
 INT. J. BIOAUTOMATION, 2020, 24(1), 87-98 doi: 10.7546/ijba.2020.24.1.000767

87

Spark-based Parallelization

of Basic Local Alignment Search Tool

Hui Wang1,2, Leixiao Li1,2*, Chengdong Zhou1,2, Hao Lin1,2, Dan Deng1,2

1College of Data Science and Application

Inner Mongolia University of Technology

Hohhot 010080, China

E-mails: 122700185@qq.com, llxhappy@126.com, 1452082002@qq.com,

 suzukaze_aoba@foxmail.com, dengdan2020@163.com

2Inner Mongolia Autonomous Region Engineering &

Technology Research Center of Big Data Based Software Service

Inner Mongolia University of Technology

Hohhot 010080, China

*Corresponding author

Received: September 03, 2019 Accepted: February 21, 2020

 Published: March 31, 2020

Abstract: Sequence alignment is a key link of bioinformatics analysis. The basic local

alignment search tool (BLAST) is a popular sequence alignment algorithm with high

accuracy. However, the BLAST is inefficient in comparing and analyzing a massive amount

of gene sequencing data. To solve the problem, this paper designs a distributed parallel

BLAST method called SparkBLAST, based on the big data technique Spark. Under the

in-memory computing framework Spark, SparkBLAST identifies the task of sequence

alignment, divides the sequence dataset, and compares the sequence data. The Apache

Hadoop YARN was adopted to task scheduling and resource allocation. Finally, the

SparkBLAST was compared with standalone BLAST through experiments. The results show

that SparkBLAST realized the speedup ratio of 3.95, without sacrificing the accuracy.

In other words, SparkBLAST greatly outshines the standalone BLAST in calculation

efficiency. The research findings provide bioinformatics researchers a highly efficient tool

for sequence alignment.

Keywords: Sequence alignment, Basic local alignment search tool, Spark, Parallelization,

Speedup.

Introduction
In the field of bioinformatics, the gene sequencing data are growing at an exponential rate,

thanks to the next-generation sequencing technology. As a result, sequence alignment has

become the key link of sequence analysis. One of the most popular algorithms for sequence

alignment is the basic local alignment search tool (BLAST) [1]. However, the BLAST is

inefficient in comparing and analyzing a massive amount of gene sequencing data. The low

efficiency cannot satisfy the surging demand for the analysis of genetic data, slowing down

the progress in bioinformatics.

The BLAST algorithm has been repeatedly improved from the perspective graphics

processing unit (GPU). In 2011, Vouzis and Sahinidis [20] modified the BLAST algorithm

based on GPU technology, and created the GPU-BLAST algorithm, which is 3 times more

efficient than the BLAST algorithm. In 2017, Ye et al. [22] developed the heterogeneous

BLAST (H-BLAST) algorithm with 2 GPU threads, and verified that the H-BLAST is faster

than the 16-thread BLASTX, which is developed by the National Center for Biotechnology

Information (NCBI). In addition, the H-BLAST was found to be 1.5 to 4 times faster than

mailto:1452082002@qq.com
mailto:dengdan2020@163.com

 INT. J. BIOAUTOMATION, 2020, 24(1), 87-98 doi: 10.7546/ijba.2020.24.1.000767

88

GPU BLAST. In 2011, Liu et al. [13] proposed the protein-protein BLAST (BLASTP) under

compute unified device architecture (CUDA) based on GPU technology, and proved that the

CUDA-BLASTP achieved a speedup of 2-3 times. In 2017, Khare et al. [9] created a new

pattern search for DNA sequences called HCUDABLAST, which combines the multi-core

parallelism of the GPU with the scalability of the Hadoop framework. In 2017, Rani and

Gupta [19] put forward the CLUS-GPU-BLASTP algorithm. On a single computing node, the

CLUS-GPU-BLASTP is 2.1 times faster than the GPU-BLAST; on a cluster of 12 computing

nodes, the CLUS-GPU-BLASTP is 13.2 times faster than the latter. Moreover, the

CLUS-GPU-BLASTP is 7.4-8.2 times faster than the standard single-thread NCBI-BLAST.

