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Abstract: Some microbial systems exhibit sustained oscillations under certain conditions. 
The maintenance and the suppression of oscillations are both important in different 
situations. While oscillations are clearly identifiable in small bioreactors, the influx of noise 
fuzzifies the oscillations in larger vessels. So, noise-filtering devices are employed to recover 
clear oscillating profiles. Recent work has shown that an auto-associative (AA) neural 
network is a better than standard algorithmic filters. In this study, nine neural network 
designs are compared for their ability to filter Gaussian noise in the substrate inflow rate of 
a continuous fermentation containing Saccharomyces cerevisiae. While the AA network is 
the best overall, specific performance criteria favor other designs. Thus the choice of a 
neural filter depends on the evaluation criterion, which is guided by the application. 
 
Key words: Microbial oscillations, Saccharomyces cerevisiae, Bioreactor, Noise inflow, 
Neural filters. 

 

Introduction 
Many microbial processes exhibit sustained oscillations over long durations. Under controlled 
conditions, clear oscillations are observable. In more realistic natural environments and 
production processes, however, the influx of noise obfuscates the intrinsic oscillations from 
the aberrations caused by noise. Since the occurrence of oscillations is linked to the reactions 
inside the cells and to transport processes across the cell walls [22], the identification of the 
oscillating signals is important for the understanding and control of large bioreactors [6, 15, 
34]. 
 
The bacterium Zymomonas mobilis and the yeast Saccharomyces cerevisiae have been the 
work-horses of most studies of oscillating phenomena. S. cerevisiae is more popular in view 
of its ease of cultivation, well-understood physiology and industrial importance [7, 22]. Two 
recent publications [23, 24] have addressed the issue of recovering smooth oscillations from 
noise-distorted concentration profiles during continuous fermentations with S. cerevisiae. 
Both studies were based on experimental observations [1, 7, 16, 27] that, in certain ranges of 
the dilution rate and the gas-liquid mass transfer rate of oxygen, continuous cultures of S. 
cerevisiae display oscillating profiles for some key concentrations such as those of the 
biomass, carbon substrate (glucose), product (ethanol), storage carbohydrate and dissolved 
oxygen. Different types of oscillations occur in different ranges of these two manipulated 
variables, and some oscillations may comprise a superposition of two or more simple 
unimodal oscillations of different amplitudes. 
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Investigations of the causes of oscillations in S. cerevisiae have concentrated on either of two 
classes of oscillations. Circadian oscillations are related to the cell cycle and have long time 
periods of several hours. Ultradian (metabolic) oscillations are not synchronized with the cell 
cycle and have shorter periods between a few minutes and a few hours. Both classes of 
oscillations have been discussed in terms of possible mechanisms and models [7, 13, 33]. The 
brief distinction outlined above should suggest that ultradian oscillations can be more readily 
controlled than circadian oscillations through external interventions without upsetting the cell 
cycle. 
 
Therefore, from a bioengineering perspective, ultradian oscillations are of primary interest: (a) 
as a vehicle to study interactions between cellular control systems and environmental controls 
and (b) to regulate and optimize industrial fermentations, where oscillations are usually 
undesirable. In shake flasks and small bioreactors, homogeneous noise-free conditions can be 
maintained and the main objective usually is to obtain metabolic information. On progressing 
toward pilot- and production-scale bioreactors, the emphasis shifts to the generation of 
biomass or product, and environmental influences become pronounced. These influences are 
of two kinds. At one level, noise infiltrates a reactor along with the feed stream(s). This 
complicates measurements for data with discernible features, and it can seriously change 
bioreactor performance [14, 26]. The other influence is through deliberate manipulations of 
some variables, generally the flow (or dilution) rate of the main substrate or some 
concentration or the gas-liquid mass transfer rate, to achieve greater stability or higher 
productivity. 
 
The latter influence depends partly on the former, in that important features of the 
fermentation should be clearly identifiable for suitable manipulatory responses. When the 
measured data are clouded by noise, it becomes difficult to identify the salient features and to 
derive useful quantitative information for control decisions. Therefore in the operation of 
large bioreactors, especially in continuous and fed-batch mode, proper abatement of the noise 
through filtering devices is essential to retrieve relatively clear signals characterizing the 
performance of the microbial culture.  
 
