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Abstract: In this study, a flexible optimization approach is introduced to design an optimal 
biocompatible solvent for an extractive fermentation process with cell-recycling. The optimal 
process/solvent design problem is formulated as a mixed-integer nonlinear programming 
model in which performance requirements of the compounds are reflected in the objectives 
and the constraints. A flexible or fuzzy optimization approach is applied to soften the rigid 
requirement for maximization of the production rate, extraction efficiency and to consider the 
solvent utilization rate as the softened inequality constraint to the process/solvent design 
problem. Such a trade-off problem is then converted to the goal attainment problem, which is 
described as the constrained mixed-integer nonlinear programming (MINLP) problem. 
Mixed-integer hybrid differential evolution with multiplier updating method is introduced to 
solve the constrained MINLP problem. The adaptive penalty updating scheme is more 
efficient to achieve a global design. 
 
Keywords: Biocompatible solvent, Flexible optimization approach, Extractive fermentation. 

 
Introduction 
Bio-ethanol is a bulk chemical and must carry out continuous fermentation to achieve 
economic and beneficial production. Continuous fermentation can increase production rate; 
however, it is unable to be carried out on high cell density culture, resulting in low ethanol 
concentration and a significant loss of residual substrate. To increase the efficiency of the 
bio-ethanol fermentation process, various cell culture methods have been investigated [7, 13, 
20, 21]. Cell-recycling bioreactor coupled with membrane filtering modules has gained 
considerable interest in recent years in order to achieve higher bio-ethanol concentration. 
However, such a high ethanol concentration may poison viable microorganisms and abrogate 
the fermentation process. Extractive fermentation is an alternative technique used to reduce 
the end product inhibition by removing the fermentation product in situ [3, 9, 14, 15, 23]. 
However, the toxicity of the organic solvent used to remove the end product is always a 
problem. Few reports have been taken advantage of computer-aided molecular design 
(CAMD) to design a biocompatible solvent for extractive fermentation process [24, 32]. 
CAMD problems are, in general, formulated as mixed-integer nonlinear programming 
(MINLP) problems. Recently, CAMD is a popular technique applying to find a suitable 
molecular structure for refrigerants [2, 4-5, 12], polymer and polymer blends [17, 30], solvent 
for gas absorption [18, 22], and solvents for liquid-liquid extraction [10, 18, 22, 26] and so on.  
 
The challenge of MINLP problems stems from the fact that they are highly nonlinear and 
non-differentiable due to the combinatorial nature of the associated integer-valued variables. 
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Conventional well-known major approaches to MINLP include the cutting plane method, the 
branch-and-bound method, the decomposition method, and their variants. These methods have 
been successfully applied to many practical problems. However, they require a good starting 
point and gradient information to yield a global solution. Evolutionary algorithms (EAs) are 
important optimization techniques that emerged in the last decade. The search processes of 
EAs are based on the ideas and principles of natural evolution. Since they do not require a 
starting point and gradient information, EAs are particularly suitable for solving difficult 
optimization problems, such as highly nonlinear, non-differentiable, and multi-modal 
optimization problems. Hybrid differential evolution (HDE) [1] is a quite simple population 
based stochastic function method and has extended from the one of the best EAs, differential 
evolution as introduced by Storn and Price [29]. HDE has been successfully applied to solve 
biochemical process optimization problems [1, 31]. Unfortunately, HDE is not applicable to 
optimization problems of MINLP. Lin et al. [16] extended HDE to include a mixed coding 
strategy and a rounding operation for solving MINLP problems. This extended form of HDE 
is referred as mixed-integer hybrid differential evolution (MIHDE) and can achieve a global 
minimum in many test cases. In this paper, MIHDE will be applied to determine an optimal 
biocompatible solvent for an ethanol extractive fermentation with cell recycling process. 
 