In recent years, many have attempted to improve the BLAST algorithm based on distributed

design, big data technology and cloud computing. In 2002, Bjornson et al. [3] proposed the

TurboBLAST algorithm with a distributed design, which relies on distributed computing to

realize efficient calculation. In 2009, Matsunaga et al. [14] developed the CloudBLAST

method on a cloud computing platform. In the CloudBLAST, virtual machines (VMs) and

virtual network cloud platforms are operated under the MapReduce computing framework,

while subtask division is conducted to realize the parallel computing of the BNC2 gene

provided by the NCBI. In 2011, Kent [8] invented the BLAST-like in the spirt of distributed

computing: (1) The large task file and index database file of the large dataset are divided into

blocks of the same size; (2) The query sequence is constructed into a word list; (3) The word

list is scanned and compared in details. In 2012, Yang et al. [21] implemented the

MapReduce-BLAST [10] algorithm based on Hadoop platform, and realized an efficient and

scalable sequence alignment platform. In 2013, Meng et al. [15] created an efficient and

reliable parallel BLAST algorithm under the Hadoop-based MapReduce computing

framework.

To sum up, there are two ways to improve the BLAST algorithm: GPU-based improvement

and big data-based parallelization. The GPU-based improvement greatly enhances the

computing efficiency. However, few institutes can afford to buy the costly GPUs required for

the improvement. The big data-based parallelization is easy and cheap to implement, because

the distributed design has a relaxed requirement on hardware. But the parallelization mostly

takes place under the MapReduce computing framework. This disk-based framework has

input/output (IO) limitations, and faces a low computing efficiency, if the disks are read and

written frequently.

To overcome the defects of the above methods, this paper proposes a distributed parallel

BLAST algorithm called SparkBLAST, based on Spark [2, 13]. Under the in-memory

computing framework Spark, SparkBLAST identifies the task of sequence alignment, divides

the sequence dataset, and compares the sequence data. The Apache Spark YARN [17] was

adopted to task scheduling and resource allocation. Finally, the SparkBLAST was compared

with standalone BLAST through experiments. The results show that the proposed algorithm

can improve the computing efficiency, without sacrificing the accuracy [6]. The research

results greatly promote the development of bioinformatics.

Spark-based parallelization of BLAST
Spark is an open-source distributed computing framework developed at the University of

California, Berkeley’s AMP Lab. There are multiple advantages of this famous framework.

First, Spark enables in-memory data sharing across Directed Acyclic Graph (DAG). Second,

Spark adopts a memory cache mechanism, which reduces frequent IO reads and writes and

improves computing efficiency. Third, Spark supports many operating modes, and its

 INT. J. BIOAUTOMATION, 2020, 24(1), 87-98 doi: 10.7546/ijba.2020.24.1.000767

89

resources can be managed by YARN and Apache Mesos [16]. Fourth, Spark supports various

distributed file systems, e.g. Hadoop distributed file system (HDFS) and the Cassandra file

system (CFS) [12]. Fifth, Spark is compatible with multiple languages, namely, Scala,

Python, and Java.

Official tests show that Spark has a much better computing framework than MapReduce:

Spark in-memory computing is more than 100 times faster than MapReduce; even if

disk-based computing is adopted, Spark remains 10 times more efficient than MapReduce.

As a result, Spark-based parallel computing could achieve a high efficiency.

Based on NCBI’s BLAST+ [4, 18], this paper develops a highly accurate distributed parallel

BLAST algorithm, using the machine learning pipeline of Spark, and the Spark cluster.

The proposed algorithm, denoted as SparkBLAST mainly consists of two parts: data

preparation and parallel computing. Before data processing, the data format was unified as

FASTA.

Data preparation
Two files should be inputted for comparison in BLAST: the target database file and a

sequence alignment file. The former helps to set up the index database, while the latter

contains multiple data on nucleic acid or protein sequence in FASTA format. In this research,

the Spark cluster is composed of one master node (name node) and four slave nodes (data

nodes). The name node manages the data of the cluster, while data nodes are responsible for

data storage.

