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Abstract: The implementation of functional state approach for modelling of yeast cultivation 

is considered in this paper. This concept helps in monitoring and control of complex 

processes such as bioprocesses. Using of functional state modelling approach for 

fermentation processes aims to overcome the main disadvantage of using global process 

model, namely complex model structure and big number of model parameters. The main 

advantage of functional state modelling is that the parameters of each local model can be 

separately estimated from other local models parameters. The results achieved from batch, 

as well as from fed-batch, cultivations are presented. 
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Introduction 

Yeast is an important microorganism, which has been used for industrial applications. Its 

importance bases on the use in the baking and brewing industries, in single-cell protein 

production, and as a host in genetic engineering applications. Compared to penicillin 

fermentation or animal cell cultures, aerobic yeast cultivation is relatively simple. This is 

caused by the fact that the metabolic mechanism of the process is well known. Therefore, 

yeast processes are often used as a test process for new methods or ideas and they are also 

applied in this paper. 
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The modelling of yeast cultivation has been widely studied and reported. The common 

modelling approach is to synthesise one global process model such as ones presented from 

Sonnleitner and Kappeli [8]. The main disadvantage of such approach is the complex model 

structure and the big number of model parameters, which complicate the model simulation 

and parameter estimation. The functional state of a process is an alternative concept, which 

helps in monitoring and control of complex processes such as bioprocesses [10]. The main 

idea is to use a two-level hierarchy where at the first level the process is divided into 

macrostates, called functional states, according to behavioural equivalence. In a functional 

state the process is described by a conventional type of model, called local model, which is 

valid in the functional state only. In each functional state, certain metabolic pathways are 

active enough to dominate the overall behaviour of the process. The biological behaviour in 

different functional states is quite similar. In many batch-type processes, the functional states 

would naturally be identified with the different phases of the process. In a fed-batch or 

continuous process, the situation is more complex, but some functional states can be 

recognised and some functional state model can be used. The process dynamics in each 

functional state is described by a simple local model. In principle, the structure of local 

models in different functional states can be different. At the second hierarchical level some 

numeric detection algorithms and/or rules based on expert knowledge can be used for the 

recognition of the functional states and state transitions. A set of local models together with 

functional state “dynamics” can be used to describe, monitor and control the overall yeast 

growth process. 

 

The implementation of functional state approach for modelling of aerobic baker’s yeast 

cultivation is developed in this paper. The authors are among the pioneers in using of this 

approach and they have hard worked to prove the approach advantages [4, 5, 6]. Both batch as 

well as fed-batch cultivations are considered here to present the applicability of this approach 

for modelling of aerobic baker’s yeast cultivation. 

 

Local models based on the functional state concept 

The following assumptions are made in developing the local models of the aerobic baker’s 

yeast growth process in batch and fed-batch cultures [10]: 

• The main by-products in an aerobic yeast growth process are water, carbon dioxide 

and ethanol. 
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• The bioreactor is completely mixed. 

• Ethanol consumption is inhibited when sugar concentration in the broth is higher 

than zero. 

• The elemental composition of yeast in the process does not significantly change. 

• Parameters except for the substrate and product concentrations, e.g. pH and 

temperature, are controlled to certain acceptable constant values during the process. 

 

The rates of cell growth, sugar consumption, ethanol production and oxygen concentration in 

a yeast fed-batch growth process are commonly described for all functional states according 

to the mass balance as follows [9, 10]: 

 

X
V
FX

dt
dX

−µ=  (1) 

( )SS
V
FXq

dt
dS

inS −+−=  (2) 

E
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FXq
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dE
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( )OOakXq
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dO *

LO −+−=  (4) 

F
dt
dV

=    , (5) 

 

where: 

X is the concentration of biomass, [g/l]; 

S - concentration of substrate (glucose), [g/l]; 

E - concentration of ethanol, [g/l]; 

O - concentration of oxygen, [%]; 

F - feeding rate, [l/h]; 

V - bioreactor volume, [l]; 

kLa - volumetric oxygen transfer coefficient, [h-1]; 

Sin - initial concentration of the feeding solution, [g/l]; 

µ, qS, qE, qO - parameter functions, varying with the functional state transitions. 
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A substrate such as sugar is degrading by yeast to produce a number of carbon intermediates 

as well as to provide energy. Yeast metabolise the carbon intermediates to synthesise new cell 

material. If the sugar concentration during an aerobic yeast growth process exceeds a critical 

level (Scrit), a part of the sugar is metabolised to ethanol. The whole yeast growth process can 

be divided into at least five functional states in batch and fed-batch cultures [10]. In each 

functional state the yeast metabolism is dominated by certain metabolic pathways. 

