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Abstract: In this paper, we introduce a Galerkin method based on Legendre multiwavelet
functions to obtain approximate solutions of a fractional model for HIV infection of CD4+T
cells corresponding to a class of systems of nonlinear fractional differential equations.
The method converts the model problem into a system of nonlinear algebraic equations.
A numerical example is included to demonstrate the validity and applicability of the technique
and the results are compared with those obtained by existing methods.
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Introduction
Differential equations are used to model various practical problems. In this article, we shall
study the following system of equations:

Dα1(T ) = q−αT + rT
(

1− T+I
Tmax

)
− kV T ,

Dα2(I) = kV T −β I, T (0) = T0, I(0) = I0, V (0) = V0, 0≤ t ≤ R < ∞,
Dα3(V ) = µβ I− γV ,

(1)

where 0 < αi ≤ 1, i = 1,2,3. Here Dαi denotes the fractional derivative in the Caputo sense
(see Definition 2). These equations describe the fractional model for HIV infection of CD4+T
cells [13]. The number of CD4+T cells for a healthy person is 800

1200 mm3. In the system (1) R is
any positive constant, T (t), I(t) and V (t) respectively denote the concentration of susceptible
CD4+T cells, the number of CD4+T cells infected by the HIV viruses and the free HIV virus
partials in the blood at time t. α , β and γ denote the natural turnover rates of uninfected
T cells, infected T cells and virus partials, respectively. The term

(
1− T+I

Tmax

)
describes the

logistic growth of the healthy CD4+T cells and kV T describes the incidence of HIV infection
of healthy CD4+T cells, where k > 0 is the infection rate. It is assumed that each infected
CD4+T cell together with its daughter cell produces µ virus particles during their combined
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lifetimes. The body is believed to produce CD4+T cells from precursors in the bone marrow
and thymus at constant rate q. T cells multiply through mitosis with a rate r when T cells are
stimulated by antigen or mitogen. Tmax denotes the maximum CD4+T cells concentration in
blood [1, 11, 14, 17].

The theory of wavelets is a relatively new and an emerging area in mathematical research.
It has been applied in a wide range of engineering disciplines and, in particular, have been
very successfully used in signal analysis for waveform representation and segmentations, time-
frequency analysis, and fast algorithms for easy implementation [3]. Wavelets analysis has
many useful properties, such as orthogonality, compact support, exact representation of poly-
nomials to a given degree, and the ability to represent functions at different levels of resolu-
tion [10]. Moreover, wavelets can be used to construct fast numerical algorithms [2].

In this paper, we introduce a method, based on Legendre multiwavelet functions for solving
system (1). These set of equations have already been solved by various numerical methods
such as the Laplace Adomian decomposition method (LADM) [12], the homotopy perturbation
method [8], the Pade approximate and the modified variational iteration method [9] and the
Bessel collocation method [19]. Gandomani and Kajani [5] used the collocation method based
on the Müntz-Legendre polynomials to solve system (1) and Gökdoĝan et al. [6] developed a
multi-step differential transform method to give approximate as well as analytical solutions.

The article is organized as follows. In Section 2, we first describe the basic definitions of
fractional calculus theory and then give the basic definition of Legendre multiwavelet functions
and state their properties. In Section 3, we discuss approximations to functions using Legendre
multiwavelet functions basis. Section 4 is devoted to describe a Galerkin method for solutions
of system (1) based on the Legendre multiwavelet functions. In Section 5, we report numerical
results to demonstrate the accuracy of the present technique. These results are compared with
existing methods. Finally, Section 6 contains a conclusion.

Preliminaries
Basic definitions of fractional calculus
In this section, we present basic definitions in fractional calculus theory which will be needed
later [4, 7].

Definition 1. The Riemann-Liouville fractional integral of order α for f ∈ L1[a,b], t > 0,
α , t ∈R, is defined by

Jα f (t) =

{
1

Γ(α)

∫ t
0

f (s)
(t−s)1−α ds, α > 0,

f (t), α = 0.