The optimal biocompatible solvent design problem is coupled with complex nonlinear 
constraints. Such constrained optimization problems are very intractable because the feasible 
region is greatly suppressed by the constraint functions. In the last few years, several 
constraint-handling techniques have been proposed by researchers in the evolutionary 
algorithm community. Michalewicz and Schoenauer [19] surveyed and compared these 
constraint-handling techniques. Among these techniques, penalty function methods are among 
the most popular techniques for handling constraints. However, these techniques are quite 
sensitive to the initial penalty parameters. Small initial penalty parameters, for example, 
might lead to an infeasible solution. On the other hand, very large initial penalty parameters 
might cause the penalty functions to be ill conditioned close to the boundary of the feasible 
region. In this paper, to overcome such drawbacks, we introduce MIHDE with a multiplier 
updating method using adaptive penalty parameters, to deal with the optimal biocompatible 
solvent design problem with physical constraints. 
 
Process formulation 
Constraints for process 
Fig. 1 shows a schematic drawing of an extractive fermentor with cell recycling for 
continuous production of ethanol. The fresh substrate is continuously added into fermentor, 
and a fresh solvent is also added into the fermentor to extract ethanol in order to prevent 
product inhibition. In this work, ethanol extraction is carried out in a liquid-liquid equilibrium 
state at the operation temperature T = 308.15 K and pressure p = 1 atm. The outlet streams 
from extractive and raffinate phases are assumed to be in phase equilibrium. In the cell 
separator, the bioactivity and residence time are negligible and the membrane filtration is 
assumed to be perfect, thus each filtrate is cell-free.  
 
The material balances for biomass, substrate and ethanol around the extractive fermentation 
process at the steady-state are expressed as following: 
( ) 0RbD Xµ − =   (1) 

0 0
/

( ) 0p
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q
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0 0( ) 0R R E E pD P D P D P q X− − + = ,  (3) 
where ED  and RD  are dilution rate based on effluent solvent flow and effluent aqueous 
flow, 0S  is the influent substrate concentration in the fermentor. The dilution rate for the 
feed stream is given by 

0
1

RD D
a

= ,  (4) 

where a is the flow rate ratio. 
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Fig. 1 Extractive fermentation with cell-recycling process 
 
The specific cell growth rate µ and specific ethanol formation qp considered in this work were 
accessed from Wang and Sheu [31], which is to use Saccharomyces diastaticus LORRE 316 
to produce ethanol. Both specific rate models are expressed as:  

( ) ( )
max

2 2
pR

p R R pIs R R sI
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K P P KK S S K

µµ =
+ ++ +

 (5) 
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=

′ ′ ′ ′+ + + +
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where RS  and RP  are the substrate and ethanol concentrations in the raffinate phase. The 
values of the kinetic parameters in (5) and (6) are listed in Wang and Sheu [31]. 
 
The solvent utilization rate is obtained from the material balance equation for solvent at 
steady-state as expressed in the form: 

R( )π ρ= = +
E R
v v

v v v e E R vE R
e e e

x x PD k D D MW
x x MW

,  (7) 

where vD , is the dilution rates based on influent solvent flow rate, and vρ  quantifies the 
density of the solvent. E

vx  and E
ex  are the mole fractions of solvent and ethanol in the 

extractive phase, R
vx  and R

ex  are the mole fractions of solvent and ethanol in the raffinate 
phase, vMW  and eMW  are the molecular weights for solvent and ethanol, and ek  is the 
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ethanol distribution coefficient. 
 
The process streams from the extractive and raffinate phases are assumed to be phase 
equilibrium so that the distribution coefficients ek  for ethanol, solvent and water are defined 
as following:  

R
e w

e E
e v

MWk
MW

γ
γ

= ,  (8) 

where E
eγ  and R

eγ  are the activity coefficients, which are calculated by the universal 
functional activity coefficient (UNIFAC) method [8], of ethanol in the extractive and raffinate 
phases. The solvent selectivity η  and solvent loss ζ  in raffinate phase are two additional 
constraints that are calculated as follows [8]: 

E
w e
E
e w

MW
MW

γη
γ

= ,  (9) 

where γ E
w  and R

vγ  are the activity coefficients of the solvent and water. 
 
