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Abstract: An efficient method for Electrocardiogram (ECG) signal denoising based on
synchronous detection and Hilbert transform techniques is presented. The goal of the method
is to decompose a noisy ECG signal into two components classified according to their energy:
(1) component with high energy representing the dominant component which is the clean
ECG signal, and (2) component with low energy representing the sub-dominant component
which is the contaminant noise. The investigated approach is validated through out some
experimentations on MIT-BIH ECG database. Experimental results show that random noises
can be effectively suppressed from ECG signals.
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Introduction
Electrocardiogram (ECG) is a bioelectrical signal, which records the heart’s electrical activity
versus time [6, 16, 20]. It is an important diagnostic tool for assessing heart function. The ECG
is a time varying signal which is neither periodic nor deterministically chaotic (the interbeat
intervals seems to contain a random component). Each phase of cardiac electrical activity pro-
duces a specific wave or a complex one. The basic ECG waves are labelled alphabetically as P
wave, QRS complex, ST segment and T wave [1]. During ECG measurement, noise (anything
other than muscular activity of heart) is superimposed on it, due to AC interference, loose elec-
trode connection, malfunctioning of machine, patient movement like respiration etc., all of them
collectively called artefacts. Hence, extraction of clean ECG signal from noisy measurements is
needed and this is one of the big problems in biomedical signal processing. Latest contributions
in this subject are reported in [7–9, 15, 18–21, 23, 25].

In the last few years, many researchers have proposed methods and approaches for ECG sig-
nal denoising. Wavelet transform is generally employed for ECG denoising due to its ability to
characterize time-frequency domain information of a time domain signal. Yadav et al. [25] have
proposed a novel non-local wavelet transform (NLWT) method for ECG signal denoising by ex-
ploiting the local and non-local redundancy present in the signal. Smital et al. [18] developed a
method using dyadic stationary wavelet transform (SWT) in the Wiener filter for the estimation
of a noise-free signal. The number of decomposition levels and the impulse characteristics are
the two most important factors considered in SWT.

A method based on sparse derivatives (SD) was presented by Ning et al. [15] where the arte-
facts are reduced by modeling the clean ECG signal as a sum of two signals whose second
and third-order derivatives are sparse respectively. Tracey and Miller [21] suggested using a
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non-local means (NLM) approach to denoise ECG signals. This method can provide efficient
denoising while minimizing signal distortion. Lahmiri [9] in its work presented a comparative
study of ECG signal denoising by wavelet thresholding in empirical mode decomposition - dis-
crete wavelet transform (EMD-DWT) and variational mode decomposition - discrete wavelet
transform (VMD-DWT) domains. According to this work, the VMD can outperform the EMD
in denoising the ECG signal. In addition, the NLM technique was adopted as a reference model,
which was recently found to be effective in denoising ECG signals.

Adaptive filtering method has been recently proposed for ECG signal denoising. The method
presented in [7] is based on two algorithms. The first one is a DWT for denoising, and the
second is an adaptive dual threshold filter (ADTF). Wang et al. [23] presented a method based
on the adaptive Fourier decomposition (AFD). This method is based on the assumption that the
energy of the pure ECG signal is higher than that of the noise. Kumar et al. [8] proposed a
method using EMD with NLM for the cancellation of noise. In this method, the edges of the
ECG signal are successfully preserved. Tinouna et al. [20] developed a simple and efficient
method to remove white Gaussian noises and physiological noises from ECG signals based on
simple tools usually used in digital signal processing like moving average filter, median filter,
baseline drift removal and peak detection.

In this paper we propose to use the Hilbert transform and the multi-component representation
of analytical signal with the synchronous detection method for ECG signal denoising. This
method extracts the mono-components of a signal by using its analytic form where the first
component corresponds to the highest instantaneous amplitude [3, 4]. The component with the
highest instantaneous amplitude is referred as the dominant component of the signal. The high
oscillating part with lowest instantaneous amplitude is referred as the sub-dominant component
of the signal (noise), so the first step of the method is to estimate the instantaneous frequency
of the largest energy component and then use the synchronous detection approach to extract the
amplitude details about this component.

