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Abstract: In this paper we investigate the qualitative behavior of a time delay model of the 
crosstalk between ERK and STAT5. We apply linear approximation to study the time delay 
model. The influence of some parameters on the dynamics of the model is analyzed 
analytically and numerically. Our qualitative results show that the model is structurally 
unstable. Relating this result to the physiological nature of the studied mathematical model, 
we prove mathematically the appearance of a crosstalk between the signaling pathways ERK 
and STAT in some cancer cells. This pathology appears when the process of homeostasis is 
disturbed and it has a non-reverse character. 
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Introduction 
Signaling pathways form intracellular networks that control proliferation, differentiation and 
survival. Complexity arises from the large number of molecules involved in signal processing 
and the various interactions between them [3, 22, 23]. The signaling pathways can interact 
with each other, a phenomenon often called crosstalk. Crosstalk gives us a new insight about 
how signaling pathways interact in a dynamical way, i.e., whether they amplify, inhibit, delay 
or accelerate each other [15, 21, 24, 25]. Disruptions or errors of signal transfer can have 
catastrophic consequences and may lead to diseases, including cancer [3, 5, 6, 26]. 
 
Signal transducers and activators of transcription (STAT) are a family of latent cytoplasmic 
proteins that are activated to participate in gene control when cells encounter various 
extracellular polypeptides. STAT can be activated by tyrosine or serine phosporilation. 
Ligand binding to cytokine (GH, erythropoietin) or tyrosine (epidermal growth factor) 
receptors leads to activation of STAT through tyrosine phosphorilation. In case of cytokine 
receptors tyrosine phosphorilation is mediated by receptor bound members of the Janus kinase 
(JAK) family from 3 to 5 [3, 4, 18, 20, 22, 23]. Another essential pathway in cell signaling 
besides JAK-STAT is mitogen-activated protein kinase (MAPK) pathway also synonymous in 
literature to ERK [7, 26]. MAPK activates STAT through serine phosporilation. 
Phosporilation of serine has been shown to regulate DNA binding capacity and/or 
transcriptional activity of these STAT proteins [3, 18-20, 28]. In this way MAPK signaling 
pathway affects on JAK-STAT signaling pathway. Authors of paper [16] on the basis of the 
biochemical diagram (Fig. 1) and discussions in the work [18] suggest a dynamical model for 
interaction between ERK and STAT5a in CHOA cells. As it is proved in [18], in unstimulated 
cells STAT5a is complexed with inactive ERK that binds to STAT5a via its C-terminal 
substrate recognition domain to an unknown region on STAT5a. Then via its active site it 
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binds to the C-terminal ERK recognition sequence in STAT5a. On the other hand, upon GH 
stimulation, MEK activates ERK through phosphorilation of specific threonine and tyrosine 
residues in ERK. The active ERK phosphorilates serine 780 in STAT5a, resulting in 
decreased affinity between the two proteins and dissociation of the complex. This dynamical 
model consists of four nonlinear ordinary differential equations. Also in the papers [16, 17] 
the influence of diffusion on the concentrations of ERK and STAT and the possibility for 
Turing bifurcation on ERK-STAT crosstalk are studied.  
 

 
 

Fig. 1 PPGH – biochemical diagram for STAT5a interaction with ERK 
 
In our previous study [10] we considered the effect of inhibition and activation on both ERK 
and STAT5 and the time delay of the dynamical model of ERK-STAT crosstalk. To do this 
we added the terms which represent inhibition and activation of both ERK and STAT5a to the 
dynamical model [16]. It is illustrated on Fig. 1. We also included a time delay to the model. 
The time delay is the time necessary for the activation of ERK and phosphorilation of 
STAT5a. In this way the dynamical model describing the kinetics of STAT5a/S 
phosphorylation and ERK activation takes form 
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The concentration variables 2121 ,,, ssee  are denoting concentrations of ERK-inactive, ERK-
active, STAT5a-unphosphorylated and STAT5a-phosphorylated respectively. Kinetic 
constants 0k  and 1k  are proportional to the frequency of collisions of ERK and STAT5a 
protein molecules and present rate constant of reactions of associations; 2k  and 3k  are 
constants of exponential growths and disintegrations; I > 0 and A > 0 are inhibitor and 
activator sources respectively. The source I > 0 inhibits the inactivation of active ERK, and A 
activates the dephosphorylation of phosphorylated STAT5a. The terms I and A can be also 
considered as some effective (apparent) inhibitor and activator, under condition that they 
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present really some in-flux and out-flux of the active ERK and phosphorylated STAT5a 
respectively. 
 