The mole fraction for ethanol, solvent and water in the extractive fermentation process can be 
calculated by the UNIFAC method [27]. Moreover, the extractive and raffinate phases are in 
phase equilibrium so that each component needs to hold the following relation: 

;  (ethanol),  (solvent), and  (water)E E R R
j j j jx x j e v wγ γ= = , (10) 

where E
jγ  and R

jγ  are the activity coefficients of component j in the extractive and raffinate 

phases. E
jx  and R

jx  are the mole fraction of component j in the extractive and raffinate 
phases. 
 
Constraints for solvent 
Some requirements need to be specified for the solvent design problem in order to obtain a 
solvent which satisfies physical, chemical, and biological requirements [33]. In this study, we 
are interested in finding an optimal solvent as the following types: hydrocarbon, ester, ketone, 
alcohol, or ether. Accordingly, we should choose the group basis set as G = [CH3, CH2, CH, 
OH, CH3COO, CH2COO, CH3CO, CH2CO, CH3O, CH2O, CHO]. The molecular groups are 
then screened by evaluating the feasibility of their molecular structure and primary solvent 
properties. To ensure that the molecule is structurally feasible, the acyclic octet rule modeled 
by Odele and Macchietto [22] is employed: 

max

1
(2 ) 2, 1,...,

P

j ji
i

u j Mν
=

− = =∑ , (11) 

where Pmax is the maximum number of positions in a molecule, vj is the valence of groups j,  
M is the number of available groups in the basis, and the binary variable jiu  is defined as: 

1, if the structural group  appear in i-th position of a molecule
0, otherwise                                                                              ji

j
u

⎧
= ⎨
⎩

 (12) 

 
While the structure of a molecule is determined, the biocompatibility -logLC50  (mol/L), 
boiling point (Tb, K), melting point (Tf, K), and Gibbs free energy (ΔG, KJ/mol) can be 
evaluated by the group contribution method. Moreover, the evaluated values need to restrict 
within some boundaries in order to yield a suitable solvent. Such inequality constraints are 
expressed as follows:  
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f ji fj f
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583.57 0ji j
j i

G u G∆ = − ∆ >∑∑ ,  (16) 

where Tbj, Tfj, and ΔGj are the boiling point, melting point and Gibbs free energy for the 
contributions of group j, respectively, and can be calculated from the literature [11]. 
Estimating biocompatibility quantitatively could be very difficult, because there is not much 
experimental data available regarding the toxicity contribution for each group to microbes, so 
the criterion used for fathead minnow is applied to cope with biocompatibility for microbes 
[33]. It is supposed that the behaviors of microbes are as same as ones of fathead minnow so 
the toxicity contribution for each group lδ  to fathead minnow is as same as one to microbes 
[6]. Using the group contribution approach, the toxicity of a selected solvent is summed up its 
contributed value. Here, LC50 is the lethal concentration causing 50% mortality in microbes. 
The boundary values for the biocompatibility (BLC50), boiling point ([Tb

L, Tb
U]), and melting 

point (Tf
U) are assigned by the designer. The lower bound of the melting point (Tf

U) is 
necessary to make sure that solvent is in liquid state at operating conditions. In addition, the 
upper bound (Tb

L) should have 30 K to 50 K difference to the lower bound in order to avoid 
azeotrope formation and to ensure high relative volatility [26]. 
 
Optimal design problem 
The aim of the optimal process/solvent design problem is to select a biocompatible solvent 
and to determine operation conditions for the ethanol fermentation process so that the ethanol 
production rate is maximized and the extraction efficiency and conversion are greater than the 
desired values. The objective function for the production rate is therefore expressed as 

, 
max E E R RPD D P D P= +
y, z u

  (17) 

 
Here the process variables, y, consist of the biomass, glucose and ethanol concentration in 
Eqs. (1)-(3). The operation variables, z, consist of the feed solvent dilution rate, Dv, the bleed 
ratio, b, and the flow rate ratio, β. The binary variables, u, are used to select a solvent 
molecular structures as defined in Eq. (11).  
 