Before parallel computing, an index database of the reference genome was established on the

local file system of the name node, and then distributed to the same directory of all data nodes

in the cluster through remote secure copy (scp-r). Next, the sequence alignment file was

uploaded to the HDFS as the input of parallel computing. As shown in Fig. 1, a data source is

provided for parallel computing.

Fig. 1 Distribution of target database files

Distributed parallel computing of SparkBLAST
As shown in Fig. 2, the distributed parallel computing of SparkBLAST stores the sequencing

data in HDFS in a scalable and distributed manner. The YARN serves as the cluster resource

manager for task scheduling and resource allocation. The in-memory computing framework

Spark is taken as the data processing framework to split the input sequence file into

fragments. Meanwhile, the machine learning pipeline of Spark is adopted to call the external

application BLAST+ to perform distributed parallel computing on the fragmented data.

The computed results were combined and written to the local disk. Overall, the distributed

parallel computing of SparkBLAST is implemented in four steps: task division, task

allocation, parallel computing, and file merging.

 INT. J. BIOAUTOMATION, 2020, 24(1), 87-98 doi: 10.7546/ijba.2020.24.1.000767

90

Start

Reading
sequence file

Whether the
 file format
is FASTA?

Spark-based
task division

End Exit Program

Outputting to
a file

Hadoop-based
file merging

Mapper
1

Mapper
2

Mapper
n

YARN-based task
distribution

DataNode_1
Split_1

DataNode_2
Split_2

DataNode_n
Split_m

Target
database

(DB)

Sequence task
identification

Random combination
of task set

Data assignment

Preliminary
results

Parallel computing of
cluster cpmputing nodes

Reducer
1

Reducer
2

Reducer
n

... ...

...

Part_
0000

Part_
0001

Part_
000q

... ...

Y

F

Parallel computing
based on machine
learning pipeline

DataNode_1
BLAST n(split_1,DB)

DataNode_2
BLAST n(split_2,DB)

DataNode_n
BLAST n(split_m,DB)

Fig. 2 Distributed parallel computing of SparkBLAST

Task division

First, the sequence file for comparison is uploaded to the HDFS via the user terminal by file

transfer tools. Then, the sequence file serves as a shared data source for all computing nodes.

Scala is chosen as the development language, for its high operating efficiency and

performance on Spark. Before BLAST parallel computing, the Spark application driver is

started programmatically. Then, the sequence file from HDFS is read, and the task of the

sequence file is divided by the regular delimiter between sequences. The resulting subtasks

are grouped into different task sets, according to the number of computing nodes in the

cluster. The task sets are of the same size, because Spark adopts even partitioning by default.

The main objective of this step is to split large tasks into fine-grained subtasks.

Task allocation

The YARN resource manager is adopted to allocate resources and distributes tasks. Before

running Spark cluster, the operating mode of YARN is specified to set up a resource manager

for cluster computing. Then, YARN will perform resource allocation and task distribution,

according to the user-defined cluster parameters or the preset parameters of computing

resources. In this step, the task sets obtained in the first step are distributed to each computing

node in the cluster, preparing for parallel computing.

Parallel computing

The machine learning pipeline of Spark is started to pass the execution commands to the all

computing nodes in Spark cluster, triggering the calculation script of the BLAST. Then, all

computing tasks are initiated by calling the local application BLAST+ on each node.

 INT. J. BIOAUTOMATION, 2020, 24(1), 87-98 doi: 10.7546/ijba.2020.24.1.000767

91

Each task is executed in multiple processes, i.e. the set of subtasks is processed in parallel by

the corresponding node. Finally, the result files are stored in the specified HDFS file

directory.

File merging

The getmerge command of Hadoop is called to merge the result files of each computing node.

The merged files are stored in the local file system of the master node, which are easy to view

and download.

Advantages
This parallel computing method, denoted as SparkBLAST, enjoys the following advantages:

1) The parallel computing of the BLAST is realized without changing the NCBI’s

BLAST+ software application.

2) The HDFS of Hadoop cluster was taken to store the files, creating a highly reliable

and scalable storage system for sequencing data.