Here Γ(µ) is the gamma function:

Γ(µ) =
∫

∞

0
e−ssµ−1ds.

We have:

J0 f (t) = f (t),

JαJβ f (t) = Jα+β f (t),
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JαJβ f (t) = Jβ Jα f (t),

where f ∈ L1[a,b], α ,β ≥ 0.

The Riemann-Liouville fractional derivative of order α for n−1 < α ≤ n ∈N is defined by

Dα f (t) =
dn

dtn

(
Jn−α f (t)

)
.

Definition 2. The Caputo fractional derivative of order α for f ∈ L1[a,b], t > 0, α , t ∈ R is
defined as

Dα f (t) =


1

Γ(n−α)

∫ t
0

f (n)(s)
(t−s)α+1−n ds, n−1 < α < n,

dn

dtn f (t), α = n ∈N.

Caputo’s differential operator coincides with the usual differential operator of an integer order
and has the following properties:

DαJα f (t) = f (t),

JαDα f (t) = f (t)−
n−1

∑
k=0

f (k)(0+)
(t−a)k

k!
.

Legendre multiwavelet functions
The Legendre multiwavelet functions on interval [0,T ) are defined by [15, 18]

ψn,m(t) =

{ √
2m+ 1 2

l
2√
T

pm

(
2lt
T −n

)
, nT

2l ≤ t < (n+1)T
2l ,

0, otherwise,

where m = 0,1, ...,M− 1, n = 0,1, ...,2l − 1, l can assume any positive integer, m is the or-
der for Legendre polynomials and t is the normalized time. {ψn,m(t)} is an orthonormal set.
The coefficient

√
2m+ 1 is needed for orthonormality.

Legendre polynomials on the interval [0,1] can be determined using the following recursive
formula:

p0(t) = 1,

p1(t) = t,

pm+1(t) =
2m+ 1
m+ 1

t pm(t)−
m

m+ 1
pm−1(t), m = 1,2, ....

Function approximation
Consider a function f (t) defined over [0,T ). We can approximate f (t) as follows:

f (t) =
2l−1

∑
n=0

∞

∑
m=0

an,mψn,m(t), (2)
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where

an,m = 〈 f ,ψn,m〉 , n = 0,1, ...,2l−1, m ∈N∪{0} (3)

and l is any positive integer.

The convergence of the Chebyshev wavelet method is presented in [16]. We have the following
convergence for Legendre multiwavelet approximations.

Theorem 1. Let ∑
2l−1
n=0 ∑

∞
m=0 an,mψn,m(t) be the Legendre multiwavelet approximation of f ∈

H = L2([0,T ]) and l be any fix positive integer, then fM(t) = ∑
2l−1
n=0 ∑

M−1
m=0 an,mψn,m(t) conver-

gences to f (t) as M→ ∞.

Proof. We will prove that the sequence of partial sums of fM(t), is a Cauchy sequence in Hilbert
space of H. Let fN(t) be arbitrary partial sums of f (t), and M > N. Then we have

‖ fM(t)− fN(t)‖2
2 = ‖

2l−1

∑
n=0

M−1

∑
m=N

an,mψn,m(t)‖2
2

=

〈
2l−1

∑
n=0

M−1

∑
m=N

an,mψn,m(t),
2l−1

∑
s=0

M−1

∑
r=N

as,rψs,r(t)

〉

=
2l−1

∑
n=0

M−1

∑
m=N

2l−1

∑
s=0

M−1

∑
r=N

an,mas,r 〈ψn,m(t),ψs,r(t)〉

=
2l−1

∑
n=0

M−1

∑
m=N
| an,m |2 .

Since ∑
2l−1
n=0 ∑

∞
m=0 | an,m |2 is a monotone series and bounded by ‖ f‖2

2, it converges and hence
its partial sums form a Cauchy sequence. Thus, ∑

2l−1
n=0 ∑

M−1
m=N | an,m |2 converges to zero as

M,N → ∞. So ‖ fM(t)− fN(t)‖2
2 converges to zero as M,N → ∞. Thus, fM(t) is a Cauchy

sequence and hence fM(t) converges to g ∈ H.

