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Abstract: Simple periodic behavior and occurrence of complex oscillatory phenomena 
underlie of a large number of biochemical system models. In many cases the transition from 
stable to simple/complex oscillatory behavior can be connected with the appearance of 
abnormal process likes as cancer. In this paper we propose a time delay model of RNA 
silencing (also known as RNA interference) with periodic forcing. In organisms with RNA 
silencing, each cell has a miniature “immune system” able to generate and amplify specific 
responses to a variety of gene transcripts. The consequences of a time delay on the dynamics 
of this model are analysed using Hopf’s theorem. Our analytical calculations predict that 
time delay acts as a key bifurcation parameter. From the accomplished numerical results, it 
becomes clear that model has complexity oscillatory behavior when the amplitude of 
periodic force (i.e. the confusion in the target mRNA synthesis) is large.  
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Introduction 
In modeling in the biological, physical and engineering sciences, it is sometimes necessary to 
take account of time delays inherent in the phenomena. The inclusion of delays in the 
equations is often a simplification or idealization that is introduced because a detailed 
description of underlying processes is too complicated to be modeled mathematically or 
because some of the details are unknown [3, 5]. In the recent years many models have been 
used to investigate the role of phosphorylation, positive or negative feedback regulation of 
transcription factors, and gene expression multistability. For instance, time delay, especially 
discrete delay, emerges in biochemical system models, models of reduction and regulation of 
blood cells, and gene regulatory systems [1, 18, 19, 20, 22]. 
 
Various authors have previously considered biochemical oscillators with time delay [15] and 
the usefulness of bifurcation analysis to investigate properties of time delay biochemical 
networks [14, 22]. Their analyses show that the introduction of a large enough time delay can 
some times change the unique equilibrium of the system and induce periodic solutions (self-
oscillations), which arise from the equilibrium through an Andronov-Hopf bifurcation. From 
the point of view of the dynamic systems theory, the Hopf bifurcation theorem [12] together 
with other elements of the bifurcation theory are basic analytical tools to investigate 
pathological conditions in biological systems. The qualitative knowledge on the dynamics of 
the systems emerging from this analysis can help in the development of diagnostic methods 
and the choice of rational therapeutic strategies [8, 24]. 
 
To understanding basic biological processes and role of the gene product in a particular 
disease we must know the function of a gene product. In the recent years a new technique has 
been described for determining gene function in mammalian cells [23]. This method exploits 
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the RNA interference (RNAi) pathway [10, 13]. RNAi is induced by the introduction of 
double stranded RNA (dsRNA) into the cell where it is cleaved by the action of Dicer enzyme 
into short dsRNA molecules, 21-25 bp in length, called short interfering RNAs (siRNAs). 
siRNAs interact with proteins in the cytoplasm to form a ribonucleoprotein complex known 
as dsRNA-induced silencing complex (RISC). Using the antisense strand of the siRNA as a 
guide, RISC associates with and cleaves the mRNA of identical sequence. The cleaved 
mRNA is then degraded by nonspecific RNases. This mechanism is shown in Fig. 1. In 
organisms with RNA silencing, each cell has a miniature “immune system” able to generate 
and amplify specific responses to a variety of gene transcripts [21, 25]. In other words, by 
silencing a gene, we can stop or significantly reduce the production of the specific protein 
encoded by the target gene. In [4], a mathematical description of a conceptual of the RNA 
silencing process is presented. 
 
 

 
 

Fig. 1 miRNA processing and activity 
 
Fig. 2 shows a schematic outline of the basic elements comprising this model. On the basis of 
the steps denoted in Fig. 2, Bergstrom and co-authors in [4] obtain an autonomous system of 
four ordinary nonlinear differential equations. Later, Nikolov and Petrov [17], and Nikolov 
[19] presented and investigated bifurcation behavior of a model of RNA silencing with one 
and two time delays, where the delay function ( )τ−tC  expresses the assumption that the net 
rate of dsRNA degradation by Dicer and background process as well as the net rate of dsRNA 
loss are proportional, thus triggering the process of mRNA binding to form the RISC-mRNA 
complex at the moment ( )τ−t .  
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Fig. 2 Schematic diagram of the basic RNA silencing m
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After substitution of Eq. (3) and Eq. (4) into system (1), the non-autonomous forth first-order 
delay ordinary differential equations (1) are reduced to autonomous six first order delay 
differential equations 
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where ( )[ Cdng −−= 1 ]ς . Furthermore, we investigate the bifurcation behavior - particularly 
the Andronov-Hopf bifurcation - for system (5), using time delay τ  as bifurcation parameter. 
First, we obtain the characteristic equation for linearization of system (5) near the equilibrium 

, i.e. when the silencing reaction controls the level of 
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equations in system (5), we have 
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where . Hence, we obtain the 
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The stability matrix (7) leads to the following characteristic equation: 
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This characteristic Eq. (8) is transcendental and can not be solved analytically. Moreover, it 
has an indefinite number of roots [6, 7, 19]. The stability of equilibrium state depends on the 
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sign of the real parts of the roots of Eq. (8). We let inm +=χ  ( )Rnm ∈,  and rewrite Eq. (8) 
in terms of its real and imaginary parts as 
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To find the first bifurcation point we look for purely imaginary roots in±=χ , , of  
Eq. (8), i.e. we set . Then the above two equations are reduce to 
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Here, we note that this is a hexatic equation about  and that the left side is positive for large 
values of  and negative for  because 