The impact of the proposed filtering method on the distortion of diagnostic features of the ECG
was investigated using an ECG diagnostic distortion measure called the “Multi-Scale Entropy
Based Weighted Distortion Measure” or MSEWPRD. The closer this criteria is to zero, the
better the morphological characteristics of the ECG signal are preserved. Experimental results
reveal that the proposed algorithm have low MSEPWRD for all noise types at low input SNRs,
which can much better conserve the morphology and diagnostic information of ECG signals.
Therefore, the morphology and diagnostic information of ECG signals were much better con-
served, compared to the results presented in [5].

Preliminaries
The Hilbert transform and the analytical signal representation
The analytical signal H(t) of a real signal X(t) is a complex signal as given by [17]:

H(t) = X(t)+XH(t) = A(t)expφ (t) . (1)

This analytical representation enables computation of the instantaneous phase φ , the instanta-
neous frequency (IF), ω(t) = dφ (t)/dt, and the instantaneous amplitude (IA) A(t) as follows:

A(t) =
√

X2(t)+X2
H(t), (2)

φ (t) = tan−1
(

XH(t)
X(t)

)
. (3)
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The IF is the derivative of φ (t) expressed as:

ω(t) =
d
dt

φ (t) =
X(t)ẊH(t)− Ẋ(t)XH(t)

X2(t)−X2
H(t)

, (4)

where XH(t) is the Hilbert transform of X(t) given as:

H[X(t)] = X̃(t) = π
−1
∫ +∞

−∞

X(τ)

t− τ
dτ . (5)

The Hilbert transform acts as a phase shifter where the signal’s amplitude is unchanged and
phase is shifted by π/2. In other words, the analytic signal rotates in the z-plane with a rate
of rotation determined by ω(t). The IA and rate of rotation do not change for monoharmonic
signals, whereas more complicated multi-component signals have time-varying spectral dynam-
ics [14, 22].

One can express a multi-component signal (assume that the orignal signal X(t) is a multi-
component signal ) using the composition of separate mono-component part as:

X(t) = ∑
k

Xk(t) = ∑
k

ak(t)cos
(∫

ωk(t)dt +θk

)
, (6)

where ak(t) is the IA, ωk(t) is the IF of the k component and θk is the phase offset. Here k
indicates the different components having different oscillatory frequencies and amplitudes.

ECG signals
In this investigation we compare our method with various benchmark methods recently pub-
lished and presented in [24]. For this purpose, we use synthetic ECGs generated by an ECG
dynamical model [12] and real ECGs signals taken from MIT-BIH database [13].

ECG dynamical model
McSharry [12] proposed a synthetic ECG dynamical generator constituted of three-dimen-
sional state equations (Eq. (7)), which can generate a trajectory in the Cartesian coordinates:


ẋ = αx−ωy,
ẏ = αy+ωx,

ż = −∑
i

ai∆θi exp
(
−∆θ 2

i

2b2
i

)
+(z− z0),

(7)

where α = 1−
√

x2 + y2, ∆θi = (θ −θi)mod(2π), θ = atan2(x,y) (atan2 is the four quadrant
arctangent of the real parts of the elements of x and y ), with −π < atang2(x,y) < π , and ω is
the angular velocity of the trajectory as it moves around the limit cycle.

