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Abstract: Recent progress in human genomics and proteomics has significantly increased 
the number of macromolecular targets potentially involved in drug discovery campaigns. 
Today technologies like combinatorial chemistry and high-throughput screening (HTS) 
authorize biological assays of a large number of small molecules against the therapeutically 
relevant targets. However the escalating costs highlight the need of developing novel 
approaches while still allowing one to explore larger chemical diversity. In this respect, 
virtual ligand screening (VLS) is established as an attractive approach to handle large sets 
of compounds and to improve the “hit-rate” of drug discovery programs. Here, we review 
the main VLS techniques applied for structure-based drug design and we focus on key 
concepts in the molecular docking–scoring methodology. 
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Introduction 
Recent progress in human genomics and proteomics has significantly increased the number of 
macromolecular targets potentially involved in the health and disease states and thus the 
number of drug discovery campaigns. It is commonly accepted that there are seven main steps 
in the drug discovery process: disease selection, target validation, identification of lead 
compound (screening), optimization of the lead compounds, pre-clinical trial, clinical trial 
and pharmacogenomic optimization. Traditionally, these steps are performed out sequentially, 
and if one of the steps is slow, the entire process is delayed. Because it is not possible to 
speed-up clinical trials, it seems that the only way to increase the effectiveness of the process 
is to optimize the preclinical steps. Today technologies like combinatorial chemistry and 
high-throughput screening (HTS) authorize biological assays of a large number of small 
molecules (over 10 million chemical compounds can be purchased) against the therapeutically 
relevant targets. However the escalating costs highlight the need of developing novel 
approaches while still allowing one to explore larger chemical diversity. In this respect, 
virtual ligand screening (VLS), or in silico screening, is established as an attractive approach 
to handle large sets of compounds and to improve the “hit-rate” of drug discovery programs 
[89, 99]. In fact, VLS has become a method of choice for hit identification not to replace HTS 
and NMR-based screens but rather to complement them, such that experiments to be only 
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carried out on a small list of compounds pre-selected via computer methods [55, 67, 68, 95]. 
Among the various VLS methods directly used for hit identification, we can usually 
distinguish two families: ligand-based screening and structure-based screening [21]. For 
ligand-based methods, the strategy is to use information provided by compounds that are 
known to bind to the desired target and to use these data to identify other molecules in the 
databases with similar properties [5, 62, 100]. This can be done by a similarity and 
substructure search, clustering, QSAR, pharmacophore matching or three-dimensional (3D) 
shape matching (“lead-hopping”). Virtual ligand screening based on the 3D structure of 
macromolecular targets (structure-based SB-VLS) is widely applied to identify chemical 
entities that have a high likelihood of binding to a target molecule to elicit desired biological 
responses  [19, 93, 97, 118]. For SB-VLS methods (Fig. 1), it is assumed that the 3D structure 
of the target is known either by X-ray crystallography or NMR experiments, or predicted by 
homology modeling [24, 47, 79, 88]. The principle here is to dock all the ligands present in a 
database into the binding pocket of the selected target and evaluate the fit between the 
molecules [68]. 
 

 
Fig. 1 Flowchart of Structure-based Virtual Ligand Screening (SB-VLS) 

versus High-Throughput Screening (HTS) for hit identification. 
 

For a successful application of VLS methods for structure-based drug design several points 
have to be considered: availability of databases, sufficient computational resources, as well as 
specific knowledge and expertise [74]. While SB-VLS is known to give valuable information 
for selection of new hits among chemical libraries of millions of compounds by using 
common docking-scoring algorithms [54, 60], it is also costly in terms of computational time. 
The extensive treatment of ligand (and in some cases receptor) flexibility in the docking 
process is critical for docking accuracy but increase significantly the time of the docking 
simulations. SB-VLS using fully flexible docking is impractical for the screening of millions 
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of molecules. Therefore developing new, faster and more efficient docking methods to 
decrease biocomputing cost has become a priority for many research groups [63, 85, 90, 91, 
107]. 
 