Now we show that g(t) = f (t). By Eq. (3), we have

〈 f (t)−g(t),ψn,m(t)〉= 〈 f (t),ψn,m(t)〉−〈g(t),ψn,m(t)〉
= lim

M→∞
〈 fM(t),ψn,m(x)〉−an,m

= an,m−an,m = 0,

hence g(t) = f (t) and the proof is complete.

According to Theorem 1, the infinite series in Eq. (2) can be approximated by

f (t) ∼= fM(t) =
2l−1

∑
n=0

M−1

∑
m=0

an,mψn,m(t) = ATΨ(t), (4)

where

an,m =
∫ T

0
f (t)ψn,m(t)dt, n = 0,1, ...,2l−1, m = 0,1, ...,M−1,
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and

A = [a0,0,a0,1, ...,a0,M−1,a1,0, ...,a1,M−1, ...,a(2l−1),0, ...,a(2l−1),M−1]
T,

Ψ = [ψ0,0,ψ0,1, ...,ψ0,M−1,ψ1,0, ...,ψ1,M−1, ...,ψ(2l−1),0, ...,ψ(2l−1),M−1]
T.

The following lemma gives an upper bound for the error of the estimate.

Lemma 1. Suppose that f : [0,T ]→R is M times continuously differentible and let ATΨ ap-
proximates f . Then an upper bound for the error of approximation is as follows:

‖ f −ATΨ‖2 ≤
ST

2M+1
2

M!
√

2M+ 1(2l)
2M+1

2
, (5)

where

S = max
t∈[0,T ]

| f (M)(t)|.

Proof. A Taylor polynomial approximation for f (t) is

f (t) = f (a)+ f ′(a)(t−a)+ ...+ f (M−1)(a)
(t−a)(M−1)

(M−1)!︸ ︷︷ ︸
I(t)

+ f (M)(η)
(t−a)M

(M)!
,

where a = nT
2l and η ∈ (0,T ). We know that

| f (t)− I(t)| ≤
∣∣∣ f (M)(η)

∣∣∣ (t− nT
2l )

M

(M)!
, η ∈ (0,T ). (6)

Since ATΨ is a polynomial of degree M−1 that approximates f with the minimum mean error
bound, we have by Eq. (6)

‖ f −ATΨ‖2
2 ≤ ‖ f − I‖2

2 =
∫ T

0
| f (t)− I(t)|2dt

≤
∫ T

0
[ f (M)(η)

(t− nT
2l )

M

(M)!
]2dx

=
2l−1

∑
n=0

∫ (n+1)T
2l

nT
2l

[ f (M)(η)
(t− nT

2l )
M

(M)!
]2dt

≤ S2

(M!)2

2l−1

∑
n=0

∫ (n+1)T
2l

nT
2l

(t− nT
2l )

2Mdt

=
S2T 2M+1

(M!)2(2l)2M+1(2M+ 1)
.

Taking squre roots, we have Eq. (5).

The upper bound of the error depends on

T
2M+1

2

M!
√

2M+ 1(2l)
2M+1

2
,
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which shows that as M increases, the error approaches zero rapidly. This is an advantages of
Legendre multiwavelet function approximations.

Method of solution
First, we rewrite the system (1) as follows:

R1(T , I,V ) = Dα1(T ) −q+αT − rT
(

1− T+I
Tmax

)
+ kV T ,

R2(T , I,V ) = Dα2(I) −kV T +β I,
R3(T , I,V ) = Dα3(V ) −µβ I + γV .

(7)

By Eq. (4) we can approximate T , I and V by using the truncated series as

TM(t) =
2l−1

∑
n=0

M−1

∑
m=0

an,mψn,m(t),

IN(t) =
2l−1

∑
n=0

N−1

∑
m=0

bn,mψn,m(t),

VK(t) =
2l−1

∑
n=0

l−1

∑
m=0

cn,mψn,m(t).