The extraction efficiency (EE) is defined as the ratio of the ethanol recovered in the solvent 
phase to ethanol production. We therefore have 

E E

E E R R

D PEE
D P D P

=
+

  (18) 

 
The extractive efficiency of one indicates that ethanol is completely extracted from the 
fermentor. In contrast, the value of zero means that the selected solvent is unable to extract 
ethanol from broth. As a result, this specification is served as an index to inspect whether the 
selected solvent is efficient to the fermentation process. The glucose conversion (Conv) is 
another criterion for bioreactor performance analysis. Here we consider that the conversion 
should be greater than a desired value, 80%, as: 
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R

0 0 0 0

1 0.8R E ED S D SConv
D S D S

= − − ≥   (19) 

 
Trade-off design 
The optimal process/solvent design problem is to determine a biocompatible solvent and 
operation conditions for the extractive fermentation process such that the ethanol production 
rate and extraction efficiency are maximized and are achieved their preference goals, 
simultaneously. Moreover, the solvent utilization rate requires less than the desired value. In 
this situation, the designer would have to carry out an interactive procedure toward obtaining 
a trade-off result for the optimal process/solvent design problem. In real application, the 
preference goal and desired value of a design problem are usually an interval instead of the 
absolute restriction, so that the problem can be formulated as a flexible design problem or 
fuzzy optimization problem. 
 
In the flexible design problem, the designer usually assigns an interval goal, rather than a 
rigid value. Here, we consider the interval goals for the production rate [ , ]L UPD PD  and for 
extraction efficiency [ , ]L UEE EE , respectively. The flexible goal problem is therefore 
expressed as 
k

1 1 1max [ , ] [ , ]= ∈ =L U L UJ PD PD PD J J   (20) 
k

2 2 2max [ , ] [ , ]= ∈ =L U L UJ EE EE EE J J   (21) 
 
The symbol “kmax ” denotes the flexible or fuzzy maximization. This means that the design is 
completely acceptable with the production rate and extraction efficiency obtained as long as 
the objective functions J1 and J2 are greater than the assigned upper bounds 1

UJ  and 2
UJ . 

Conversely, the design is completely unacceptable if the production rate and extraction 
efficiency are less than the assigned lower bounds 1

LJ  and 2
LJ . While the production rate 

and extraction efficiency are within 1 1[ , ]L UJ J  and 2 2[ , ]L UJ J , the design has some degree of 
satisfaction.  
 
The solvent utilization rate requires less than the flexible or fuzzy inequality constraint as 

3 3 3[ , ] [ , ]L U L U
v v s sJ D M M J Jρ= =≺

�
,  (22) 

 
where the symbol “≺

�
” denotes a fuzzy version of the ordinary inequality “≤ ”. The flexible 

inequality constraint means that the design is completely acceptable for the solvent utilization 
rate if the constraint J3 is less than the assigned lower bound 3

LJ . Conversely, the design is 
completely unacceptable if the solvent utilization rate is greater than the assigned upper 
bound 3

UJ . While the solvent utilization rate is within 3 3[ , ]L UJ J , the design has some degree 
of satisfaction. 
 
The interval goals for the objective functions in (20) and (21), and the fuzzy inequality 
constraint (22) can be quantified by eliciting membership functions from the designer to 
convert the fuzzy optimal design problem into a flexible or fuzzy goal attainment problem. 
The membership function for both objectives is defined as: 
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( ) , 1,2
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L U

i i i i i i
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J d J J J i

J J

η

⎧ ≥
⎪

= ≤ ≤ =⎨
⎪ ≤⎩

,  (23) 

where [0,1]iη ∈  represents the grade of the membership function and id  is a strictly 
monotonically increasing function with respect to iJ . For concise illustration for fuzzy 
optimization problems, the membership functions for both objectives are supposed to be 
identical as shown in Fig. 2. 
 