Several recent reviews about computer aided drug design/VLS methods have been published 
[3, 14, 30, 41, 54, 60, 93, 111]. In the present review we will focus on the main VLS 
techniques applied for structure-based drug design and molecular docking-scoring 
methodology. Various docking-scoring methods have been reported in the literature. The 
complexity of molecular docking implies several approximations, from rigid body docking, to 
(pseudo)-flexible ligand docking (where the receptor is held rigid and the ligand is partially 
flexible) to flexible docking (where both receptor and ligand flexibility are considered). 
Algorithms dealing with flexibility can be divided in three types, namely systematic, 
stochastic and deterministic searches (e.g., energy minimization and molecular dynamics) 
(see explanations about these simulation methods in [10, 103]. Some VLS packages use more 
than one of these approaches. 
 
Binding free energy and scoring in VLS 
The molecular recognition problem, which is the basis for protein-protein/ligand docking–
scoring modeling, is discussed in details in [10]. It is well known that molecular complexes 
(protein-protein or protein-ligand) are stabilized by interactions such as: van der Waals, 
hydrophobic, ionic, hydrogen bonds. Upon receptor-ligand binding significant solvation and 
entropic changes occur due to rearrangement of water molecules surrounding the unbound 
ligand and receptor. The stability of a complex (or the binding free energy ∆Gbind) can be 
measured by determining the equilibrium binding constant, Keq. (Eq. 1):  
 
∆Gbind = - RT ln Keq          (1) 

 

The binding free energy involving both enthalpic (∆H) and entropic (∆S) contributions can be 
presented as a difference between the free energy of the complexe (Gcomplex) and the free 
energies of the receptor (Greceptor) and the ligand (Gligand) in unbound state (Eq. 2): 
 
∆Gbind = ∆H - T∆S = Gcomplex - (Greceptor + Gligand)      (2) 
 
Rigorous and accurate computation of the binding free energy can be done through time 
consuming methods: free energy perturbation (FEP) and thermodynamic integration (TI) [36]. 
In such approaches the free energy difference between bound and unbound ligand and 
receptor is determined by slow intermediate changes from one state to the other. By now, 
these are the most precise theoretical methods but they are very time-consuming and as such, 
these approaches are not appropriate for screening large compound collections. Along the 
same line and still too computationally expensive, the linear interaction energy (LIE) 
approximation [4, 71] can also be used to obtain binding free energies for a small number of 
compounds. 
 
More approximate models have been proposed to evaluate relative binding affinities so called 
scoring functions. They can be applied in docking-scoring steps in VLS projects. Accurate 
prediction of relative binding affinities firstly depends on finding the correct binding poses. 
However, the accurate binding modes are necessary but not sufficient for correct ligand 
scoring and ranking. It is well known [10, 51] that the scoring of the ligands is a crucial step 
in a VLS project. Scoring functions are used (1) to evaluate different bound poses for a single 
ligand proposed by the docking algorithm in order to select the energetically preferred pose; 
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(2) to rank different docked ligands in order to discriminate the active compounds. Scoring 
functions can be classified into three categories: force field-based, knowledge-based and 
empirical.  
 
Docking algorithms 
Multiple conformation rigid body docking 
Among the numerous docking programs several rigid body docking programs have been 
reported to dock rigidly previously generated conformers by matching interaction points from 
the receptor site with ligand atoms. In the rigid body docking methods, an orientational search 
of the ligand in the protein binding pocket is carried out while the receptor and the ligand 
remain rigid. Thus only the six translational and rotational degrees of freedom are explored. 
One of the first molecular docking program for protein-small molecule interaction involving 
rigid body docking was the DOCK developed by Kuntz and co-workers [58]. The program 
DOCK generates a negative image of the receptor - spheres that fill the binding pocket 
represent potential interaction sites. The DOCK algorithm attempts to superimpose the ligand 
atoms onto the centers of the spheres. Another rigid-body docking program FRED 
(http://www.eyesopen.com) [72] applies a Gaussian shape fitting function to optimize the 
contact surface between the ligand and the protein which allows extremely fast rigid docking 
procedure. FRED filters the pose ensemble by rejecting the ones that clash with the protein 
using a negative image of the active site. The refined poses can then be scored using various 
scoring functions [110]. The programs FLOG [76] and CLIX [59] apply grids with pre-
calculated potential energies of interaction with putative ligand atoms. The physical 
properties of the ligand atoms are divided into several atom types (neutral hydrogen-bond 
donors, neutral hydrogen-bond acceptors, polar, hydrophobic…). An alternative approach of 
continuum calculation of the binding energy is used in EUDOC [84] to score the docking 
poses via the three different  force-fields (TRIPOS, AMBER, CHARMM), while cation-pi 
interaction between the ligand and the target can be taken into account. 
 