In previous studies [22, 24] it was shown that an auto-associative (AA) neural network 
provided better filtering of noise-affected microbial oscillations than was possible with 
algorithmic filters such as the extended Kalman filter, the Butterworth filter and the moving 
average filter. However, neural architectures other than the AA network may also be used for 
modulation of noise inflow. Since it is difficult to specify a priori which design is the best, a 
library of neural networks has been created [18] for bioreactor applications. From the current 
version of this library, COMPARE, five basic architectures were selected. Their usefulness 
has been demonstrated both during the creation of COMPARE and recently for the 
fermentative production of poly-β-hydroxybutyrate [25]. In the latter study, two variants of 
the backpropagation network were used – with momentum and with adaptive learning. Here a 
combination of both variants has also been considered, as also the adoption of generalized 
regression with the radial basis network. In addition, the AA neural filter was also a candidate 
network, thus creating a set of nine network configurations as against seven in Patnaik [25]. 
Moreover, the present application focuses on an oscillating culture whereas the previous work 
was for a monotonic culture. 
 



BIO

Autom
ati

on

Bioautomation, 2006, 4, 45 - 56  ISSN 1312 – 451X 
 

 47

Fermentation description and data generation 
In aerobic continuous fermentations, S. cerevisiae may exhibit monotonic, oscillatory or 
chaotic behavior with time [7, 24, 27]. The nature of the fermentation depends on a number of 
variables, such as pH, the carbon source, the dilution rate and the rate of oxygen transfer to 
the broth [1, 2, 11, 17, 27], but the latter two variables have greater influence and are 
therefore employed as manipulated variables for reactor control. Of these two, the dilution 
rate is preferred since it provides excellent regulatory performance and, owing to the greater 
sensitivity of the fermentation, it enables effective control actions through small changes [6, 
10, 21]. Since the influx of noise is mainly through the liquid feed streams, the choice of this 
manipulated variable underlines the importance of proper filtering to obtain reliable signals 
for the control systems. It may be clarified here that while in batch fermentations the main 
product, ethanol, is produced only in the absence of oxygen, this is observed in certain ranges 
of the dissolved oxygen concentration for aerobic continuous cultures [2, 17, 27]. 
 
Published experimental data pertain to laboratory-scale bioreactors, which are elaborately 
controlled, homogeneous and noise-free. This is not true of pilot- and industrial-scale vessels, 
where process noise and its filtering can be significant for productivity and profitability. 
However, practical difficulties and commercial restrictions limit the availability and 
disclosure of industrial data. Under such limitations, many authors [4, 28, 29] have found it 
expedient to generate data mimicking industrial fermentations by adding noise to a bioreactor 
model based on laboratory-scale experiments, and solving the model under different operating 
conditions. This method also enables exploration of fermentation performance over wide 
ranges of conditions, which would be impractical or risky in an actual plant. 
 
Consistent with earlier studies [22, 24], a model proposed by Jones and Kompala [11] was 
employed to generate simulated noisy data. The equations are presented in the Appendix. This 
model differs from many other models of S. cerevisiae fermentations in a fundamental way. 
Whereas most models are mechanistic, that of Jones and Kompala is cybernetic. Mechanistic 
models are derived in a manner similar to those for chemical reactions. In doing so, they 
ignore the fact that cells can be ‘living’ entities, with complex internal regulatory processes 
that enable them to assimilate past knowledge, make informed choices and adjust their 
responses so as to maximize their survival under the prevailing conditions [5].  
 
On this basis, Jones and Kompala [11] postulated that in an aerobic continuous culture S. 
cerevisiae may follow any of three metabolic pathways: glucose fermentation, ethanol 
oxidation and glucose oxidation. Glucose is the main carbon source. Each pathway is 
controlled by a key enzyme, which is synthesized or repressed according to the prevailing 
conditions. A pivotal concept here is that the pathways are not mutually exclusive, so the cells 
may distribute the available resources among the pathways so as to promote their own 
survival. The pathways are thus constantly in a state of flux, and dynamic competition among 
them is, according to Jones and Kompala, the main cause of oscillations. Their cybernetic 
model is presented in the Appendix. It describes the rates of change of eight concentrations: 
biomass, glucose, ethanol, dissolved oxygen, a storage carbohydrate and the three key 
enzymes. However, the key enzymes are often difficult to identify and monitor. So, the first 
five variables are usually observed. 
 