 
Fig. 2 Linear functions for each objective and the inequality constraint 

 
Following a similar procedure, the membership function for the inequality constraint (22) is 
expressed as: 

3 3

3 3 3 3 3 3

3 3

1

( )

0

L

L U

U

J J

J d J J J

J J

η

⎧ ≤
⎪

= ≤ ≤⎨
⎪ ≥⎩

,   (24) 

where 3 [0,1]η ∈  represents the grade of the membership function and 3d  is a strictly 
monotonically decreasing function with respect to 3J . The membership function is shown in 
Fig. 2. If both objective functions and the inequality constraint are less than their lower 
bounds, the intersection for the membership functions is zero as observed from Fig. 2. 
Conversely, if both objective functions and the inequality constraint are greater than the upper 
bounds, the intersection for the membership functions is still zero. The objective of fuzzy 
optimization is therefore to find a maximum intersection for all membership functions 
between the desired boundaries. 
 
Having elicited the membership function for the objective functions and constraint, the fuzzy 
optimization problem is thus expressed as a maximizing decision problem in the form: 
max Dη∈Ωy,z,u

,  (25) 

where Dη  denotes as an aggregation function. Several aggregation functions were introduced 
in the textbook by Sakawa [28]. Observe that the aggregation function can be interpreted as 
representing an overall degree of satisfaction with the goals. The aggregation function in this 
study is therefore expressed as the fuzzy goal attainment problem in the form:  

( ){ } ( )
3

1,3 1

min min maxD k k k kk k

η η η σ η η
∈Ω ∈Ω =

=

⎧ ⎫= − + −⎨ ⎬
⎩ ⎭

∑y,z,u y,z,u
 (26) 
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The first term of the aggregation function is applied to determine the optimal trade-off 
solution that is nearest to the ideal preference goals kη , which is 100% satisfaction. The 
second term is employed to avoid inspection of a unique test for optimality, in which the 
constant σ  is a sufficiently small positive value of 10-3~10-5 [28]. 
 
Mixed-integer hybrid differential evolution 
Algorithm 
The fuzzy goal attainment problem belongs to a constrained MINLP problem. In this work, 
we applied MIHDE [16] to solve the MINLP problem in order to obtain a global solution. 
This method extends from the real-value version of hybrid differential evolution (HDE) 
introduced by Chiou and Wang [1]. The basic operations for MIHDE are similar to the 
conventional evolutionary algorithms. However, MIHDE includes two additional operations, 
acceleration and migration, as shown in Table 1. The MIHDE structure is a parallel direct 
search algorithm which utilizes multiple vectors of the decision variables in the MINLP 
problem as a population for each generation. The mutation of MIHDE adopted from evolution 
algorithm (EA) [29] is the essential ingredient, compared with other evolutionary algorithms. 
Such a mutation uses the difference between two randomly chosen individuals as a search 
direction. A mutant individual is then yielded from a parent individual and the perturbed 
mutation. The crossover operation in EA and MIHDE is employed to increase the local 
population diversity, which is similar to the conventional evolutionary algorithms. 
 

Table 1. The basic operations for evolutionary algorithms and MIHDE 

Evolutionary Algorithm Mixed-Integer Hybrid Differential Evolution 

1. Representation and initialization 
2. Mutation 
3. Crossover operation 
4. Selection and evaluation 
5. Repeat steps 2 to 4 

1. Mixed-coding representation and initialization 
2. Mutation with rounding operation 
3. Crossover operation 
4. Restriction operation 
5. Selection and evaluation 
6. Acceleration operation if necessary 
7. Migration operation performed naturally or 
  enforced if necessary 
8. Repeat steps 2 to 6 