• The first functional state (I) is the first ethanol production state. The process is 

defined to be in this state when the sugar concentration is above the critical level 

(Scrit) and there is sufficient dissolved oxygen. In this state ethanol is produced as 

described above. 

• The second functional state (II) is the mixed oxidative state. The process enters this 

state when the sugar concentration decreases to be equal to or below the critical 

level and there is sufficient dissolved oxygen in the broth. The process remains in 

this state as long as these conditions are met. Both sugar and produced ethanol are 

cometabolised through the oxidative pathways in the state. 

• The third functional state (III) is the complete sugar oxidative state. The process is 

defined to be in this state when there is no ethanol available, the sugar 

concentration is not higher than the critical level and the dissolved oxygen is above 

its critical level (Ocrit). In this state, sugar is completely oxidised to water and 

carbon dioxide. 

• The fourth functional state (IV) is the ethanol consumption state. The process is 

defined to be in this state when ethanol is available but no sugar is in the broth, and 

the dissolved oxygen concentration is above the critical level. Ethanol is the only 

carbon source for yeast growth. 

• The fifth functional state (V) is the second ethanol production state. The conditions 

for this state are that both concentrations, for sugar and for dissolved oxygen, are 

below the corresponding critical levels. When the dissolved oxygen becomes the 

limiting factor for yeast growth, ethanol is produced. 

 

A yeast growth process switches from one functional state to another like a state machine or 

automation familiar in computer science. To detect when the process is in a certain functional 

state might be a non-trivial task. The functional state diagram of the process is illustrated in 

Fig. 1 [10]. 
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Fig. 1 Functional state diagram of the yeast growth process 

 

In principal the functional state (I) can appear in all batch, fed-batch and continuous yeast 

growth processes. The functional state (IV) normally appears only in a batch culture. The 

functional states (II), (III), and (V) are normally found in fed-batch and continuous cultures 

[10]. The solid lines with arrows in Fig. 1 indicate the necessary or normal transition between 

various functional states of the process, and the dotted lines with arrows indicate that the 

transitions take place when the mode of culture changes between batch and fed-batch cultures. 

It should be noted that a bioprocess could be only in one functional state at any time. 

However, a certain functional state can appear in the process more than once during one run. 

Fig. 2 illustrates the metabolic characteristics and interrelationships of the different functional 

states during fed-batch yeast cultivation [9]. 

 

State I 
S ≥ Scrit 

DO ≥ DOcrit 

State II 
S ≤ Scrit 

DO ≥ DOcrit 
E > 0 

State III 
S ≤ Scrit 

DO ≥ DOcrit 
E = 0 

State V 
S ≤ Scrit 

DO < DOcrit 
 

Fig. 2 Functional states and their relations in fed-batch yeast process 
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Modelling of batch cultivation of Saccharomyces cerevisiae 

At the beginning the modelling of three batch cultivations of baker’s yeast, carried out in 

Institut für Technische Chemie, Universität Hannover, has been considered. The experimental 

data contain off-line measurements of biomass (yeast), substrate (glucose) and ethanol. The 

first set of experimental data is used for local models' parameter estimation and two other sets 

are used to validate the model. It should be noted, that the application of functional state 

modelling is made for batch process for first time. 

 

In the case of batch cultivation the process is described based on balance Eqs. (1-5) when the 

feeding rate is assumed to be zero. In the case of batch cultivation two phases are identified - 

first state (I), called the first ethanol production state, and second state (IV), called the 

ethanol consumption state. When the functional state is determined to change, the local 

models are also changed correspondingly. The initial values for simulation in the new 

functional state (IV) are the last simulated values in the previous functional state (I) so that 

the trajectories became continuous. 