3) The parallel computing of the BLAST was implemented under the in-memory

computing framework Spark, providing a convenient and efficient tool for

bioinformatics comparisons.

4) The analyst only needs to upload the comparison/query file through the user terminal.

The parallel computing method is simple and highly automatic.

5) The flexible and versatile design supports all BLAST algorithms in BLAST+

software, namely, BLASTn, BLASTP [7] and BLASTX [5].

Comparative analysis
To verify its performance, the SparkBLAST with a four-node cluster was compared with the

standalone BLAST through 10 experiments. The results of the two algorithms are contrasted

in Fig. 3, where the speed is the mean value of the ten experiments. As shown in Fig. 3, when

the data files were small, SparkBLAST was slightly less efficient than the standalone BLAST,

for the Spark cluster spends time in network communication between data nodes. With the

growing size of data files, however, SparkBLAST became increasingly superior to the

standalone algorithm. For example, when the data files were about 1 GB in size, the

computing efficiency of SparkBLAST was 3.95 times that of the standalone BLAST, close to

the theoretical value of 4. The results show that the Spark cluster-based parallelization can

greatly enhance the computing efficiency of the BLAST.

Fig. 3 Speed comparison between standalone BLAST and SparkBLAST

 INT. J. BIOAUTOMATION, 2020, 24(1), 87-98 doi: 10.7546/ijba.2020.24.1.000767

92

Sequence alignment experiments

Experimental data
For BLAST alignment experiments, the human gene sequencing data published by the NCBI

were selected as the sequence file, and the human reference genome data

(GCF_000001405.37_GRCh38.p11_genomic.fna, data size 3.2 GB) were taken as the target

database file. The selected sequence files are of different sizes: 6.1 MB, 68 MB, 158.7 MB,

503.5 MB, and 1024 MB. For comparability, each sequence was controlled at 200 bp in

length. For the 9.4 MB file, no data of the length of 200 bp was found in humans. Thus, the

300 bp was set as the length of that sequence. The details of each sequence file are given in

Table 1 below.

Table 1. Details on sequence files

Name
Number of sequences,

(strips)

Sequence length,

(bp)

File size,

(MB)

SRR4253374 32635 300 9.4

SRR7351575 341512 200 68.6

SRR7359601 793898 200 158.7

SRR7369074 2560486 200 503.5

SRR7368879 5102574 200 1024

Experimental environment
Our experiments were conducted on the VMware [10], a virtualized big data platform in the

lab of Big Data Processing Center in Inner Mongolia Agricultural University. A total of five

virtual machines (VMs) were deployed on the platform, acting as the computing nodes.

The VMs operate in the 64bit Centos 6.5. The application software includes: NCBI’s BLAST

2.6.0+, Hadoop 2.5.2, Spark 1.2.0, JDK 1.7 and Scala 2.10.6.

As such, the configurations of the VMs (computing nodes) in the Spark cluster is as follows:

Name node – Node 01, Node 02, Node 03, Node 04, Node 05;

Operating system – Centos 6.5; Memory – 8 GB; CPU – 4;

BLAST – BLAST 2.6.0+; Hadoop – Hadoop-2.5.2;

Spark – Spark-1.2.0; JDK – JDK-7u25.

Several experiments were conducted on the 5-node Spark cluster, and another was performed

on the standalone BLAST.

Design of standalone experiment
For comparison, a VM with the same configuration as the five VMs was created, and

deployed on the virtualized big data platform, creating the environment for the standalone

BLAST experiment. Then, an operating system was installed to meet the requirements of the

Spark cluster. Then, the BLAST+ 2.6.6, which is the same as that for the Spark cluster, was

downloaded from the NCBI official website, and installed onto cluster nodes. Next, the

authors downloaded high-throughput sequencing files and human reference genome files,

which are consistent with those for the Spark cluster, from the NCBI official website. On this

basis, a local target index database of the reference genome files was set up. The type of the

database is denoted as “nucl”, for the nucleic acid sequences were adopted for comparison.

