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Summary: The dynamic and bifurcation behaviour of receptor tyrosin kinase (RTK) 
and protein tyrosine phospatase (PTP) reaction network model is investigated on the 
basis of Lyapunov-Andronov’s theory. According to our qualitative and bifurcation 
analysis, propagation of phosphorylation is only possible in the unstable regime of the 
reaction network, i.e. when kinase activity of the receptor increases on 
phosphorylation. For some values of the model parameters first Lyapunov value can 
be positive or negative and bistability takes place. 
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1. INTRODUCTION 

 
In cells, biological responses are coordinated through signalling 
networks composed by interacting protein. The capacity of a cell to 
modulate its response in space and time is crucial for cell 
proliferation. Thus, the signals that control cell fate determination 
and cell differentiation and coordination in tissues and organs need 
to be exquisitely regulated in both time and space [5, 8]. The 
dynamical properties of a cell are determined by the topology of the 
protein-protein interaction networks that underlie cell physiology 
[11]. A major goal in the elucidation of biological networks is to 
develop mathematical models of the dynamics of different protein 
signalling pathways. However, in some cases mathematical 
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modelling is limited by the lack of appropriate, high-throughput 
experimental techniques to validate protein dynamics under different 
experimental conditions [7, 12]. 
 
Enzyme receptors are transmembrane receptors with intrinsic 
enzymatic activity. Good examples are the receptor tyrosine kinases 
(RTKs), high affinity cell surface receptors for many polypeptide 
growth factors, cytokines and hormones. These receptors can 
autophosphorylate their own tyrosine residues as well as the ones in 
growth factor receptors and the insulin receptor [4, 13]. The RTK 
family can be broadly divided into two groups depending on the 
covalent organization of the receptor. Most RTKs present a single 
polypeptide chain and are monomeric in the absence of ligand. RTK 
play significant roles in development, regulation of cell proliferation, 
differentiation and apoptosis, as well as in some diseases such as 
cancer and diabetes. Signalling through RTK is regulated by protein 
tyrosine phosphatases (PTPs) [3, 10]. While it is clear that PTPs are 
biologically important negative regulators for at least some RTKs [3, 
9, 13 and references therein], little is known about the mechanisms 
and the specificity of these interactions [5]. To investigate the 
implications of a coupling between PTP and RTK activity in more 
detail, in [9] the authors formulated and analysed a minimal reaction 
model composed by two coupled ordinary nonlinear differential 
equations (scheme shown in Fig. 1). The model described the 
dynamics of the fraction of phosphorylated receptor tyrosine kinases 
(r) and the activated proteins tyrosine phsophatase (p) including the 
feedback-loop dephosphorylation process that couples the dynamics 
of both proteins. In the phosphorylation of the receptor tyrosine 
kinase, normal input signal-mediated process is considered as well as 
lateral propagation of the signal between activated and inactivated 
receptors. 
 

( ) ( )

( ) ,

,

'
34

'
2

''
1

2'
1

rpkppk
dt
dp

rpkrrrkrrk
dt
dr

tot

tottot

−−=

−−+−=
 (1) 

 
where 
 

http://en.wikipedia.org/wiki/Cell_surface_receptor
http://en.wikipedia.org/wiki/Growth_factor
http://en.wikipedia.org/wiki/Cytokine
http://en.wikipedia.org/wiki/Hormone


BIO

Autom
ati

on

Bioautomation, 2007, 8, Suppl. 1, 105 – 114       ISSN 1312 – 451X 
 

 

βγαα 3
'
32

'
221

''
111

'
1 ,,, kkkkkkkk ====  (2) 

 
Here  is the basal kinase activity;1k 1α  represents the input signal-
mediated contribution to the kinase activity and 2α  measures the 
enhancement in the kinase activity due to the lateral propagation-of 
the signal. β  is rate constant associated to the deactivation of the 
phosphatase, while γ  relates to the phosphatase-mediated 
deactivation of the tyrosine kinase. Finally,  represents the 
activation of the phosphatase (p) via oxidation of the catalytic 
cysteine thiolate. 
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activity to maximal kinase activity, 
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of the maximal rate of phosphatase inhibition to the rate of 

phosphatase reactivation, 
4

3

k
kr

R
I totβ= . The authors also suggest that 

the system can operate in three possible conditions: 1) a unique 
stable steady state at low phosphorylation of receptor (system 
resting); 2) a unique stable steady state at high phosphorylation of 
receptor (system activated); 3) and a bistable state in which, 
depending on the initial conditions, the phosphorylation of the 
receptor can be either high (‘activated’) or low (‘resting’). 
 
The plan of the paper is as follows: In Section 2 we qualitatively 
explore the model (1) using a specific bifurcation theory developed 
by Lyapunov-Andronov-Bautin. Afterwards, in Section 3 we discuss 
and unify results from previous section. 
 