Despite obvious limitations, rigid body docking methods are interesting because they are 
much faster than the flexible docking algorithms. Software such as FRED can dock up to 10 
compounds per second on a standard mono-processor Linux workstation [72]. The speed and 
the relative accuracy of mutli-conformation rigid body docking methods make them attractive 
[81] especially as an initial filter of a hierarchical structure-based VLS project to remove from 
the docking library compounds that could not fit into the binding pocket or that have low 
surface complementarity with the receptor [77, 112]. One way to improve rigid-body docking 
accuracy is to dock pre-generated multiple conformers of a ligand. In a modified version of 
DOCK [65] multiple conformations of ligands in the same frame of reference are docked as 
an ensemble, into a receptor binding site allowing extremely fast docking. Moreover, each 
ensemble of pregenerated ligand conformations can be processed into a hierarchical data 
structure such that atom connectivity is implicitly represented across all conformations of the 
ensemble [66]. Multiple ligand conformers required for the rigid-body docking can be 
generated with the well established commercial packages as Corina (Molecular Networks 
GmbH. http://www.mol-net.de.), OMEGA (Openeye Scientific Software. 
http://www.eyesopen.com) or Catalyst [9, 50] as well as with free online tools. Recently 
FROG, a tool to generate multiple 3D conformations of compounds has been reported [61] 
(http://bioserv.rpbs.jussieu.fr/Frog.html). In addition web-databases with chemical 
compounds for VLS like Zinc [39] or FAF-drugs [78] propose pre-calculated collections of 
compounds in 3D. 
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Flexible ligand: Systematic search  
Systematic search algorithms try to explore all degrees of freedom. To reduce the number of 
evaluations to be performed, termination criteria is defined to prevent the algorithm from 
facing combinatorial explosion. Fragmentation/reconstruction algorithms (incremental 
construction methods) generally divide a ligand into small rigid cores and flexible linking 
parts (see Fig. 2). The rigid core fragments are docked first into the binding site and the 
flexible parts are added incrementally to reconstruct the complete ligand.  
 

 
Fig. 2 A) Binding site definition in DOCK. B) Torsion angle variation in DOCK  

 
The general approach in the program DOCK (http://dock.compbio.ucsf.edu/) for treatment of 
ligand flexibility [57, 70] (anchor-and-grow method) is divided into three main steps. First, 
the determination of a set of overlapping spheres in contact with the surface of the receptor 
site. These spheres fill the molecular surface of the binding site and represent a negative 
image of the target site. Second, the center of these spheres is matched with the ligand atoms 
via the use of a graph-matching algorithm. Third, a scoring function is used to evaluate the 
pertinence of the docking poses by approximating the protein/ligand binding energy. The 
evaluation of the ligand orientation uses a grid-based procedure in which steric and 
electrostatic interactions between the putative ligand and the receptor are pre-computed at 
each grid point. In order to score generated binding modes, as well to rank a number of 
ligands, several scoring functions can be used in DOCK 3.5 and DOCK4.0: contact score, 
chemical score, energy score (Lennard-Jones van der Waals potential and Coulombic 
electrostatics with a distance-dependent dielectric constant). In the new versions of DOCK 
additional scoring functions have been developed taking into account the contribution of the 
solvation energy for molecular recognition: the Generalized Born/Surface Area (GB/SA) 
score (implemented in DOCK5) [37, 119] and Poisson-Boltzmann/Surface Area (PB/SA) 
scoring function [32] (in DOCK6). 
 
