024 

 

Experimental environment 
Our experiments were conducted on the VMware [10], a virtualized big data platform in the 

lab of Big Data Processing Center in Inner Mongolia Agricultural University. A total of five 

virtual machines (VMs) were deployed on the platform, acting as the computing nodes.  

The VMs operate in the 64bit Centos 6.5. The application software includes: NCBI’s BLAST 

2.6.0+, Hadoop 2.5.2, Spark 1.2.0, JDK 1.7 and Scala 2.10.6.  

 

As such, the configurations of the VMs (computing nodes) in the Spark cluster is as follows:  

Name node – Node 01, Node 02, Node 03, Node 04, Node 05;  

Operating system – Centos 6.5; Memory – 8 GB; CPU – 4;  

BLAST – BLAST 2.6.0+; Hadoop – Hadoop-2.5.2;  

Spark – Spark-1.2.0; JDK – JDK-7u25.  

 

Several experiments were conducted on the 5-node Spark cluster, and another was performed 

on the standalone BLAST. 

 

Design of standalone experiment 
For comparison, a VM with the same configuration as the five VMs was created, and 

deployed on the virtualized big data platform, creating the environment for the standalone 

BLAST experiment. Then, an operating system was installed to meet the requirements of the 

Spark cluster. Then, the BLAST+ 2.6.6, which is the same as that for the Spark cluster, was 

downloaded from the NCBI official website, and installed onto cluster nodes. Next, the 

authors downloaded high-throughput sequencing files and human reference genome files, 

which are consistent with those for the Spark cluster, from the NCBI official website. On this 

basis, a local target index database of the reference genome files was set up. The type of the 

database is denoted as “nucl”, for the nucleic acid sequences were adopted for comparison. 

The command to build the index database is as follows: 
 

#makeBLASTdb -in DB.fa -dbtype nucl -parse_seqids -out human 
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Furthermore, sequence files of different sizes were downloaded for the standalone BLAST 

experiment. The default parameters were used in the comparison command: 
 

#BLASTn -db DB -outfmt 7 -num_threads 8 -query query.fasta -out output 

 

The results of the standalone BLAST experiment are given in Table 2. The relationship 

between data file size and operating time is described in Fig. 4. 

 

Table 2. Results of standalone experiment 

Name SRR4253374 SRR7351575 SRR7359601 SRR7369074 SRR7368879 

File size (MB) 9.4 68.6 158.7 503.5 1024 

Time (s) 28 193 495 1726 3344 

 

 
Fig. 4 The file size-time relationship of standalone experiment 

 

Design of cluster experiments 
First, the Hadoop and Spark cluster were started, and gene sequence alignment files of 

different sizes were uploaded to the HDFS. Then, an index database of human reference 

genome data files was created, and the files in the index database were distributed to the same 

local directory of each computing node for sequence alignment. After that, the comparison 

task was submitted to the Spark cluster via the user terminal for parallel comparison of 

BLAST [11]. The submission commands are as follows: 
 

#Spark-submit --master yarn-client --executor-memory $executor_memory  

--driver-memory $driver_memory --num-executors $num_executors  

--executor-cores $executor_cores --driver-cores $driver_cores  

--class SparkBLAST /SparkBLAST.jar $splits_num "BLASTn  

-db /target_DB -outfmt 7 -num_threads 8 query_file out_file; hdfs dfs -

getmerge out_file local_file. 

 

The results of the SparkBLAST experiments are given in Table 3. The relationship between 

data file size and operating time is described in Fig. 5. 
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Table 3. Results of cluster experiments 

Name SRR4253374 SRR7351575 SRR7359601 SRR7369074 SRR7368879 

File size, (MB) 9.4 68.6 158.7 503.5 1024 

Time, (s) 55 108 190 471 846 

 

 
Fig. 5 The file size-time relationship of cluster experiments 

 

Results comparison 
Both standalone experiment and each cluster experiment were repeated ten times. Table 4 

compares the results of the standalone experiment and those of cluster experiments.  

The results are the mean values of the ten repeated experiments. 

 

Table 4. Comparison of results between standalone experiment and cluster experiments 

Name SRR4253374 SRR7351575 SRR7359601 SRR7369074 SRR7368879 

File size, (MB) 9.4 68.6 158.7 503.5 1024 

Time of 

standalone, (s) 
28 193 495 1726 3344 

Time of 

cluster, (s) 
55 108 190 471 846 

Speed of 

standalone, 

(MB/s) 

0.34 0.36 0.32 0.29 0.30 

Speed of 

cluster, (MB/s) 
0.17 0.64 0.83 1.07 1.21 

 

Fig. 6 compares the file size-time relationships between standalone and cluster experiments. 

With the growing size of sequence file, the Spark cluster consumed a much shorter time to 

process the same dataset than the standalone BLAST. At the beginning, the standalone 

BLAST and SparkBLAST consumed basically the same amount of time. With the increase in 

file size, the time consumed by standalone BLAST was 3.95 times that of SparkBLAST, close 

to the theoretical value of 4. Hence, SparkBLAST is significantly more efficient than the 

standalone BLAST, when the dataset is large. 
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Fig. 7 presents the speedup ratio of each data file. It can be seen that the SparkBLAST is 

much more efficient than the standalone BLAST. With the growth in file size, the speedup 

ratio gradually reached 3.95. Thus, our parallel design provides an efficient and fast BLAST 

application for sequence comparison. 

 

 
Fig. 6 Comparison between the file size-time relationships  

of standalone experiment and cluster experiments 

 

 
Fig. 7 The relationship between data size and speedup ratio 

 

Next, the amounts of data processed by the standalone BLAST and SparkBLAST per unit 

time were computed based on the experimental results, as a sign of the speed of data 

processing. Fig. 8 compares the processing speeds of the standalone and cluster experiments. 

The comparison clearly shows that the speed of the standalone BLAST remained basically the 

same, while that of SparkBLAST increased significantly with the growing data size.  

Overall, the SparkBLAST greatly outperformed the standalone BLAST in speed when 

processing largescale data, but had no significant advantage when processing small scale data. 
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Fig. 8 Comparison between the speed-data size relationships  

of standalone experiment and cluster experiments 

 

Conclusions 
Based on Spark cluster, this paper designs a parallel BLAST algorithm for sequence 

alignment. The sequence data were stored in the HDFS, a distributed storage system with high 

scalability, reliability and availability. The proposed SparkBLAST algorithm was compared 

with the standalone BLAST through experiments. The comparison shows that the 

SparkBLAST had obvious advantages in processing largescale data, but the advantages were 

not obvious when processing small scale data. This is because SparkBLAST spends lots of 

time in communication between computing nodes in the cluster, when it computes small data 

files. Our algorithm provides important new insights into parallel and scalable analysis of 

genetic data. 
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