 

The Runge-Kutta (RK45) integration algorithm [2] is used for numeric simulation of the 

model. The estimation of the local models' parameters is made with using of MATLAB 

Genetic Algorithms Toolbox and Optimisation Toolbox procedures. As the optimisation 

criterion the function of difference between experimental data and data from simulated model 

is used. Therefore the optimisation criterion is presented as follows: 

 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )*OO*OOc*EE*EEc

*SS*SSc*XX*XXcJ
T

4
T

3

T
2

T
1

−−+−−+

+−−+−−=
    , (6) 

 

where X*, S*, E* and O* are the column vectors of experimental data, X, S, E and O are the 

column vectors of simulated data and ci are the weight coefficients. 

 

The parameter functions of the local models in the states I and IV are presented in Table 1. In 

the difference of models presented by Zhang [10] some changes are made in the local models. 

Especially, the specific growth rate is described by Monod’ model instead of constant in state 

I, and correspondingly, the specific oxygen uptake rate is also described with Monod’ model. 
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As well the ethanol production rate in state I is also expressed by Monod kinetics and 

different yield coefficients in ethanol equations are used for states I and IV. 

 

 Table 1 

Parameter State I State IV 
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In the Table 1 the following symbols are used: 

• µi - maximum specific growth rate, [h-1]; 

• kS, kE - saturation constants, [g/l]; 

• YSX, YES, YEX, YOS, YOE - yield coefficients, [g.g-1]; 

• η - lag term, which is assumed to be as follows: 

 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
−−=η

1

m

t
tt

exp1    , (7) 

 

where tm shows the time point of involving in lag phase, t1 is the length of lag phase and t is 

the current time. 

 

The estimated values of parameters are presented in Table 2 [4]. 
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 Table 2 

Parameter Estimated value Parameter Estimated value 

µ1 0.3570 h-1 µ2 0.13832 h-1 

kS 0.0714 gl-1 kE 0.18128 gl-1 

YSX 6.0162 gg-1 t1 5.8933 h 

YES 0.3288 gg-1 tm 8.4 h 

YOS 1500 gg-1 YEX 2.0877 gg-1 

kLa 83.347 h-1 YOE 8340 gg-1 

 

Both the cultivation trajectories for the substrate, biomass and ethanol concentrations, and the 

simulated ones for one of the cultivations are presented in Fig. 3. The variation of the 

dissolved oxygen concentration is presented in Fig. 4. 
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Fig. 3 Measured and simulated aerobic batch yeast cultivation using local models: 

substrate, biomass and ethanol concentrations 
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Fig. 4 Measured and simulated aerobic batch yeast cultivation using local models: 

dissolved oxygen concentration 

 

To verify the identified model the simulation with rest two data sets from the real yeasts’ 

cultivations is made. Due to the identical results, here the results only from one of the data 

sets will be presented. Both the real cultivation trajectories and the simulated ones are 

presented respectively in Fig. 5 and Fig. 6. 
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Fig. 5 Measured and simulated aerobic batch yeast cultivation using local models: 

substrate, biomass and ethanol concentrations 
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Fig. 6 Measured and simulated aerobic batch yeast cultivation using local models: 

dissolved oxygen concentration 

 

Fig. 5 shows that the results obtained for model parameters are verified for biomass, substrate 

and ethanol concentration. Better result for dissolved oxygen is obtained if the same model is 

used and just the yield coefficient YOE is changed to 15340gg-1 (Fig. 7). 
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Fig. 7 Measured and simulated aerobic batch yeast cultivation using local models: 

dissolved oxygen concentration 

 

As a conclusion of this application, the local models developed by Zhang et al. are first time 

successfully applied for description of real aerobic batch yeast growth process. In order to 

achieve better results, some changes, toward the local models presented by Zhang [10], are 

made. 
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Modelling of fed-batch cultivation of Saccharomyces cerevisiae 

The modelling of fed-batch cultivation of S. cerevisiae has been also developed. Experimental 

data from two fed-batch cultivations of baker’s yeast, obtained in Institut für Technische 

Chemie, Universität Hannover, are used. The experimental data consists of off-line 

measurements of biomass (yeast), substrate (glucose) and ethanol and on-line measurements 

of substrate (glucose) and oxygen. For glucose measurements a special flow injection analysis 

(FIA) system is employed [1, 3, 7], which uses a glucose oxidase solution instead of 

immobilised enzymes. Employing an extended Kalman filter the biomass, glucose 

concentration as well as µmax (Monod model) are estimated. Based on the glucose estimation a 

PI-control with a set point of 0.08 and 0.05 g/l respectively is carried out. 