Several approaches based on the DOCK methodology have been developed. 
TARGETED_DOCK [20] is a modified version of DOCK 1.0 that is able to target user-
specified atom types to selected positions in the receptor site. The list of pairs between ligand 
atoms and receptor spheres can be obtained from analysis of the receptor site, for example, a 
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specific hydrogen-bond or a tightly bound water molecule. The match algorithm of DOCK 
then focuses on this specific list of pairs of target sphere and ligand atom. The program 
PhDOCK [45] is based on the pharmacophore representations of small molecules that are 
stored in a database. This pharmacophoric-point representation is compared to predefined 
DOCK site points in the binding region in order to orient the complex (ligand + protein). An 
iterative procedure is applied which consists of associating each molecule to a 
pharmacophore. The pharmacophore representation is first used to overlay molecules based 
on their widest 3D pharmacophore. The basic objects of this representation are simply 
hydrogen-bond donors, hydrogen-bond acceptors, and ring centroids. For each orientation that 
provides a good match with the receptor points, the ensemble of conformers is docked into 
the binding site, and all members of the ensembles are scored. The methods SG-DOCK and 
SP-DOCK [28] apply two distinctive algorithms, SPDOCK (similarity penalizing docking) 
and SG-DOCK (similarity guided docking). SG-DOCK uses similarity criteria along the 
incremental construction process. This algorithm promotes target-ligand orientation having 
the binding mode observed in the reference structures and penalizes those diverging from 
them. On the contrary, SP-DOCK exclusively uses similarity criteria to penalize the docking 
pose after the docking process, thus having only an effect on the final ranking. PostDOCK 
[98] performs a postprocessing filtering to select true binding ligand-protein complexes 
generated by DOCK4. PostDOCK is a pattern recognition system that relies on a database of 
complexes, biochemical descriptors of those complexes, and machine learning tools. For the 
biochemical descriptors, PostDOCK considers terms from the DOCK score, empirical 
scoring, and buried solvent accessible surface area. 
 
The program Surflex (www.biopharmics.com) [40, 42] is based on a previously developed 
program named Hammerhead [113]. It uses the same concept of pocket finder and binding 
site-probing definition (protomols) but it is characterized by an innovative incremental 
construction of the ligand and recently refined scoring function. The program first creates an 
idealized binding site a protomol that serves as a target to which putative ligands or ligand 
fragments are aligned on the basis of molecular similarity. Each putative ligand is fragmented, 
resulting in 1-10 molecular fragments, each of which may have some rotatable bonds. Each 
fragment is then conformationally searched and each conformation of each fragment is 
aligned to the protomol to yield poses that maximize molecular similarity to the protomol. 
The scoring function terms involve,in rough order of significance, hydrophobic 
complementarity, polar complementarity, entropic terms, and solvation terms. 
 
The software FlexX (http://www.biosolveit.de/) (http://www.tripos.com/) [87] docks flexible 
ligands into rigid receptors using an incremental approach and some concepts present in the 
LUDI program [8]. The approach can be divided into three areas: conformational flexibility, 
protein-ligand interactions and scoring. The conformational flexibility of the ligand is 
modeled by a discrete set of preferred torsion angles at acyclic single bonds [52] and multiple 
conformations for ring systems. With regard to the interaction scheme, FlexX relies on the 
detection of geometrically restrictive interactions such as hydrogen-bonds, specific 
hydrophobic interactions such as phenyl-methyl doublets, or spherical surfaces that are 
derived from favored interaction distances. The docking algorithm is divided into three 
phases: base fragment selection, base fragment placement, and complex construction, where 
the ligand is built incrementally from the base fragment. The ranking of the ligands is 
performed with the modified empirical Bohm scoring function. This scoring function includes 
several (weighted) terms: a fixed ground term, a term taking into account the loss of entropy 
during ligand binding due to the hindrance of rotatable bonds in the ligand, hydrogen-bond, 
ionic interaction, aromatic interaction and lipophilic interaction. 
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Flexible ligand: Stochastic search  
Stochastic (or random) search algorithms involve random changes to modify the position of 
the ligand (translation and rotation) as well as torsion angles in order to generate different 
conformations. The main stochastic search methods are Monte Carlo (MC), Genetic 
Algorithms (GA) and Tabu search. 