 
2. BIFURCATION ANALYSIS-ANALYTICAL STUDY 
 
In this section, we consider the system (1), which present an 
autonomous dynamical model. All constants of this model are real 
and can be only positive. This system has three equilibrium (steady 
state) points: 
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From the physiological point of view, 
_

r  represents the concentration 
of a specie and must therefore be real positive. Thus, we further 
accomplish the equilibriums under consideration with positive 
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values. In the cubic case the equilibrium (steady state) values 
_

r  of 
the system (1) are 
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It is well known [14] that if: (i) , then the first equation in (3) 
has one real root and a pair of imaginary roots; (ii) 

0>Q
0<Q , then this 

equation has three different real roots and (iii) 0=Q , then for 
P=N=0 the same equation has zero roots and for 0,0 ≠≠ NP  two 
real roots take place. Hence we obtain the initial condition for 
deviation of the model (1) parameters: 
 

23

23
⎟
⎠
⎞

⎜
⎝
⎛−<⎟

⎠
⎞

⎜
⎝
⎛ NP  (6) 

 
Linearising around the steady states (3) by setting 

 with  and  small perturbations, (1) 
becomes 

2

_

1

_

, xppxrr +=+= 1x 2x

 

( )

21
'
321

2

21
'
2

2
1

''
1

'
121

1 ,

xxkdxcx
dt

dx

xxkxkkbxax
dt
dx

−+=

−−++=
 (7) 



BIO

Autom
ati

on

Bioautomation, 2007, 8, Suppl. 1, 105 – 114       ISSN 1312 – 451X 
 

 110

 
where 
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Following [2], the Routh-Hurwitz conditions for stability of (3) can 
be written in the form 
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Here the notations  and  are taken from [2]. Condition (9) can be 
positive or negative. When this condition is not valid (i.e. negative), 
the steady states (3) become unstable. In other words, if 

R q

212 αα <  or 
12 <α  equilibrium points can be in the unstable zone of the system 

parametric space. In order to define whether the corresponding 
Andronov-Hopf bifurcation is sub (hard stability loss) or 
supercritical (soft stability loss) on the stability boundary of these 
equilibriums, it is necessary to calculate the so-called first Lyapunov 
value [1, 2, 6]. In the case of two first-order differential equations, 
this value can be determined analytically by the formula in [2]. 
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where 0λ  is defined as a value of all system parameters of 
_

r  and , 
for which the relation 

_

p
0=R  takes place. The coefficients  and  

 are defined also in [2]. After accomplishing some 
transformations and algebraic operations, the first Lyapunov value 

ija ijb
( 3,2,1,0, =ji )

( )01 λL  for the states (4) is defined by the following equation 
 

( ) ( ) ⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ −−−++−= a

a
bcaabababbca

qbq
aL 22

4 2011
2
201120

2
11

2
1101

πλ  

 (12) 
 
Here, for the system (7) we have 
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It is seen that the first Lyapunov value (in (12)) can be negative or 
positive. If  is negative, then in case of transition through the 
boundary  from positive values to negative ones, a stable limit 
cycle (self-oscillation) emerges. Inversely, in the case of transition 
from negative values to positive ones the stable limit cycle 
disappears, i.e. the self-oscillation ceases. In dynamic systems 
theory, this bifurcation behaviour near the boundary 

1L
0=R

0=R  is called 
soft loss of stability, and when the bifurcation parameter 0λ  changes, 
the system has reversible behaviour and the boundary 0=R is called 
“safe”.  
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If  is positive, then in case of transition through the boundary 
 from positive values to negative ones, an unstable limit cycle 

emerges. Inversely, in case of transition from negative values to 
positive ones, the unstable limit cycle disappears. This type of 
bifurcation behaviour near the boundary 

1L
0=R

0=R  is called hard loss of 
stability, the system has an irreversible behaviour, and the boundary 

 is referred to as “dangerous” [2]. 0=R
 
In other words, in case of safe boundaries, 01 <L  , a slow drift of the 
parameters back into the stability region brings a system back into 
the original response, whereas in the dangerous case, , this is 
generally impossible. Obviously, safe and dangerous boundaries are 
distinguished mainly by the stability or instability of the 
corresponding equilibrium state, or periodic trajectory, on the 
boundary [15]. 

01 >L

 
3. CONCLUSIONS 
 
According to our qualitative and bifurcation analysis, propagation of 
phosphorylation is only possible in the unstable regime of the 
reaction network, i.e. when kinase activity of the receptor increases 
on phosphorylation 212 αα < . This theoretical finding is in good 
agreement with experimental studies in which activation of Ras was 
monitored by GFP-based sensors in cells [9, 16]. In addition, for 
some values of the model parameters first Lyapunov value can be 
positive or negative and bistability takes place. A stable steady state 
of the system with significant concentration of phosphorylated RTK 
kinase (system switched on) and a stable steady state with virtually 
no phosphorylated RTK (switched off) emerge in these cases, and 
certain external perturbations in the system can provoke a permanent 
transition between both states. 
 
In conclusion, we shall note that this paper is a first step in the 
investigation of the RTK-PTP network. A number of questions still 
remain open for us. Indeed, we are interested on investigating how 
the change in the dynamic behaviour of the model relates to the 
pathological and the normal state of the system. Moreover, we plan 
to investigate how changes in particular parameters of the model 
affect its qualitative and quantitative behaviour. 
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