 

The rates of cell growth, sugar consumption, ethanol formation and dissolved oxygen 

concentration in a fed-batch yeast growth process are commonly described by Eq. (1-5). 

 

For the one data set only the first ethanol production state (state I) is identified [5]. The 

parameter functions of the local model in this state are presented in Table 3. In the difference 

from batch cultivation, no changes are made and local models for this state are as presented in 

[10]. The estimation of the local model' parameters is again made with using MATLAB 

Genetic Algorithms Toolbox and Optimisation Toolbox procedures, based on the optimisation 

criterion (Eq. (6)) and applying RK45 integration algorithm for numeric simulation of the 

model. The parameters values are presented in Table 4. 

 Table 3  

Parameter Local model 

µ maxµ  

qS 
SX

S
max Y

kS
S
+

µ  

qE ( ) ESScritS Yq - q  

qO YOX maxµ  

 

 

 

 Table 4 

Parameter Estimated value 

µmax 0.29804 h-1 

kS 0.27976 gl-1 

YSX 14.099 gg-1 

YES 0.42678 gg-1 

kLa 80 h-1 

YOX 7.6342e+003 gg-1 
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Both the real cultivation trajectories for the substrate, biomass and ethanol concentrations, and 

the simulated ones for this cultivation are presented in Fig. 8, while the variation of the dissolved 

oxygen concentration is presented in Fig. 9. 
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Fig. 8 Measured and simulated aerobic fed-batch yeast cultivation using local model: biomass, 

ethanol and substrate concentrations 
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Fig. 9 Measured and simulated aerobic fed-batch yeast cultivation using local model: 

dissolved oxygen concentration 

 

For another data set from aerobic fed-batch yeast cultivation only the mixed oxidative state (state 

II) is identified [5]. The peak around 12-th hour in the ethanol data is accounted as a data error 

because the substrate is below the critical level, so there is no conditions ethanol to be produced. 

The parameter functions of the local model in this state are presented in Table 5. The estimation 

of the local model' parameters is again made with using MATLAB Genetic Algorithms Toolbox 

and Optimisation Toolbox procedures, based on the optimisation criterion (Eq. (6)) and applying 
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RK45 integration algorithm for numeric simulation of the model. The estimated values of 

parameters are presented in Table 6. 

 

 Table 5 

Parameter Local model 
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 Table 6 

Parameter Estimated value 

µS 0.95204 h-1 

µE 0.33917 h-1 

kS 0.11068 gl-1 

kE 5.0052 gl-1 

YSX 2.2135 gg-1 

YEX 1.4946 gg-1 

kLa 98.2707 h-1 

YOS 799.4950 gg-1 

YOE 0.0013 gg-1 

 

 

Both the real cultivation trajectories for the substrate, biomass and ethanol concentrations, and 

the simulated ones for this cultivation are presented in Fig. 10, while the variation of the 

dissolved oxygen concentration is presented in Fig. 11. 
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Fig. 10 Measured and simulated aerobic fed-batch yeast cultivation using local model: 

biomass, ethanol and substrate concentrations 
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Fig. 11 Measured and simulated aerobic fed-batch yeast cultivation using local model: 

dissolved oxygen concentration 

 

Although the fact that in both considered fed-batch cultivations only one functional state has 

been identified, the step of parameter identification of considered two functional states is very 

important for the further development of functional state approach for modeling of fed-batch 

yeast cultivation. The recognition of more than one functional state during the fed-batch 

cultivation is in a big interest and importance for the authors, but it depends on the way of 

carrying out of the cultivation.  

 

Conclusions 

The functional state approach, developed by Zhang et al., has been applied for modelling of three 

batch and two fed-batch yeast cultivations. The work process shows the functional state 

modelling approach as more convenient for parameter estimation than the global models of this 

process. The main advantage of functional state modelling is that parameters of each local model 

can be separately estimated from other local models’ parameters. 

 

The results obtained from the parameter identification and verification of models show a good 

efficiency and the applicability of functional state approach for modeling of aerobic yeast growth 

process. The authors will use the obtained results as a stable basis for further implementation of 

functional state approach for modeling of aerobic yeast growth process with recognition of more 

than one functional state. 
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