The cells may be induced to allocate the resources in any desired manner among the pathways 
by manipulating either the flow (or dilution) rate or, in aerobic fermentations, the rate of 
transfer of oxygen. The dilution rate is preferred because it is easier to change, evokes quicker 
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responses and has certain control advantages [6, 10, 21]. The substrate flow stream is also a 
major carrier of noise, and this makes it imperative to filter out the noise and recover stable 
oscillations. Previous studies [8, 19, 26] have shown that this noise may be modeled by a set 
of Gaussian distributions with a common mean equal to the instantaneous value of the flow 
rate and time-dependent variances. Details of the noise generation procedure are described 
elsewhere [20]; as in that work, the variances spanned 0 to 10% of the current mean values, 
which were obtained by solving the noise-free model in the Appendix. Then the model with 
noise was solved to obtain simulated ‘real’ data. Since noise is added to the substrate feed rate 
before the model is solved, it is systemic and not superimposed on the model. 
 
Application and discussion 
To cover oscillations of different amplitudes and frequencies, Jones and Kompala’s [11] 
model was solved, without and with noise, for a representative experiment in which they had 
maintained the dilution rate at 0,13 h−1 for 0-100 h, and then increased it in two steps, first to 
0,15 h−1 until 200 h and then to 0,165 h−1 until the end of the fermentation at 300 h. With each 
increase, oscillations in the concentrations of biomass, glucose, ethanol, dissolved oxygen and 
storage carbohydrates decreased in both amplitude and frequency.  
 
From each time slice of 100 h, the data were sampled at hourly intervals. Then from each such 
set of 100 data, 70 points were chosen randomly to train the neural filters and 30 were used to 
test the filters. Since the choices were random, the two sub-sets of each data set had both 
intersections and extrapolation. This feature and the separate selection of data for each 
dilution rate ensured that the neural filters were tested for their extrapolation capability and 
for oscillations of different amplitudes and frequencies. While it is accepted that neural 
networks are good predictors of unseen data within the ranges of training, their ability to work 
well outside the training region is not always guaranteed [4, 31]. 
 
Based on earlier applications and the coverage of different architectures, the following five 
types of neural networks were selected from the COMPARE library [18]: (i) backpropagation 
(BP), (ii) radial basis (RB), (iii) auto-associative, (iv) Elman and (v) Hopfield. Three variants 
of the BP network were tested: the standard BP, BP with momentum (BPM) and BP with 
adaptive learning (BPAL). The RB network too was tested without and with generalized 
regression (RBG). All of these are described in the standard literature [9]. Although the data 
for each time slice and dilution rate were split in the ratio 7:3 for training and testing, all 
training data were combined and so were the test data. Two considerations motivated this 
decision. One was to remove any hidden bias that might be created by special (but unnoticed) 
features of a particular set. Secondly, a neural filter should be effective across a wide 
spectrum of conditions to be practically useful. 
 
Each network was trained until a cumulative normalized mean squared error, CNMSE, 
reached less than 2%. The CNMSE is defined and explained below. Let yij be the j-th value of 
the i-th variable. Then,  
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In Eq. (1), M is the number of variables and N the total number of training data. The 
superscript ‘r’ denotes a raw ‘experimental’ (or simulated) value, while ‘f’ denotes a filtered 
value. Obviously the raw data are for a bioreactor without a neural filter. Although the model 
in the Appendix has 8 concentrations, the three key enzymes are difficult to identify, isolate 
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and monitor. Moreover, practical interest is focused on the macroscopically measurable 
variables, which are the concentrations of biomass, glucose, ethanol, dissolved oxygen and 
storage carbohydrates. Therefore M = 5 and N = 3*70 = 210. 

 
Fig. 1 displays the convergence profiles during training of the neural filters. Each network 
was trained until the CNMSE (Eq. (1)) reached less than 2%. The final configurations of each 
of the filters are summarized in Table 1.  
 

Table 1. Final configurations of different neural filters 
 

Number of neurons of different types Network type 
Input Recurrent Hidden Output 

BP 5 0 4 5 
BPM 5 0 4 5 
BPAL 5 0 4 5 
BPMA 5 0 4 5 
RB 5 0 3 5 
RBG 5 0 3 5 
AA 5 0 3 5 
ELM 5 5 4 5 
HOP 5 5 4 5 

 
BP with momentum is seen to converge the fastest, with AA and BP with adaptive learning 
following closely. Although the radial basis filter has one fewer neuron than the BP and AA 
types, its convergence is slower, partly because of its lower ability to distinguish between 
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Fig. 1 Convergence profiles for different neural network configurations. 
BP-backpropagation, BPM-BP with momentum, BPAL-BP with adaptive 

learning, BPMA-BP with momentum and adaptive learning, RB-radial 
basis, RBG-RB with generalized regression, ELM-Elman, HOP-Hopfield. 
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good data and spurious data [9]. Thus, while an RB network may work efficiently with 
carefully selected data, it is less effective for on-line applications involving noisy or scattered 
data. The least efficiency of the Elman and Hopfield networks may not be surprising since 
their complex structures and information flows make them overdesigned and sluggish. 
 