 
Monte Carlo methods 
MC can generate an ensemble of conformations which are statistically consistent at a given 
temperature. Random perturbations of the atomic positions are applied in order to explore the 
conformational space of the molecular system. An energy function evaluates whether the 
energy of the newly generated conformation is either lower than the one from the previous 
step or, if higher, is within an energy range defined by the so-called Boltzmann factor 
(Metropolis criteria).  
 
The package LigandFit (www.accelrys.com) [108] has utilities to predict/define the binding 
site based upon the protein shape (flood-filling algorithm). A Monte Carlo method is 
employed for the conformational search of the ligand. During this search, bond lengths/bond 
angles are untouched while torsion angles are randomized. Multiple structural changes may 
thus occur at the same time during this step. Once a new conformation for the ligand is 
generated, the fitting of the compound in the binding pocket is carried out (shape similarity 
search procedure), eventually followed by rigid body minimization. If the shape is similar 
then the ligand is docked into the binding site and its binding energy is evaluated via an 
energy function called DockScore [108] involving a soft 9-6 van der Waals term and an 
electrostatic term with a distance-dependent dielectric constant and, eventually, the internal 
energy of the ligand. Several scoring functions are available including, for instance, Ludi [8], 
LigScore [53] or PLP [109]. The Dreiding and CFF force-fields are available. 
 
The method MCDOCK [64] is a three-stage strategy using a Monte Carlo algorithm. The 
three successive stages of the protocol consists of increasingly refining the level at which the 
ligand is placed within the receptor site. This first stage (geometry-based docking) consists of 
placing the ligand inside the receptor site without major clashes by using a binary grid. A MC 
routine is in charge of positioning the rigid ligand into the binding site. The second stage uses 
another MC protocol (energy-based docking). The nonbonded terms of the energy function 
are the classical Lennard-Jones and Coulombic terms. Concerning the internal energy of the 
ligand, only the nonbonded components are treated, while the torsional components are 
ignored. After a global sampling that allows the eviction of bad contacts between the ligand 
and the receptor, a simulated annealing protocol is applied using Metropolis criteria. The 
position of the center of mass, the three overall Euler angles, and internal torsion angles of the 
ligand are sampled. Finally, a MC protocol is used to prevent the system to be trapped in a 
local minimum. Other MC methods for VLS are Dockvision [34], QXP [73], or QUASI 
[105]. 
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Genetic algorithms 
GA are loosely modeled on concepts borrowed from Darwinian evolution. Different ligand 
conformations and positions are generated, forming a population of solutions. This initial 
state of population is evolved as the lowest energy positions. This population is submitted to 
crossing over and random or biased mutations in order to form the next population. The 
algorithm maintains a selective pressure towards an optimal solution, with a randomized 
information exchange permitting exploration of the search space. After successive steps of 
evolution, the best ligand positions and conformations are kept resulting into the lowest 
energy ligand pose. These algorithms are used in many docking programs such as GOLD 
[43], AutoDock [31], DARWIN [102], FFLD [11, 15]. For example, in GOLD, the 
mechanism for ligand placement is based on fitting points. The program adds fitting points to 
hydrogen-bonding groups on protein and ligand, and maps acceptor points in the ligand on 
donor points in the protein and vice versa. The genetic algorithm optimizes flexible ligand 
dihedrals, ligand ring geometries, dihedrals of protein OH and NH groups, and the mappings 
of the fitting points. 