This model has many adjustable parameters, which makes it adaptable to many normal and
abnormal ECG signals, such as ai, bi, θi and z0, which corresponds to amplitude, width, center
parameters of the Gaussians and the baseline drift, respectively.
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Real ECG signals
The real ECG data are taken from the MIT-BIH database [13]. The MIT-BIH arrhythmia
database contains 48 excerpts of 30 min each of two-channel ambulatory ECG recordings, ob-
tained from 47 subjects studied by the BIH Arrhythmia Laboratory between 1975 and 1979.
Twenty-three recordings were chosen at random from a set of 4000 ambulatory ECG record-
ings of 24 h each collected from a mixed population of inpatients (about 60%) and outpatients
(about 40%) at Boston’s Beth Israel Hospital. The remaining 25 recordings were selected from
the same set to include the less common but clinically significant arrhythmias that would not
be well represented in a small random sample. The recordings were digitized at 360 samples
per second per channel with 11-bit resolution over a range of 10 mV. Two or more cardiologists
annotated each record independently. Disagreements were resolved to obtain the computer-
readable reference annotations for each beat (approximately 110,000 annotations in total) in-
cluded with the database.

Evaluation criteria
For evaluation purposes, signal to-error-ratio (SER) and the mean squared error (MSE) criteria
will be used. These evaluators are defined as follows:

SER = 10× log

(
∑i |xc(i)|2

∑i |xc(i)− x̂(i)|2

)
, (8)

MSE =
1
N ∑

i
(xc(i)− x̂(i))2, (9)

where, xc is the clean ECG, x̂ is the denoised ECG signal, and N is the number of samples.

For the evaluation in terms of preserving the diagnostic features of the ECG signal we have used
an ECG diagnostic distortion measure called the Multi-Scale Entropy based Weighted Distor-
tion Measure [5, 11]. We used a similar method as that utilized in [5] to calculate this measure.
A Weighted Percentage Root Square Difference (WPRD) is used for the metric, which is gen-
erated by comparing the original sub-band wavelet coefficient with the filtered signals. This
uses weights that are the same as the corresponding sub-band’s multi-scale entropies. Using
this measure, it is possible to achieve an accurate representation of the distortion of the filtered
signal at all sub-bands [5, 11]. It was necessary to decompose both signals using wavelet filters
up to L level in order to calculate this metric. Both the sampling frequency and the nature of
the signal dictate the number of levels. An accurate ECG trace will include a sharp QRS com-
plex segment and the slow P and T waves, therefore, an effective decomposition of an ECG
should display an effective representation of the details coefficients of the QRS complexes and
the approximation coefficients of the P and T waves. As such, Daubechies 9/7 bi-orthogonal
wavelet filter [2] was used for decomposition purposes. This led us to choose L = 4 for sampling
frequency of 128 Hz [10].
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The Multiscale entropy-based WPRD measure is defined as:

MSEWPRD = wAL×


√√√√∑

NAL
k=1[AL(k)− ÃL(k)]2

∑
NAL
k=1[AL(k)]2

×100

+

L

∑
j=1

wD j ×


√√√√√∑

ND j
k=1[D j(k)− D̃ j(k)]2

∑
ND j
k=1[D j(k)]2

×100

 ,

(10)

where wAL denotes the weight for the Lth approximation band; wD j denotes the weight for the jth

level details subband; AL and ÃL denote the Lth approximation band coefficients of the original
and the denoised signals, respectively; and D j and D̃ j denote the jth details band coefficients of
the original and the denoised signals, respectively. wAL and wD j are the weights.

ECG denoising method
The proposed method is based on the assumption that the noisy ECG signal x(t) is a sum of
quasi-harmonics components (Eq. (6)), which are the dominant component (clean ECG signal)
and the sub-dominant component (noise). The procedure of the method is described as follows:

• Step 1. Estimate IF of the largest component. In this case, the signal can be modelled
as a weighted sum of mono-component signals, each with its own IF [22], and amplitude
function:

x(t) = a1(t)expi
∫ t

0 ω1(t)dt +a2(t)expi
∫ t

0 ω2(t)dt . (11)

Assuming that a1(t) is larger than a2(t), the envelope a(t) and the IF ω(t) of the double-
component signal x(t) are given as follows:

a(t) =
[

a2
1 + a2

2 + 2a1a2 cos
(∫

(ω2−ω1)dt
)]1/2

, (12)

ω(t) = ω1 +
(ω2−ω1)[a2

2 + 2a1a2 cos(
∫
(ω2−ω1)dt)]

a2(t)
. (13)

The envelope signal a(t) consists of two different parts:

1: A rapidly varying part;

2: A slow varying part including the sum of the amplitude components squared.