The effectiveness of the trained networks in filtering out noise in the glucose flow rate to 
restore noise-free oscillations is compared in Fig. 2 for the test data. The statistics in Fig. 2 are 
defined below. To have a common basis for comparison, the values reported are for the 
configurations obtained after 2400 iterations, this number being set by the convergence 
criterion of 2% for the worst filter. 
 
Cumulative normalized mean error: 
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Equation (3) extends the standard definition of the standard deviation to a sequence of M 
variables. Thus, iy  is the mean error for the i-th variable, calculated as: 
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Fig. 2 Statistical comparisons of different neural filters. 
1-BP, 2-BPM, 3-BPAL, 4-BPMA, 5-RB, 6-RBG, 

7-AA, 8-ELM, 9-HOP 
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The cumulative normalized mean squared error, CNMSE (%), has been defined in Eq. (1). 
While all three statistics show that the auto-associative neural network is the most effective 
filter, the order of the other filters differs from that of their convergence efficiencies (Fig. 1). 
The BP network, which converged fastest, is a relatively poor filter, and the addition of 
momentum and adaptive learning improve its performance considerably. The inclusion of 
both these features make BPMA nearly as good as an AA filter but slow down its 
convergence. These two filters also differ from the others in another aspect. The CNME is 
negative for AA and BPMA filters and positive for the others. Unlike the CNME, the CNMSE 
and the CNSDE are always positive and the latter measures the spread of the errors. So, the 
contrasting signs of the CNME and the other two statistics, together with the smaller values of 
all three measures, suggest that the errors for the AA and BPMA filters are equally distributed 
in a narrow band on either side of the zero error line. Likewise, the larger statistics, all with 
positive sign, indicate larger errors that have a skewed distribution, implying poor filtering of 
noise by the other neural configurations. The values without any filter are understandably the 
largest because real noise has a skewed Gaussian distribution [4, 26]. 

 
A good filter should ideally be fast and efficient. The speeds of restoring noise-affected 
oscillations to within 2% (in terms of CNME) of the noise-free oscillations are compared in 
Fig. 3. An interesting contrast with Fig. 2 is that the relative merits of different neural 
architectures differ from one metric to another. The AA network converges fastest in terms of 
CPU time but requires more iterations and floating point operations (flops) than the BPM. 
Although adaptive learning enables a BP filter to reduce the inflow of noise sufficiently to 
bring the oscillating profiles within 0,8% of the noise-free profiles, this also slows down 
convergence. Therefore, as might be expected, the inclusion of both momentum and adaptive 
learning reduces speed of convergence but improves the closeness between the noise-free and 
noise-filtered outputs. 
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the neural networks are explained in Fig. 2 
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The Elman and Hopfield networks are both recurrent networks. The presence of recurrent 
neurons and the feedback of signals make these architectures good predictors of time-
dependent variables but not good modulators [9]. So these networks can accurately learn, 
reproduce and predict concentration profiles of bioreactors, even in the presence of 
disturbances [18-20], but are inefficient in filtering out the disturbances. While their 
complexity may make them robust enough to overcome discontinuities, it also slows down 
their learning speed, as with BPMA. Moreover, Hopfield designs may have spurious stable 
points that lead to incorrect results [9]. 
 
Conclusions 
Under certain operating conditions S. cerevisiae exhibits sustained oscillating outputs in 
continuous cultures. The occurrence and the nature of the oscillations follow complex 
dynamics [7, 32], which may be controlled by manipulating the pH, the dissolved oxygen 
concentration and the dilution rate; of these the dilution rate is the preferred variable. 
 
The involvement of a network of reactions in the metabolic system results in both non-
oscillating steady states and oscillating states being possible at the same set of conditions [3, 
33]. This has two implications. One is that the final state depends on the initial conditions and 
the path the unsteady system follows. The second implication is that disturbances, such as 
noise in a feed stream, may displace the fermentation from a steady (non-oscillating) state to 
an oscillating state or vice versa. Depending on the current state and its sensitivity [21], noise 
carried by the feed stream may be sufficient to displace the fermentation from one state to 
another. This may pose serious problems in process dynamics and control [15, 34], and hence 
it is practically important to filter out the inflow of noise for stable and efficient operation. 
 