In the next section we present the analytical results concerning the qualitative behavior of the 
time delay model (1). The following two sections present analytical and numerical results 
which illustrate the influence of the different values of the bifurcation parameters on the 
model. In the final section we discuss and summarize our results. 
 
Qualitative analysis 
In this section we investigate the qualitative behavior of the model (1). Firstly, we consider 
the influence of parameters 3210 ,,, kkkk , 2121 ,,, ssee , I, A and τ on the system behavior. To 
analyze (1) it can be noted that only two equations of the four ones are independent. It is easy 
to show that between concentrations 2121  , , , ssee  exist the relations 
 

 e021 =+ ee , 021 s=+ ss . (2) 
 
Further we used relations (2) to find the equilibrium states of system (1). Thus, the steady 
state is 
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where 

30kka = , akAskIkkkekb /])()[( 00312301 +−−+= , akAskc /)( 203 += , cbd 42 += , 0e  and 0s  
are initial concentrations of ERK and STAT5a respectively. 
 
One of the two equilibriums has positive values ( )1(

1s ) and the other – negative ones ( )2(
1s ). 

From a physiological point of view only the positive values are actual concentrations. 
Therefore it is denoted, that ),,,( 2121 sseeE  > 0 is equilibrium state (fix point) of the time delay 
system (1). In order to investigate the character of the fix point E , we first obtain the 
characteristic equation for the liner part of system (1). Next, we consider small perturbations 
about the equilibrium level, i.e. 
 

xee += 11 , yee += 22 , zss += 11 , wss += 22 .  (4) 
 
After some transformations time delay system (1) in local coordinates has the form 
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Further, we neglect the terms of second and third order in small quantities, and thus the 
stability matrix obtains the form 
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After resolving the matrix and performing transformations we get characteristic equation of 
the linearized part of system 
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where 

311210 kekkskp +++= ,    )( 1311201 ekkskka +=  ;    13211 ekkkc =  , 

32103211321 )()( kkskkkekkkb ++++= ,     132013211 skkkekkkd +=  . 
 
Linear stability analysis 
For small delay τ ( 1<τ ), the method of linear stability analysis is much convenient to 
investigate the qualitative behavior of equation (7). For this purpose we develop the function 

τχ2−e  in Taylor’s expansion and retain only linear term, then we have χττχ 212 −≈−e . After 
some transformations and algebraic operations the characteristic equation (7) takes its final 
form 
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where 

)2( 11 τapp += , )2( 1111 τcabq +−=  , )( 111 cdr −= , s=0. 
 
In order to investigate the stability of equilibrium point (3) we use Routh-Hurwitz conditions. 
Here these conditions are 
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Generally, the stability of a steady state depends on the real part of the roots of the 
characteristic equation – χ. If all roots are negative then the equilibrium state is stable. If with 
at least one root χ >0, then the solution is unstable. Therefore, the condition for the change of 
stability will be at χ = 0. 
 
It is seen that in our case conditions (9) - (11) and (13) are always valid, but (12) is equal to 
zero, i.e. is not bigger than zero. In this case the type of equilibrium state is a compound 
saddle-focus or a compound saddle-knot [11, 14]. Whether we will have the first or the 
second type depends on the roots of the characteristic equation (8). If the case is of a 
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compound saddle-focus we have a zero root and a negative real root and two complex 
conjugate roots with negative real parts. If the case is of a compound saddle-knot then we 
have one root equal to zero and three negative real roots. In order to determine the type of the 
roots we should examine them on the border of the area of stability. According to [1] the 
border of the area of stability are R = 0 and s = 0. In our case, it is examined the type of 
equilibrium state of the system on the border s = 0. On this border the characteristic equation 
(8) has one root equal to zero, and the type of the other roots is determined by the expression: 
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From (14) follows that 
 a) if the conditions 0<Ω , 1 1 10,   0,   0,   0, 0p q r s R> > > = >  are satisfied, then the 
equation (8) has one root equal to zero and three negative real roots. 
 b) when 0>Ω , 1 1 10,   0,   0,   0, 0p q r s R> > > = > , then the equation (8) besides one 
zero root also has a negative real root and two complex conjugate roots with negative real 
parts. 
 