2n
2n 0=n 2

6T−  is always negative, i.e. Eq. (13) has at least 
one positive real root. Moreover, to apply Hopf bifurcation theorem the following theorem in 
this situation applies: 
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Evaluating the real part of this equation at bττ =  and setting bin=χ  yield 
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Let 2
bn=θ . Then, Eq. (13) reduces to 
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According to the Hopf bifurcation theorem [12], we define the following theorem: 
Theorem 2.  
 If  is the least positive root of Eq. (13), then an Andronov-Hopf bifurcation occurs 
as 

bn
τ  passes through bτ . 

 
As a consequence of our analysis, we can predict that a limit cycle will emerge if the time 
delay is higher than bτ , while the limit cycle will vanish if the time delay is smaller. In other 
words, we may conclude that in this case the time delay has a destabilizing role because it 
changes drastically the properties of the system when pass through the bifurcation point 
provoking the emergence of a limit cycle. 
 
Numerical analysis 
In this section, we illustrate numerically the different stability results obtained for time delay 
system (1) in previous section. We also focus on periodic and complex solutions appearing 
through an Andronov-Hopf bifurcation. The corresponding numerical values of the model 
parameters are those in [2, 4, 17], i.e. 

].13,1[,5,05.0,1.0,5.0,1.0,2,1.0,10 ∈======== τndddghba CRM  (20) 
 
The dimension of rate constants into (20) is  and of time delay - hours . In view of lack 
of data for the parameters  and 

1−hours
1h ε we assume to vary  and fix 1h 01.0=ε . 

 
Fig. 3 depicts the solution of system (1), in the case when parameter τ  is smaller than the 
bifurcation value. It is seen that the variables describing dsRNA, D, RISC, R, RISC-mRNA 
complex, C and mRNA, M approach to constant values that describe a steady state of the 
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system. In other words the system possesses a stable equilibrium state which corresponds to a 
normal silencing process. 
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Fig. 5 Oscillations with period three of system (1) at 25.01 =h  and 4.12=τ  

 
In Fig. 6, we show the bifurcation diagram for system (1): values of C coordinate, ( , are 
plotted against 

)nC
τ  regarded as a continuously varying bifurcation (control) parameter. As one 

decreases τ  from 4.12=τ  (till approximately 3.12=τ ) the system (1) has periodic solutions 
with different finite number periods. As τ  decreases further, the behavior of the system 
becomes quasi-periodic. Note that inverse bifurcations also take place. This complex behavior 
in terms of our model can be connected with absolutely destroyed silencing process. 

 

C

 τ

Fig. 6 Bifurcation diagram  versus ( )nC τ  generated by the computer solutions  
of system (1) at 10, 0.1, 2, 0.1, 0.5,Ma b h g d= = = = =  

0.1, 0.05, 5, [11.8,12.4]R Cd d n τ= = = ∈  and 25.01 =h  
 
Conclusion 
The purpose of this paper was to investigate the transitions from stable to simple periodic 
behavior and from simple to complex oscillatory phenomena in a delayed RNA silencing 
model with periodic forcing. Because the signalling and cell function are dynamic processes, 
the analysis is primarily a matter of finding the number of steady states, their nature 
(stable/unstable) and to characterize the transitions between them. Biochemical reaction 
networks are complex systems. The complexity arises from both the presence of feedback 
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loops in the cell, a relatively large number of molecules involved, and the nonlinear nature of 
interactions between molecules [9]. Thus, the construction and investigation of theoretical 
(mathematical) models of physiological systems is a powerful tool for understanding complex 
physiological dynamics. Certainly, the modelling should have a concrete application in the 
experimental and clinical systems. 
 
If the system (1) possesses a stable equilibrium state, then this corresponds to a normal 
silencing process. On the other hand, the existence of unstable equilibrium states, stable limit 
cycles (self-oscillations), or complex oscillatory behaviour in this case corresponds to a 
pathology, i.e. an abnormal silencing process. From the accomplished analytical and 
numerical calculations, it becomes clear that time delay τ  is a key factor in the behavior of 
system (1); here, it has a destabilizing effect on the silencing process. In terms of dynamical 
systems, τ  plays the role of a bifurcation parameter. If τ  (i.e. the time necessary for the 
regeneration (or degradation) of the RISC-mRNA complex) is greater than a certain 
(bifurcation) value in system (1), through Andronov-Hopf bifurcation a self-oscillation related 
to an abnormal silencing mechanism appears. 
 
From the simulations made in Figs. 5 and 6, it is seen that at larger amplitude of periodic 
force, i.e. the confusion in the target mRNA synthesis, the periodic oscillation with period 
three occurs. Also, when time delay τ  decreases from 12.4 to 11.8 the transition from simple 
to complex oscillatory behavior take place.  
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