The command to build the index database is as follows:

#makeBLASTdb -in DB.fa -dbtype nucl -parse_seqids -out human

 INT. J. BIOAUTOMATION, 2020, 24(1), 87-98 doi: 10.7546/ijba.2020.24.1.000767

93

Furthermore, sequence files of different sizes were downloaded for the standalone BLAST

experiment. The default parameters were used in the comparison command:

#BLASTn -db DB -outfmt 7 -num_threads 8 -query query.fasta -out output

The results of the standalone BLAST experiment are given in Table 2. The relationship

between data file size and operating time is described in Fig. 4.

Table 2. Results of standalone experiment

Name SRR4253374 SRR7351575 SRR7359601 SRR7369074 SRR7368879

File size (MB) 9.4 68.6 158.7 503.5 1024

Time (s) 28 193 495 1726 3344

Fig. 4 The file size-time relationship of standalone experiment

Design of cluster experiments
First, the Hadoop and Spark cluster were started, and gene sequence alignment files of

different sizes were uploaded to the HDFS. Then, an index database of human reference

genome data files was created, and the files in the index database were distributed to the same

local directory of each computing node for sequence alignment. After that, the comparison

task was submitted to the Spark cluster via the user terminal for parallel comparison of

BLAST [11]. The submission commands are as follows:

#Spark-submit --master yarn-client --executor-memory $executor_memory

--driver-memory $driver_memory --num-executors $num_executors

--executor-cores $executor_cores --driver-cores $driver_cores

--class SparkBLAST /SparkBLAST.jar $splits_num "BLASTn

-db /target_DB -outfmt 7 -num_threads 8 query_file out_file; hdfs dfs -

getmerge out_file local_file.

The results of the SparkBLAST experiments are given in Table 3. The relationship between

data file size and operating time is described in Fig. 5.

 INT. J. BIOAUTOMATION, 2020, 24(1), 87-98 doi: 10.7546/ijba.2020.24.1.000767

94

Table 3. Results of cluster experiments

Name SRR4253374 SRR7351575 SRR7359601 SRR7369074 SRR7368879

File size, (MB) 9.4 68.6 158.7 503.5 1024

Time, (s) 55 108 190 471 846

Fig. 5 The file size-time relationship of cluster experiments

Results comparison
Both standalone experiment and each cluster experiment were repeated ten times. Table 4

compares the results of the standalone experiment and those of cluster experiments.

The results are the mean values of the ten repeated experiments.

Table 4. Comparison of results between standalone experiment and cluster experiments

Name SRR4253374 SRR7351575 SRR7359601 SRR7369074 SRR7368879

File size, (MB) 9.4 68.6 158.7 503.5 1024

Time of

standalone, (s)
28 193 495 1726 3344

Time of

cluster, (s)
55 108 190 471 846

Speed of

standalone,

(MB/s)

0.34 0.36 0.32 0.29 0.30

Speed of

cluster, (MB/s)
0.17 0.64 0.83 1.07 1.21

Fig. 6 compares the file size-time relationships between standalone and cluster experiments.

With the growing size of sequence file, the Spark cluster consumed a much shorter time to

process the same dataset than the standalone BLAST. At the beginning, the standalone

BLAST and SparkBLAST consumed basically the same amount of time. With the increase in

file size, the time consumed by standalone BLAST was 3.95 times that of SparkBLAST, close

to the theoretical value of 4. Hence, SparkBLAST is significantly more efficient than the

standalone BLAST, when the dataset is large.

 INT. J. BIOAUTOMATION, 2020, 24(1), 87-98 doi: 10.7546/ijba.2020.24.1.000767

95

Fig. 7 presents the speedup ratio of each data file. It can be seen that the SparkBLAST is

much more efficient than the standalone BLAST. With the growth in file size, the speedup

ratio gradually reached 3.95. Thus, our parallel design provides an efficient and fast BLAST

application for sequence comparison.

Fig. 6 Comparison between the file size-time relationships

of standalone experiment and cluster experiments

Fig. 7 The relationship between data size and speedup ratio

Next, the amounts of data processed by the standalone BLAST and SparkBLAST per unit

time were computed based on the experimental results, as a sign of the speed of data

processing. Fig. 8 compares the processing speeds of the standalone and cluster experiments.