The IF ω(t) contains also two parts:

1: A gradual altering frequency of the first component ω1;

2: An asymmetrical oscillating component which changes rapidly based on the fre-
quency.
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The integration of the oscillating part with the integration limits on the full period of the
difference frequency [0 T = 2π/(ω2−ω1)] will become zeros as follows:∫ T

0

(ω2−ω1)[a2
2 + 2a1a2 cos(

∫
(ω2−ω1)dt)]

a2(t)
= 0. (14)

Therefore, the second component which is the rapidly varying asymmetrical oscillating
part can be removed with low-pass filtering, where the cut-off frequency is equal to the
heartbeat frequency, and the remaining frequency ω1 is the largest harmonic frequency.

• Step 2. Obtain the corresponding envelope of the largest component, for this purpose
we use the synchronous detection method. This technique extracts the amplitude details
about the vibration components by multiplying the initial signal x(t) by two reference
signals exactly 90◦ out of phase with one another. First, the reference signals is defined
as:

r1(t) = cos
(∫

ωl(t)
)

, (15)

r2(t) = −sin
(∫

ωl(t)
)

. (16)

Then, we multiply x(t) by r1(t) and r2(t) to obtain the in-phase signal x1(t) and the
quadrature signal x2(t), respectively, as follows:

x1(t) =
1
2

ak=l(t)
[

cos(θk=l)+ cos
(∫

(ωk=l +ωl)dt +θk=l

)]
, (17)

x2(t) =
1
2

ak=l(t)
[

sin(θk=l)+ sin
(∫

(ωk=l +ωl)dt +θk=l

)]
. (18)

Each of the obtained signals in Eqs. (17) and (18) consists of two different functions. The
first one is the slow varying function and the other is a fast-oscillating part. In such case,
it is possible to remove the oscillating part again by using low-pass filter (with the cut-off
frequency is equal to the heartbeat one). Thus, only the slow varing part will be retained,
and the IA and the phase offset of the lth component can be respectively given by:

al(t) = 2
√
(x̃1(t))2 +(x̃2(t))2, (19)

θl = arctan
x̃2(t)
x̃2(t)

, (20)

where, x̃1 and x̃2 are the filtered result of x1(t) and x2(t) respectively, which are expressed
as:

x̃1(t) =
1
2

al(t)cos(θl), (21)

x̃2(t) =
1
2

al(t) sin(θl). (22)

• Step 3. Subtract the largest component from the original signal x(t), then, the second-
largest component can be obtained by repeating the above steps. The number of iterations
necessary to provide a good approximation depends on how rapidly the initial signal
changes.
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Fig. 1 Block diagram of the proposed method

The clean ECG signal can be reconstructed by a simple subtraction of the last component
with a high oscillation from the initial signal. The block diagram of the investigated
method is given by Fig. 1.

Results and discussions
In this section, simulation and experimental tests on both synthetic and real ECG signals are
carried out to evaluate the performance of the investigated method.

Synthetic ECG signal denoising results
A synthetic ECG signal has been generated with the dynamical model discussed previously (see
Eq. (7)). To synthesize a noisy ECG signal, Gaussian white noise is added to the generated ECG
signal with SNRinput = 5 dB. The synthetic noisy ECG signal is then denoised by the investi-
gated method. The denoising result is shown in Fig. 2, where it can be seen that the proposed
approach is able to give a very good denoising result. In Fig. 3 we present the corresponding
error (errors before and after denoising), where we note clearly that the error after denoising is
smaller than the error before denoising, which confirms the efficiency of the proposed procedure
for ECG denoising.