 
The program AutoDock 3 (http://www.scripps.edu/mb/olson/doc/autodock) [23, 80]: employs 
a Lamarkian genetic algorithm (LGA) that incorporates a local minimization for a given 
fraction of the population. The LGA mixes a global search for ligand conformation and 
orientation, handled by a genetic algorithm switching between “genotypic space” and 
“phenotypic space, with an adaptive local search to perform energy minimization. The 
scoring function of AutoDock3.0 is modeled after the AMBER force-field, and uses a 
pairwise sum of energetic terms with parameters for van der Waals, hydrogen bonding and 
distance-dependent dielectric electrostatics, as well as conformational torsional restriction 
entropy and empirical solvation terms. 

 
Tabu search 
Tabu search combines a minimization procedure with restrictions on the search path, such 
that the solution is forced into previously unexplored regions of the search space. It proceeds 
stepwise from an initial solution, while maintaining a list of previous solutions. The list of 
previous solutions provides both a ranking of solutions and a partial record of explored 
regions of the search space. The Tabu algorithm generates a set of N new solutions from the 
previous solution, and one of the N solutions is kept. A solution is added to the list if it is the 
best solution so far, or the solution explores a new region of the search space. A Tabu search 
algorithm is for example implemented in the PRO_LEADS package [7, 114]. 
 
Flexible ligand: Deterministic search  
In the deterministic search, the initial state determines the change that can be made to 
generate the next state, which generally has to be energetically preferred as compared with the 
initial state. One problem with these approaches is that they can be trapped in local minima. 
Deterministic methods for VLS are energy minimization and molecular dynamics (MD) 
methods allowing a flexibility of the receptor binding site [3, 22, 96]. Molecular dynamics as 
compared to MC simulations, cannot cross easily high-energy barriers within reasonable 
simulation time and at room temperature [10, 51]. Some simulation methods that could be 
useful for VLS have been developed to overcome more rapidly the energy barriers, for 
example using simulated annealing molecular dynamics (SDOCKER [115]). Some authors 
propose to carry out time-consuming MD simulations at the final steps of the VLS process on 
a smaller pre-selected compound library in order to sample different conformations of the 
protein-ligand complex and to predict the binding affinities [56, 112]. Approaches that 
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combine several methods are emerging, like for instance, docking with FlexX and applying 
molecular dynamics and quantum mechanics and molecular mechanics methods [49] or 
molecular dynamics with Quantum-Refined Force-Field [25]. 
 
Flexible receptor 
One of the main challenges for the VLS methodology today is to take into account 
conformational changes of the receptor upon ligand binding [104]. Often the receptor 
flexibility is neglected during VLS experiments [51]. However, in many receptor-ligand 
interactions, significant conformational changes can occur upon binding, for instance the 
induced-fit of protein kinases upon inhibitor binding [12] or at protein-protein interfaces [17, 
106]. On the other hand an explicit incorrect inclusion of the receptor flexibility can lead to 
worse discrimination of the real active compounds as compared to calculations performed on 
a rigid receptor [2]. 
 
Various strategies are proposed in the literature to take into consideration the receptor 
flexibility. The most relevant, but apparently the most time consuming way is to apply 
deterministic methods like a MD simulations (see above). One promising manner to account 
for the receptor flexibility in VLS projects is to perform the docking simulations on ensemble 
of different modeled or experimental protein structures. Different protein structures can be 
generated by MD or MC simulations [35]. The normal-mode-based methodology was also 
shown to incorporate receptor flexibility in ligand docking [26] and virtual screening [13]. In 
addition, multiple experimental structures can be used to screen one target protein allowing 
investigation of the influence of different structures on ligand binding [6]. 
 