To employ the Galerkin method, we put

〈R1(TM, IN ,VK),ψn,m〉= 0, n = 0,1, ...,2l−1, m = 0,1, ...,M−2,

〈R2(TM, IN ,VK),ψn,m〉= 0, n = 0,1, ...,2l−1, m = 0,1, ...,N−2, (8)

〈R3(TM, IN ,VK),ψn,m〉= 0, n = 0,1, ...,2l−1, m = 0,1, ...,K−2,

and

TM(0) = T0,

IN(0) = I0,

VK(0) = V0.

Now we have a nonlinear algebraic system of equations with unknown coefficients and we may
approximate the solutions of the system (1) applying Newton’s iterative method to Eqs. (8).

We can check the accuracy of these solutions by substituting TM(t), IN(t) and VK(t) in Eq. (7).
Hence, given for large M, N and K, at any of t = ts ∈ [0,T ], s ∈N, we should have:

|Ri(TM, IN ,VK)| ∼= 0

or

|Ri(TM, IN ,VK)| ≤ 10−ls , i = 1,2,3

(ls is a positive integer).
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If max10−ls = 10−l (l is a positive integer) is considered, then the elements M, N and K are
increased until the values of |Ri(TM, IN ,VK)|, i = 1,2,3, at each of ts, s ∈N become smaller
than the considered 10−l .

Numerical results
We consider the fractional model of HIV with:

q = 0.1, α = 0.02, r = 3, Tmax = 1500, k = 0.0027, β = 0.3, µ = 10, γ = 2.4,
T0 = V0 = 0.1, I0 = 0 and set l = 0.

Fig. 1 displays the comparison of T (t), I(t) and V (t) for different values of αi, i = 1,2,3.

The comparison of errors, |Ri| for αi = 1, i = 1,2,3, and different values of M,N and K are
shown in Fig. 2.

In the case when M = N = K = 12, the approximate solutions TM(t), IN(t) as well as corre-
sponding errors |R1|, |R2| and |R3| are given in Tables 1-3, for the three values of αi, i = 1,2,3,
respectively.

Table 1. Numerical results by the present method for αi = 1, i = 1,2,3
t T12(t) I12(t) V12(t) |R1| |R2| |R3|

0.0 0.1 0 0.1 0 0 0
0.2 0.2088080843 0.603270224e-5 0.061879843224 9.9e-11 8.9e-16 1.0e-13
0.4 0.4062405428 0.131583409e-4 0.038294887773 3.1e-10 5.1e-16 3.9e-13
0.6 0.7644238985 0.212237854e-4 0.023704550045 2.9e-10 7.7e-17 3.9e-13
0.8 1.4140468519 0.301774201e-4 0.014680363684 5.9e-11 2.7e-16 1.0e-13
1.0 2.5915948517 0.400378155e-4 0.009100844997 1.8e-9 1.9e-15 2.1e-12

Table 2. Numerical results by the present method
for αi = 0.99, i = 1,2,3, and M = N = K = 12

t T12(t) I12(t) V12(t) |R1| |R2| |R3|
0.0 0.1 0 0.1 0 0 0
0.2 0.2118151955 0.61698792516e-5 0.061266390955 1.3e-4 7.7e-9 8.1e-5
0.4 0.4134375802 0.13366187112e-4 0.037794686364 9.6e-6 2.6e-9 1.6e-5
0.6 0.7781041191 0.21467146845e-4 0.023382395777 9.2e-5 6.2e-9 6.7e-5
0.8 1.4370229054 0.30426220288e-4 0.014497426535 5.4e-5 1.3e-9 3.6e-5
1.0 2.6259351154 0.40263784819e-4 0.009006443439 2.9e-4 4.6e-8 2.3e-4