The comparison clearly shows that the speed of the standalone BLAST remained basically the

same, while that of SparkBLAST increased significantly with the growing data size.

Overall, the SparkBLAST greatly outperformed the standalone BLAST in speed when

processing largescale data, but had no significant advantage when processing small scale data.

 INT. J. BIOAUTOMATION, 2020, 24(1), 87-98 doi: 10.7546/ijba.2020.24.1.000767

96

Fig. 8 Comparison between the speed-data size relationships

of standalone experiment and cluster experiments

Conclusions
Based on Spark cluster, this paper designs a parallel BLAST algorithm for sequence

alignment. The sequence data were stored in the HDFS, a distributed storage system with high

scalability, reliability and availability. The proposed SparkBLAST algorithm was compared

with the standalone BLAST through experiments. The comparison shows that the

SparkBLAST had obvious advantages in processing largescale data, but the advantages were

not obvious when processing small scale data. This is because SparkBLAST spends lots of

time in communication between computing nodes in the cluster, when it computes small data

files. Our algorithm provides important new insights into parallel and scalable analysis of

genetic data.

Acknowledgements
The work is funded in part by the Inner Mongolia Natural Science Foundation Project under

Grant No. 2019MS06027, Inner Mongolia Key Technology Research Plan Project (Toward

Big Data Storage and Mining Platform for Intelligent Transportation), Major Special Project

of Science and Technology in Inner Mongolia Autonomous Region (Development and

Application of Private Cloud Operating System Based on OpenStack).

References
1. Altschul S. F., W. Gish, W. Miller, E. W. Myers, D. J. Lipman (1990). Basic Local

Alignment Search Tool, Journal of Molecular Biology, 215(3), 403-410.

2. Awan A. J., M. Brorsson, V. Vlassov, E. Ayguade (2016). Architectural Impact on

Performance of In-memory Data Analytics: Apache Spark Case Study, arXiv Preprint

arXiv:1604.08484.

3. Bjornson R. D., A. H. Sherman, S. B. Weston, N. Willard, J. Wing (2002).

TurboBLAST®: A Parallel Implementation of BLAST built on the TurboHub,

Proceedings of International Parallel and Distributed Processing Symposium, 1-8.

4. BLAST+, https://blast.ncbi.nlm.nih.gov/Blast.cgi, (Last access March 15, 2020).

5. Huson D. H., C. Xie (2014). A Poor Man’s BLASTX – High-throughput Metagenomic

Protein Database Search Using Pauda, Bioinformatics, 30(1), 38-39.

6. Islam N. S., M. Wasi-ur-Rahman, X. Lu, D. Shankar, D. K. Panda (2015). Performance

Characterization and Acceleration of In-memory File Systems for Hadoop and Spark

Applications on HPC Clusters, Proc. of the 2015 IEEE Int Conf on Big Data, 243-252.

https://blast.ncbi.nlm.nih.gov/Blast.cgi

 INT. J. BIOAUTOMATION, 2020, 24(1), 87-98 doi: 10.7546/ijba.2020.24.1.000767

97

7. Jacob A., J. Lancaster, J. Buhler, B. Harris, R. D. Chamberlain (2008). Mercury

BLASTP: Accelerating Protein Sequence Alignment, ACM Transactions on

Reconfigurable Technology & Systems, 1(2), 9-16.

8. Kent W. J. (2002). BLAT – The BLAST-like Alignment Tool, Genome Research, 12(4),

656-664.

9. Khare N., A. Khare, F. Khan (2017). HCudaBLAST: An Implementation of BLAST on

Hadoop and Cuda, Journal of Big Data, 4(1), 41.

10. Kuminsky K. (2015). VMware vCenter Cookbook, Packt Publishing Ltd.

11. Ladunga I. (2017). Finding Similar Nucleotide Sequences Using Network BLAST

Searches, Current Protocols in Bioinformatics, 3.3.1-3.3.26.

12. Lakshman A., P. Malik (2010). Cassandra: A Decentralized Structured Storage System,

ACM SIGOPS Operating Systems Review, 44(2), 35-40.