Cavasotto and Abagyan [12] proposed the ICM-flexible (www.molsoft.com) [1] receptor 
docking algorithm (IFREDA) to account for protein flexibility during virtual screening. The 
ICM program is based on Monte Carlo simulation that relies on global optimization of the 
energy function of the flexible ligand in the receptor field (flexible ligand/grid receptor 
approach) (receptor side chains/main chain flexibility). A Monte Carlo minimization 
procedure in the internal coordinate space is employed to search for the global minimum of 
the energy function. Each step of the algorithm consists of a random change of two types, 
torsional or positional, followed by a local minimization. Torsional changes of amino-acid 
side chains at the interface can also be applied using a biased probability methodology. The 
VLS scoring function used in ICM consists of the internal forcefield energy of the ligand and 
the ligand/receptor interaction energy with eventually a term to account for the size of the 
binding site/ligand. The ligand/receptor interaction energy includes several weighted terms: 
van der Waals, a hydrophobicity term based on the solvent accessible surface buried upon 
binding, an electrostatic solvation term calculated using a boundary-element solution of the 
Poisson equation, hydrogen-bond interactions and an entropic term proportional to the 
number of flexible torsions in the ligand. 
 
The program SLIDE (http://www.bch.msu.edu/labs/kuhn/web/index.html) [92, 117] docks 
flexible ligands into a partially flexible protein. The core of the approach relies on an iterative 
matching procedure between interaction centers within the receptor and interaction points 
within the ligand. The receptor site is analyzed in term of interactions points: hydrogen-bond 
donor, hydrogen-bond acceptor and hydrophobic. A multilevel hashing procedure 
exhaustively detects matches between triplets of interaction points and triplets of ligand atoms 
such that vertices and edges are, compatible and within a threshold distance, respectively. 
Steric hindrance between the protein and the ligand anchor fragment is resolved by using 



BIO

Autom
ati

on

Bioautomation, 2007, 7, 104 − 121 ISSN 1312 – 451X 
 

 113

rigid body translations. Once the anchor fragment is determined and no collision is observed, 
the rest of the ligand atoms are flexibly added and optimized by rotating all single bonds. This 
includes some side chain flexibility. The generated poses are evaluated with an empirical 
scoring based on evaluation of hydrogen bonds and hydrophobic contacts. The number of 
water displacements and protein intramolecular hydrogen bonds disruption can be taken into 
account. Hydrophobicity is evaluated with a knowledge-based criterion. 
 
Hierarchical docking methods 
Various concepts have been proposed to speed up the time-consuming procedures docking-
scoring of SB-VLS. Recently multistep VLS protocols with funnel strategy for docking, 
consisting of different levels of filtering have been developed [27, 29, 77, 112]. It was 
demonstrated that such hierarchical procedures for docking-scoring methodology 
significantly improves the speed and the quality of SB-VLS procedures [18, 48, 94]. Several 
of these approaches start with pharmacophoric constrains or a geometrical matching of the 
target and the ligands which could be the fastest filtering step based on the 3D target 
structure. The following filtering steps usually involve flexible ligand docking and eventually 
partial receptor flexibility and/or different level of precision in the estimation of binding 
energies with final free energy calculations involving estimation of van der Waals, Coulombic 
interations, and changes in solvation and enthropy due to the ligand binding [16, 75]. 
Recently hierarchical database screenings using a pharmacophore model, rigid-body docking, 
solvation docking, and molecular mechanics-Poisson-Boltzmann/surface area (MM/PBSA) 
have been shown to be useful in order to predict more precisely the binding energies [112]. 
The MM/PBSA methodology predicts the binding free energy ∆Gbind of a ligand  
(see Eqs. 1-2) by combining molecular mechanics energy, solvation free energies with 
Poisson Boltzmann (or generalized Born) calculations, and entropy estimates from normal 
mode calculations; [75, 101, 112]. Studies combining FLOG and ICM-dock [69] or FRED-
Surflex methods [94] have been reported to be successfully applied for identification of new 
potent inhibitors [18]. 
 
HierVLS (hierarchical virtual ligand screeing) [27] is a fast hierarchical docking approach 
that starts with a coarse grain conformational search over a large number of configurations 
filtered with a fast but crude energy function, followed by a succession of finer grain levels, 
using more and more accurate but more expensive descriptions of the ligand-protein-solvent 
interactions. The final step of this procedure optimizes one configuration of the ligand in the 
protein site using an accurate energy expression and description of the solvent, which would 
be impractical for all conformations and sites sampled in the coarse level. The method 
MPSim-Dock [16] combines elements of DOCK with molecular dynamics methods available 
in the software, MPSim. 
 