Table 3. Numerical results by the present method
for αi = 0.9, i = 1,2,3, and M = N = K = 12

t T12(t) I12(t) V12(t) |R1| |R2| |R3|
0.0 0.1 0 0.1 0 0 0
0.2 0.2462987100 0.76613468661e-5 0.055079132183 8.9e-4 7.7e-8 1.5e-3
0.4 0.4975077831 0.15615612059e-4 0.032860997206 2.8e-4 4.4e-8 2.2e-4
0.6 0.9416409759 0.24141356480e-4 0.020172877424 8.7e-4 7.6e-8 1.1e-3
0.8 1.7209440187 0.33258878322e-4 0.012601296083 4.5e-4 6.5e-9 6.5e-4
1.0 3.0759133504 0.43018985522e-4 0.007945335547 3.1e-3 6.5e-7 3.7e-3

Tables 4-6 display a comparison of the error of our method (for M = N = K = 12) with the
LADM [12], the Runge-Kutta method, the variational iteration method (VIM) [9] and the Bessel
collocation method [19].
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Fig. 1 Top: The comparison of TM(t) for different values of αi, i = 1,2,3, and M = 12,
Middle: The comparison of IN(t) for different values of αi, i = 1,2,3, and N = 12,
Bottom: The comparison of VK(t) for different values of αi, i = 1,2,3, and K = 12.

366



INT. J. BIOAUTOMATION, 2020, 24(4), 359-370 doi: 10.7546/ijba.2020.24.4.000634

Fig. 2 Top: The comparison of |R1| for different values of M,N,K and αi = 1, i = 1,2,3,
Middle:The comparison of |R2| for different values of M,N,K and αi = 1, i = 1,2,3,
Bottom: The comparison of |R3| for different values of M,N,K and αi = 1, i = 1,2,3.
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Table 4. Numerical comparison for T (t)
t LADM [12] Runge-Kutta VIM [9] Method in [19] Present method

0.0 0.1 0.1 0.1 0.1 0.1
0.2 0.2088072731 0.2088080833 0.2088073214 0.2038616561 0.2088080843
0.4 0.4061052625 0.4062405393 0.4061346587 0.3803309335 0.4062405428
0.6 0.7611467713 0.7644238890 0.7624530350 0.6954623767 0.7644238985
0.8 1.3773198590 1.4140468310 1.3978805880 1.2759624442 1.4140468519
1.0 2.3291697610 2.5915948020 2.5067466690 2.3832277428 2.5915948517

Table 5. Numerical comparison for I(t)
t LADM [12] Runge-Kutta VIM [9] Method in [19] Present method

0.0 0 0 0 0 0
0.2 0.603270728e-5 0.603270215e-5 0.6032634366e-5 0.624787210e-5 0.603270224e-5
0.4 0.131591617e-4 0.131583407e-4 0.1314878543e-4 0.129355222e-4 0.131583409e-4
0.6 0.212683688e-4 0.212237850e-4 0.2101417193e-4 0.203526718e-4 0.212237854e-4
0.8 0.300691867e-4 0.301774195e-4 0.2795130456e-4 0.283730212e-4 0.301774201e-4
1.0 0.398736542e-4 0.400378146e-4 0.2431562317e-4 0.369084236e-4 0.400378155e-4

Table 6. Numerical comparison for V (t)
t LADM [12] Runge-Kutta VIM [9] Method in [19] Present method

0.0 0.1 0.1 0.1 0.1 0.1
0.2 0.06187996025 0.06187984331 0.06187995314 0.06187991856 0.061879843224
0.4 0.03831324883 0.03829488788 0.03830820126 0.03829493490 0.038294887773
0.6 0.02439174349 0.02370455014 0.02392029257 0.02370431860 0.023704550045
0.8 0.009967218934 0.01468036377 0.01621704553 0.01467956982 0.014680363684
1.0 0.003305076447 0.009100845043 0.01608418711 0.02370431861 0.009100844997

Conclusion
In this paper, we have presented a numerical method to solve a fractional model for HIV in-
fection of CD4+T cells. We successfully applied the Galerkin method based on Legendre
multiwavelet functions and obtained very good approximate solutions using only a few terms.
The main advantage of the proposed algorithm is that by with only a small number of adding
terms of the Legendre multiwavelet functions, we get much better approximations to unknown
functions. Comparisons between our approximations with approximate solutions achieved by
other methods were carried out to confirm the validity and applicability of the new algorithm.
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