Previous studies [22, 24] have shown that an AA neural network provides better filtering than 
commonly used algorithmic filters such as the extended Kalman and cusum filters. However, 
neural architectures other than the AA network are possible. To evaluate their effectiveness, 
nine different neural filters were compared in terms of different performance indexes. While 
the AA was the best overall, other configurations were superior for individual criteria. This 
observation suggests that the choice of a neural noise filter depends on the relative importance 
of different measures of performance, which are guided by the intended application. 
Nevertheless, all neural filters were superior to algorithmic filters.   
 
Nomenclature 
C intra-cellular storage carbohydrate concentration, [g g−1 biomass] 
D dilution rate, [h−1] 
ei key enzyme concentration for i-th pathway, [g g−1 biomass]  
E ethanol concentration, [g l−1] 
G glucose concentration, [g l−1] 
G0 inlet glucose concentration, [g l−1] 
Ki Michaelis constant for i-th pathway, [g l−1] 

2oK  saturation constant for ethanol oxidation, [mg l−1] 

3oK  saturation constant for glucose oxidation, [mg l−1] 

kLa oxygen mass transfer coefficient, [h−1] 
O dissolved oxygen concentration, [mg l−1] 
O* dissolved oxygen solubility limit, [mg l−1] 
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ri cell growth rate for i-th pathway, [h−1] 
Si carbon substrate concentration for i-th pathway, [g l−1] 
t time, [h] 
ui i-th pathway cybernetic variable controlling enzyme synthesis, [−] 
vi i-th pathway cybernetic variable controlling enzyme activity, [−]  
X cell mass concentration, [g l−1] 
Yi yield coefficient for i-th pathway, [g biomass g−1 substrate] 
Greek letters 
α specific enzyme synthesis rate, [h−1] 
α* constitute enzyme synthesis rate, [h−1] 
β specific enzyme degradation rate, [h−1] 
φi, γi stoichiometric parameters, [g g−1] 
µi specific growth rate for i-th pathway, [h−1] 
µi,max  maximum specific growth rate for i-th pathway, [h−1] 
 
Appendix 
Jones and Kompala [11] extended an earlier model [12] to include variations in dissolved 
oxygen concentration. Previous studies have shown that, with glucose as the main carbon 
source, there are three metabolic pathways. One is glucose fermentation, which produces a 
high growth rate and ethanol production. The second pathway is followed when glucose 
concentration is low; here the cells consume ethanol oxidatively. While these two metabolic 
routes are common to both batch and continuous cultures, a third, glucose oxidation, is 
observed only in continuous operation. According to Jones and Kompala [11], the pathways 
follow Monod kinetics. 
(a) Glucose fermentation 
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(b) Ethanol oxidation 
 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

µ=
OK

O
EK

Eer
2O2

222   (A2) 

 
(c) Glucose oxidation 
 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

µ=
OK

O
GK

Ger
3O3

333   (A3) 

 
As seen above, each pathway has a ‘key enzyme’, e1 or e2 or e3. The cybernetic method 
postulates that the growth rate ri along a metabolic path is maximized when two sets of 
cybernetic variables, ui and vi (i = 1, 2, 3), follow the equations given below. Kompala et al.’s 
[12] paper may be consulted for detailed explanation of the basis of these equations. 
 



BIO

Autom
ati

on

Bioautomation, 2006, 4, 45 - 56  ISSN 1312 – 451X 
 

 54

3,2,1i;
r

r
u

j
j

i
i ==
∑

 (A4) 

3,2,1i;
rmax

r
v

jj

i
i ==  (A5) 

 
Briefly, the ui’s control the enzyme synthesis rates and the vi’s govern their activities. 
Kompala et al. [12] identified 8 key variables.  These were the concentrations of cell mass, 
glucose, ethanol, oxygen and intra-cellular carbohydrate, and the activities of the three key 
enzymes. Storage carbohydrates, notably trehalose and glycogen, are accumulated inside the 
cells when there is deficiency of glucose and ethanol, and they are consumed if either of these 
substrates is present in appreciable quantities. In a continuous culture, the dynamic mass 
balances for these variables follow the equations given below [11]. 
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The term α* in Eq. (A10) was included on the recommendation of Turner and Ramkrishna 
[30], who showed that a small constitutive synthesis term was required in order to predict 
correctly the induction of enzymes that have been repressed for long durations.  
 
The model is completed by adding the equations for the specific growth rates contained in 
Eqs. (1 – 3). 
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