To evaluate quantitatively the denoising quality of the proposed method, SER (Eq. (8)) and MSE
(Eq. (9)) are used as performance indices for denoising. SER defines the signal energy with
respect to the energy of the error. MSE defines the energy of the error signal in the denoising
process. Performance indices calculated under different levels of noise intensity (5 dB, 10 dB,
15 dB, and 20 dB) are listed in Table 1 in which we compared the results obtained by our
method and those obtained by the methods presented in [24], namely Wavelet based method,
EMD Partial Reconstruction method and CEEMDAN Plus Wavelet Threshold method.

From the Table 1 we can clearly see that the proposed method has the highest SER and lowest
MSE under all noise intensities levels compared to the methods considered in [24]. These
results demonstrates the superiority of the suggested method over other methods.

Real ECG signal denoising results
For real ECGs, records 100.dat and 103.dat are chosen from MIT-BIH arrhythmia database.

329



INT. J. BIOAUTOMATION, 2020, 24(4), 323-336 doi: 10.7546/ijba.2020.24.4.000549

 

0 500 1000 1500 2000 2500 3000 3500 4000
-1

0

1

2

Samples
E

C
G

 A
m

p
li

tu
d

e

(a)

0 500 1000 1500 2000 2500 3000 3500 4000
-1

0

1

2

Samples

E
C

G
 A

m
p

li
tu

d
e

(b)

0 500 1000 1500 2000 2500 3000 3500 4000
-1

0

1

2

Samples

E
C

G
 A

m
p

li
tu

d
e

(c)

Fig. 2 Synthetic ECG denoising result:
a) the clean ECG signal; b) the corrupted ECG signal with SNRinput = 5 dB;

c) the denoised ECG signal.
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Fig. 3 Error before and after denoising

These signals are considered as clean, so we add to them white Gaussian noises with SNRinput =
5 dB in order to obtain corrupted ECGs. Visual inspections of Figs. 4 and 5 show the efficiency
of the proposed technique.

Performance indices under different corrupting noise intensities are listed in Tables 2 and 3.

Once again, the Tables 2 and 3 clearly show that the proposed method has the highest SER
and lowest MSE compared to the methods presented in [24], which demonstrates again the
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Table 1. Performance indices under different noise intensities (Synthetic ECG)

Noise Index Wavelet EMD partial CEEMDAN plus Proposed
intensity based reconstruction wavelet threshold method

5 dB SER 0.8751 6.8711 18.3150 18.590
MSE 0.0452 0.0218 0.0016 0.00121

10 dB SER 0.5978 5.9251 17.0436 17.7853
MSE 0.0466 0.0271 0.0021 0.00187

15 dB SER 0.4232 4.8161 12.5823 14.324
MSE 0.0492 0.0295 0.0056 0.00321

20 dB SER 0.2435 3.9363 10.4129 12.214
MSE 0.0709 0.0638 0.0097 0.00698
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Fig. 4 Real ECG 100.dat denoising result
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Fig. 5 Real ECG 103.dat denoising result
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superiority of our method.

Further, we evaluate our method in terms of preserving the diagnostic features of the ECG
signal. The ECG diagnostic distortion measure called Multi-Scale Entropy Based Weighted
Distortion Measure (see Eq. (10)) is used. The closer this criteria is to zero, the better the mor-
phological features are preserved. The MSEWPRD index is computed under different SNRinput
levels and is listed in Table 4, which 4 confirms the efficiency of the proposed method in terms
of preserving the diagnostic information and ECG morphology.