The program GLIDE (http://www.schrodinger.com/) [29, 33] uses hierarchical filters to 
explore plausible docking poses for a given ligand within the receptor site. The shape and 
properties of the receptor are represented on a grid by several different sets of fields and 
calculations become progressively more accurate as the docking proceed. A set of initial 
ligand conformations is generated through exhaustive search of the torsional minima, and the 
conformers are clustered in a combinatorial fashion. The search begins with a rough 
positioning and scoring phase that significantly narrows the search space and reduces the 
number of poses to be further considered. The selected conformations are subjected to 
standard minimization with the OPLS-AA force-field in the receptor binding site. Then, the 
10 lowest-energy poses go through a MC procedure in which nearby torsional minima are 
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examined, and orientation of peripheral groups of the ligand is then refined. The minimized 
poses are rescored using the GlideScore function, which is a more sophisticated version of 
ChemScore with force-field–based components and additional term accounting for solvation. 
The choice of the best pose is made using a model energy score (Emodel) that combines the 
energy grid score, GlideScore, and the internal strain of the ligand.  
 
Target specific compound libraries 
One important condition for a successful VLS application is the selection of an appropriate 
chemical library [38, 44, 83]. A rational reduction of the size of the initial compound 
collections can be a crucial step to achieve higher speed and performance when using SB-
VLS methodologies. One possibility is for instance generation of initial focused molecules 
libraries for a specific target using pharmacophoric filters like in [48]. Reducing the size of 
chemical libraries is also suggested in [86] where the authors proposed an approach aiming at 
reducing the number of compounds to be tested against the given target on the basis of 
available information about active molecules by prediction of the biological activity of 
chemical compounds based on only the atom pairs (AP) and two dimensional topological 
descriptors. However in many cases an initial set of active compounds for a selected protein 
target at the beginning of an HTS-campaign is missing. In such cases the problem can be 
resolved by creating the “focused” libraries based exclusively on the receptor structure. Fast 
shape complementarity search between the receptors and ligands can be applied to generate 
“focused” libraries of smaller size. Furthermore a screening on such “focused“ libraries 
should help to achieve higher final enrichment [77] since all compounds screened by flexible 
docking will show at least a good shape complementaritry with the receptor which is one of 
the conditions for high affinity binding [46, 74]. 
 
Various methods for a rapid shape complementarity search between the ligand and the 
receptor have been developed that can be applied as filters to create “focused” libraries based 
on the 3D receptor structure. Recently a fast surface-matching procedure for protein-ligand 
docking [116] has been published that exploits a fingerprint concept for translating the 3D-
information into a 2D-map able to describe the whole 3D-patterns using spherical harmonics 
ligand fingerprint comparison. Oloff et al. [82] have developed a novel structure-based 
chemoinformatics approach to search for Complimentary Ligands Based on Receptor 
Information (CoLiBRI) which allows a rapid prefiltering of a large chemical database to 
eliminate compounds that have little chance of binding to a receptor active site. 
 
Conclusion 
VLS methods based on the 3D structure of the receptor provide a real opportunity for 
identification of new active compounds, without bias towards known hits or leads. With 
regard to docking/scoring methodology, further progress will be required. Tools to better 
design chemical libraries are also needed. Related key problems acting both during docking 
and scoring are the appropriate treatment of ionization and tautomerization states in the input 
chemical compounds. Docking the correct ligand tautomer would require dynamic protein 
pKa prediction, since tautomers are influenced by environment but addressing this problem 
during VLS computations is challenging. Further, many methods are able to produce reliable 
models of bound ligands (correct poses are generated) but it is still difficult to distinguish 
‘true’ ligands from false-positives. Thus, algorithms that can handle better receptor flexibility, 
induced-fit motions and binding affinities are needed. 
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