13. Liu W., B. Schmidt, W. Muller-Wittig (2011). CUDA-BLASTP: Accelerating BLASTP

on CUDA-enabled Graphics Hardware, IEEE/ACM Transactions on Computational

Biology and Bioinformatics, 8(6), 1678-1684.

14. Matsunaga A., M. Tsugawa, J. Fortes (2008). Cloudblast: Combining MapReduce and

Virtualization on Distributed Resources for Bioinformatics Applications, Proceedings of

the 2008 IEEE Fourth International Conference on eScience, 222-229.

15. Meng M., J. Gao, J. J. Chen (2013). Blast-parallel: The Parallelizing Implementation of

Sequence Alignment Algorithms Based on Hadoop Platform, Proceedings of the 2013 6th

International Conference on Biomedical Engineering and Informatics, 465-470.

16. Meyerson J. (2016). Ben Hindman on Apache Mesos, IEEE Software, 33(1), 117-120.

17. Murthy A. C., V. K. Vavilapalli, D. Eadline (2014). Apache Hadoop YARN: Moving

Beyond MapReduce and Batch Processing with Apache Hadoop 2, Pearson Education.

18. NCBI, https://www.ncbi.nlm.nih.gov , (Last access March 15, 2020).

19. Rani S., O. P. Gupta (2017). CLUS_GPU-BLASTP: Accelerated Protein Sequence

Alignment Using GPU-enabled Cluster, J Supercomput, 73(10), 4580-4595.

20. Vouzis P. D., N. V. Sahinidis (2011). GPU-BLAST: Using Graphics Processors to

Accelerate Protein Sequence Alignment, Bioinformatics, 27(2), 182-188.

21. Yang X. L., Y. L. Liu, C. F. Yuan, Y. H. Huang (2011). Parallelization of BLAST with

MapReduce for Long Sequence Alignment, Proceedings of Fourth International

Symposium on Parallel Architectures, Algorithms and Programming, 241-246.

22. Ye W., Y. Chen, Y. Zhang, Y. Xu (2017). H-BLAST: A Fast Protein Sequence

Alignment Toolkit on Heterogeneous Computers with GPUs, Bioinformatics, 33(8),

1130-1138.

Hui Wang, M.Sc.

E-mail: 122700185@qq.com

Hui Wang is a Lecturer at the College of Data Science and

Application, Inner Mongolia University of Technology, China.

She has a Master’s Degree in Computer Application Technology from

Harbin Engineering University in China. Her research interests include

data mining, cloud computing, and big data processing.

https://www.ncbi.nlm.nih.gov/

 INT. J. BIOAUTOMATION, 2020, 24(1), 87-98 doi: 10.7546/ijba.2020.24.1.000767

98

Prof. Leixiao Li

E-mail: llxhappy@126.com

Leixiao Li is a Professor at the College of Data Science and

Application, Inner Mongolia University of Technology, China. Prof. Li

has a Master’s Degree in Computer Application Technology from Inner

Mongolia University of Technology, China. His research interests

include data mining, cloud computing and big data processing, etc.

Chengdong Zhou, M. Sc. Student

E-mail: 1452082002@qq.com

Chengdong Zhou is a graduate student at the College of Data Science

and Application, Inner Mongolia University of Technology, China. His

research interests include data mining, cloud computing and big data

processing, etc.

Hao Lin, M. Sc. Student

E-mail: suzukaze_aoba@foxmail.com

Hao Lin is a graduate student at the College of Data Science and

Application, Inner Mongolia University of Technology, China.

His research interests include data mining, cloud computing and big

data processing, etc.

Dan Deng, M. Sc. Student

E-mail: dengdan2020@163.com

Dan Deng is a graduate student at the College of Data Science and

Application, Inner Mongolia University of Technology, China.

His research interests include data mining, cloud computing and big

data processing, etc.

© 2020 by the authors. Licensee Institute of Biophysics and Biomedical Engineering,

Bulgarian Academy of Sciences. This article is an open access article distributed under

the terms and conditions of the Creative Commons Attribution (CC BY) license

(http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/licenses/by/4.0/