Table 2. Performance indices under different noise intensities (real ECG signal 100.dat)

Noise Index Wavelet EMD partial CEEMDAN plus Proposed
intensity based reconstruction wavelet threshold method

5 dB SER 14.9580 17.9656 26.6223 27.0052
MSE 0.0213 0.0096 0.0010 0.0008

10 dB SER 12.8418 16.1767 24.8403 24.9845
MSE 0.0235 0.0105 0.0016 0.0012

15 dB SER 11.3410 14.8742 21.6968 22.1548
MSE 0.0380 0.0124 0.0041 0.0038

20 dB SER 10.3478 13.7996 17.8879 18.452
MSE 0.0438 0.0198 0.01754 0.0069

Table 3. Performance indices under different noise intensities (real ECG signal 103.dat)

Noise Index Wavelet EMD partial CEEMDAN plus Proposed
intensity based reconstruction wavelet threshold method

5 dB SER 14.7072 16.2526 27.8397 28.1875
MSE 0.0210 0.0113 0.0006 0.0004

10 dB SER 13.1222 15.6894 25.3689 25.9325
MSE 0.0210 0.0129 0.0129 0.0009

15 dB SER 11.7577 13.9286 20.4182 21.1587
MSE 0.0316 0.0154 0.0035 0.0029

20 dB SER 10.6856 11.9397 16.1626 17.452
MSE 0.0405 0.0217 0.0095 0.0081

Table 4. Performance indices (MSEWPRD) under different SNRinput levels

ECG Index SNRinput = SNRinput = SNRinput = SNRinput =
signal 0 dB -1 dB -3 dB -5 dB

Synthetic ECG MSEWPRD 0.606 0.690 0.758 0.874
100.dat MSEWPRD 0.4587 0.530 0.613 0.687
103.dat MSEWPRD 0.4325 0.4521 0.609 0.668

Finally, in what follows, the proposed method was further tested against a model-based method
described in [5], which detailed an ECG signal denoising method that utilized a marginalized
particle extended Kalman filter. This used an automatic particle weighting strategy. The pro-
posed method was compared to this method in terms of the MSEWPRD criterion. The results of
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the comparison between our method and the methods presented in [5], using the MSEWPDM
with various SNRinput levels, are shown in Table 5. These results were generated by determining
the MSEWPDMs of 200 filtered ECG segments that were selected from the MIT-BIH database.
However, the chosen segments used in our algorithm can be not the same as those segments
used in [5].

Table 5. Performance comparison between MP-EKF, EKS, EKF and the proposed method in
the presence of white Gaussian noise from MSEPWRD viewpoint

MSEPWRD (mean ∓ SD) (mv)
Noise Method SNRinput = SNRinput = SNRinput = SNRinput =
type 0 dB -1 dB -3 dB -5 dB

MP-EKF 1.284 ∓ 0.225 1.329 ∓ 0.224 1.434 ∓ 0.231 1.552 ∓ 0.242
White EKS 1.358 ∓ 0.180 1.458 ∓ 0.196 1.678 ∓ 0.237 1.9239 ∓ 0.288

Gaussian EKF 1.677 ∓ 0.183 1.824 ∓ 0.200 2.158 ∓ 0.242 2.552 ∓ 0.297
noise Proposed 0.5158 ∓ 0.065 0.587 ∓ 0.105 0.674 ∓ 0.051 0.764 ∓ 0.075

method

These results show that the MP-EKF and EKF/EKS had higher MSEWPDMs for the white
Gaussian noise and at all of the SNRinput levels compared to the proposed method, indicating
that the proposed method is more effective than the MP-EKF and EKF/EKS at preserving the
diagnostic information and morphology of the ECG signals.

Conclusion
In this paper, Hilbert transform and synchronous detection was applied for ECG signal en-
hancement. The noisy ECG signal was decomposed in sub-components: the highest energy
component representing the dominant component (ECG signal) and the lowest energy compo-
nent representing the sub-dominant component (noise). Finally we extract the denoised ECG
signal by a simple subtraction of the sub-dominant component from the noisy ECG signal.
Simulation results showed that this technique is computationally efficient and have better per-
formances under different power conditions of noise without affecting the morphology of the
ECG signal.
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