The stability theory for systems with structurally unstable equilibrium states [1, 8, 9, 12, 14] 
considers various aspects of stability in critical cases, as well as the bifurcation phenomena 
accompanying the loss of stability at equilibrium states. Here, we mention only the two most 
common and simple cases [12], where the characteristic equation (8) (i) has one zero root and 
(ii) has a pair of complex-conjugated roots on the imaginary axis.  
 
The first case is determined by the condition 
 
s = 0 and 0>∆ k , k = 1, 2, 3,    (15) 

where k∆  is the Routh-Hurwitz determinant. Recall that ( ) As det1 4−= , where A is the matrix 
of the linearized system at the equilibrium state. In view of this condition, the equilibrium 
states associated with the first critical case are also called degenerate. Since the implicit 
function theorem may not longer be applied here, the persistence of such equilibrium state in 
a neighboring system is not necessarily guaranteed. Thus, a transition through the stability 
boundary in the first critical case may result in the disappearance of the equilibrium state. In 
this case the system is structurally unstable and through bifurcation it will lose its stability 
non-reversely. Generally the stability of cell signaling pathways could, from a biological point 
of view, be connected to homeostasis, i.e., the process of keeping an internal environment 
stable by making adjustments to changes in the external environment. This is achieved by a 
system of feedback control loops. In other words, for the stability of cell signaling processes it 
is essential that the cell maintains a stable condition where in fact a constant flux of molecules 
occurs. However, in case of crosstalk between ERK and STAT5a pathways, the homeostasis 
is disturbed. Studies have shown that such interaction has been observed in cancer disease 
which classifies this type of crosstalk as disruptive and causing disease. 
 
The second critical case corresponds to 
 
s > 0, 01 >∆ −n  and 0>∆ k , n = 4, k = 1, 2. (16) 
 
In this case on the contrary of the first critical case, the equilibrium state is preserved in all 
nearby systems and can only lose its stability. Again from a biological point of view, this 
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means that the homeostasis can be disturbed but after a certain period of time it will restore. If 
cancer disease appears, it can be healed with medical assistance [12, 13]. 
 
Numerical analysis 
In this section we shall illustrate numerically some analytical results which were obtained in 
the previous section for system (1). In view of the lack of quantities data for parameters of 
crosstalk between ERK and STAT5a pathways we assign the intervals within which the 
parameters change on the basis of data about the JAK-STAT and MAPK pathways [2, 22, 27] 
in accordance with biochemical kinetics. For the numerical simulations we assume the 
following intervals of the parameters 
 

]4  ,5.0[0 ∈k min-1, ]4  ,7.0[1 ∈k  min-1, ]4  ,1.0[2 ∈k min-1,  
]0.6  ,2.0[3 ∈k min-1, ]1  ,1.0[∈τ sec, ]1.10 ,10.1[ -23

0
−∈e mM, (17) 

]1.10 ,10.1[ -12
0

−∈s mM, ]1.10 ,10.1[ -34−∈I mM, ]1.10 ,10.1[ -45−∈A mM. 
 
We examine the influence of all parameters (17) on the dynamic behavior of the system (1). 
To do this we vary one parameter at a time while the other parameters are fixed. Based on the 
qualitative theory of the differential equations, the parameter that varies is bifurcation one. 
Firstly, as bifurcation parameter the concentration of ERK – e0 is chosen. In the Fig. 2 it is 
shown the type of the roots of (8) beside of zeros root as function of the e0. It is seen that in 
the interval ]013.0,001.0[0 ∈e , Ω is positive and the roots are one real negative and two 
complex conjugated ones with a negative real part. In this case the type of steady state (3) is a 
compound saddle-focus. When e0 increases in the interval ]04.0,013.0[0 ∈e  the sign of Ω 
becomes negative and there are 3 real negative roots. Now, the type of steady state (3) is a 
compound-knot. When the parameters 0k and τ  varies in its intervals, the equation (8) has the 
same type of roots like e0. When parameters 0k  and τ  varies in its intervals, initially Ω is 
negative and equation (8) has 3 real negative roots in intervals 2.6] ,5.0[0 ∈k  and 2.6] ,1.0[∈τ  
respectively. When Ω becomes positive for 4] 2.6, [0 ∈k  and 1] 2.6,[∈τ  the characteristic 
equation has one real negative and two complexes conjugated ones with a negative real part. 