 
When using an evolutionary algorithm to optimize a function, an acceptable trade-off between 
convergence and population diversity must generally be determined. Convergence implies a 
quick consensus even though it may be to a local optimum. On the other hand, population 
diversity guarantees a high probability of obtaining the global optimum. When the population 
diversity is small, the candidate individuals are closely clustered. Therefore, the mutation and 
crossover operations can no longer generate the next better individual because a premature 
solution is obtained. An accelerated operation and a migration are embedded in the MIHDE 
algorithm, and these two operations serve as trade-off operations. The accelerated operation is 
used to speed up convergence. According to our experience, by using EA to solve 
optimization problems, the best fitness does not descend continuously from generation to 
generation. It usually descends toward a better fitness after several generations. Under this 
situation, the acceleration operation can be used to speed up convergence. When the best 
fitness in the present generation is no longer improved by mutation and crossover operations a 
local search method is then applied to push the best individual toward obtaining a better 
solution. 
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The rate of convergence can be improved by acceleration. However, faster descent usually 
results in finding a local minimum. In addition, performing this operation frequently can 
make the individual candidates gradually cluster around the best individual so that the 
population diversity decreases. Furthermore, the closely clustered individuals cannot 
reproduce better individuals by mutation and crossover operations. As a result, a migration 
operation is used to escape this local cluster. The new candidate individuals are regenerated 
on the basis of the best individual in the current generation. Correspondingly, the diversity of 
the candidates can be restored by using such a regeneration procedure. Migration in MIHDE 
is performed only if a measure of the population diversity fails to satisfy the desired tolerance. 
Lin et al. [16] proposed a measure called the degree of population diversity to check whether 
migration function should be carried out. 
 
Handling constraints 
In real world applications, MINLP problems are, in general, coupled with complex nonlinear 
constraints. In this paper, we will consider a general mixed-integer nonlinear programming 
problem with constraints as follows: 

,
min ( )f
χ u

χ,u   (27) 

 
subject to 

( ), 0,   1, ,j eh j m= =χ u …   (28) 

( ), 0,   1, ,j ig j m≤ =χ u … ,  (29) 
where χ represents an Cn -dimensional vector of continuous variables, which consists of the 
process variables y and operation variables z, u is an In -dimensional vector of discrete or 
integer variables, and ( ),jh χ u  are equality constraints as described the process constraints, 

and ( ),jg χ u  are inequality constraints as described the solvent constraints. We will use a 

compact notation, ( )=ς χ,u , in the following discussion. 
 
Penalty function methods are some of the most popular techniques for handling constraints 
[19]. Such techniques convert the primal constrained problem into an unconstrained problem 
by penalizing those solutions which are infeasible. A square penalty function is given as 

( ) ( ) ( ) ( ) 22

1 1

e im m

p k k k k
k k

L f h gς α β
+

= =

= + +∑ ∑ς ς ς , (30) 

where α k  and β k  are the positive penalty parameters and the bracket operation in Eq. (30) 
is defined as { }max ,0k kg g

+
= . The penalty term associated with equality and inequality 

constraints is added to the objective function. As a result, the penalty term reflects violation of 
the constraints and assigns the high cost of the penalty function to a candidate individual that 
is far from the feasible region. When we use MIHDE or EA to solve the penalty problem, any 
candidate individuals that violate the constraints will inherit poorer fitness and find it difficult 
to survive. 
 
The penalty function methods are easy to implement. However, the main limitation of the 
penalty function is the degree to which each constraint is penalized. Powell [25] has noted 
that the classical optimization methods that employ penalty functions have certain weaknesses 
that become most serious when the penalty parameters are large. More seriously, large penalty 
parameters make the penalty function ill conditioned such that it is difficult to achieve a good 
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solution. On the other hand, if the penalty parameters are too small, the constraint violation 
will not impose a high cost on the penalty function. Thus, the optimal solution based on the 
penalty function may not be feasible. Therefore, choosing appropriate penalty parameters is 
not a trivial. 
 
Lagrange methods have traditionally been used to solve real-valued constrained optimization 
problems. These methods can significantly improve the drawbacks of penalty methods. Lin et 
al. [16] have introduced MIHDE with a multiplier updating method to solve MINLP problems. 
The augmented Lagrange function for MINLP is defined as 

( ) ( ) ( ){ } ( ){ }2 22 2

1 1
, ,

e im m

a k k k k k k k k
k k

L f h gα ν ν β υ υ
+

= =

⎡ ⎤= + + − + + −⎣ ⎦∑ ∑ς ν υ ς ς ς , (31) 

 
where α k  and β k  are positive penalty parameters, and the corresponding Lagrange 

multipliers ( )1, ,
emν ν=ν …  and ( )1, , 0

imυ υ= ≥υ …  are defined as 2k k kλ α ν=  and 

2k k kµ β υ= . 
 