 

 
Fig. 2 Type of the roots of the characteristic equation, 

for ]013.0,001.0[0 ∈e , 0>Ω  and ]04.0,013.0[0 ∈e , 0<Ω  
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From a mathematical point of view, when the assigned bifurcation parameters e0,  ,0k τ, are 
varied and reach a certain bifurcation value – 013.00 =e , 2.6 0 =k , 2.6=τ  at which Ω  changes 
its sign then a bifurcation occurs. As a result the type of equilibrium state changes from 
compound saddle-focus to compound saddle-knot or reversely. For example it is seen in 
Fig. 2 when bifurcation parameter is e0. 
 
Here we note that when we vary parameters 0s , 2k , 3k  in its whole intervals ]0.05  ,01.0[0 ∈s , 

]4,1.0[2 ∈k , ]6.0,2.0[3 ∈k , Ω is always positive and the roots of Eq. (8) are: one real negative 
and two complex conjugated ones with a negative real part in the whole interval, respectively. 
Therefore, according to [11] the equilibrium points are from compound saddle-focus type. In 
this case subsiding oscillations will arise around this unstable equilibrium state. 
 
Finally when we vary the parameters k1, I, A in its interval 4] ,1.0[1 ∈k , -410].10 ,1[∈I , 

-310].10 ,1[∈A respectively, Ω is negative and the characteristic equation (8) has three negative 
real roots. Here the character of the equilibrium point (3) is a compound saddle-knot. It is 
depicted in Fig. 3, where parameter A is chosen for a variable parameter. 
 

 
Fig. 3 The type of the roots of the characteristic equation for -310].10 ,1[∈A when 0<Ω  

 
In this section we investigated numerically the influence of the parameters on the qualitative 
behavior of the linearized system (5). It follows from the numerical results that when the 
(bifurcation) parameters e0,  ,0k τ are taken as variables and when they reach the respective 
bifurcation value, bifurcation occurs in the system (5). As a result, the phase portrait of the 
system changes in the vicinity of its equilibrium state – from saddle-knot into saddle-focus or 
vice versa. When parameters 0s , 2k , 3k  are varied, the type of the equilibrium state is 
compound saddle-focus. And when parameters k1, I, A are varied, the character of the 
equilibrium point (3) is compound saddle-knot. 
 
With the unstable equilibrium state from the type compound saddle-knot, the oncogenesis will 
develop faster than the compound saddle-focus equilibrium state. 
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Conclusion 
In this paper we have investigated the qualitative behavior of a time delay model of crosstalk 
between ERK and STAT5a. Also the influence of parameters on dynamics of a time delay 
model is analyzed. The results of qualitative analysis shows that when the characteristic 
equation has one zero root, this case corresponds to the first critical case of the structurally 
unstable systems. This first critical case is associated with disappearance of the equilibrium 
state which means that the system is structurally unstable. The types of unstable equilibrium 
are compound saddle-knot and compound saddle-focus, depending on the type of roots of the 
characteristic equation. Relating these results to the physiological nature of the studied 
mathematical model, we can make the conclusion that in reality, if there is a crosstalk 
between the signaling pathways ERK and STAT5а, this leads to the appearance of cancer 
disease. This pathology appears when the process of homeostasis is disturbed and it has a 
non-reverse character. The results from the numerical analysis illustrate the effect of the 
parameters of the time delay model on its behavior. It follows that when the parameters e0, 

 ,0k τ, are taken as variables and when they reach the respective bifurcation value, bifurcation 
occurs in the model. As a result, the phase portrait of the system changes in the vicinity of its 
equilibrium state – from saddle-knot into saddle-focus or vice versa. When parameters 0s , 2k , 

3k are varied, the type of the equilibrium state is compound saddle-focus. And when 
parameters k1, I, A are varied, the character of the equilibrium point is compound saddle-knot. 
With the unstable equilibrium state from the type compound saddle-knot, the oncogenesis will 
develop faster than the compound saddle-focus equilibrium state.  
 
If we have the second abovementioned critical case, and cancer disease appears, it can be 
healed with medical assistance. 
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