The penalty parameters in Eq. (31) are, in general, fixed for the computation. However, when 
we use smaller penalty parameters for the augmented Lagrange function, an infeasible 
solution may still be obtained. To overcome this drawback, Lin et al. [16] introduced the 
global convergence method of Powell [25] into MIHDE along with a multiplier updating 
method to enforce global convergence for constrained MINLP problems.  
 
Results and discussion 
The proposed algorithm is applied to solve the optimal process/solvent design problem. All 
computations were performed on a Pentium IV computer using Microsoft Windows XP. We 
use Compaq Visual Fortran to implement the MIHDE algorithm. The user has to provide four 
setting factors for the MIHDE. The setting factors used for all runs are listed as follows. The 
crossover factor is set to 0.5. Two tolerances used in the migration operation are set to 0.05. 
The population size of 5 is used in the computation. In HDE, the mutation factor is taken as a 
random number in [0, 1]. Three initial penalty parameter values, 0.1, 10, and 103, are 
respectively assigned for the penalty function (30) and the augmented Lagrange function (31) 
to investigate the performance of the evolutionary computation for solving the constrained 
optimization problem.  
 
To solve the flexible or fuzzy goal attainment problem (26), we use the linear membership 
function to judge the fuzzy preference for the objective functions and constraint. We assign 
the interval goals for ethanol production rate to be between 20 g/hL and 80 g/hL, extraction 
efficiency to be between 80% and 90% and that for the solvent utilization rate to be between 
1000 g/hL and 4500 g/hL. The lower and upper bounds for the interval goals and constraint 
are provided for the membership functions in Eqs. (23) and (24) to evaluate the degree of 
satisfaction with respect to the objective functions and constraint. Fig. 2 shows the 
relationship for each membership function. The membership function value of one indicates 
that the corresponding objective or constraint is completely acceptable. In contrast, the value 
of zero is completely unacceptable. The fuzzy goal attainment approach is to find a maximum 
intersection of the three membership functions. 
 
First, we assign the initial penalty values of 0.1 for MIHDE-MUM-APP to solve the flexible 
goal attainment problem (26). In the computations, we defined the sum of the constraint 
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violation (SCV) to inspect the feasibility of the optimal solution. SCV is defined as 

{ }
1 1

SCV max 0,
e im m

k k
k k

h g
= =

= +∑ ∑   (32) 

 
The first term in Eq. (32) indicates the sum of the equality constraint violations, and the 
second indicates the sum of inequality constraint violations. Eq. (32) investigates that an 
optimal solution with a smaller SCV is a more feasible solution for the problem. The SCV of 
2.7e-10 indicates that the optimal solution can be considered as a feasible solution. The 
optimal results obtained by MIHDE-MUM-APP are shown in Table 2. Case 1a shows that the 
optimal solvent structure consists of three –CH3 groups, one –CH group, and one –CH2COO 
group. Such a structure was referred to as methyl isovalerate, which was identified by the 
CAS registry numbers as 556-24-1. This structure is identical to the result obtained from 
Wang and Achenie [33], which was considered to minimize solvent utilization rate to an 
extractive fermentation process. The optimal production rate, extraction efficiency and the 
solvent utilization rate are 45.66 g/hL, 82.8% and 3002.9 g/hL, which correspond to the 
overall satisfactory grade of 42.77%, respectively. The solvent selectivity and 
biocompatibility were 11.9 wt/wt and 1.97 mol/L, respectively.  
 
Next, we applied MIHDE with multiplier updating method using fixed penalty parameters 
(refers to MIHDE-MUM-FPP) to solve the problem (26). The optimal results obtained by 
MIHDE-MUM-FPP are shown in Case 1b of Table 2. The corresponding compound is methyl 
isovalerate ae well. However, the SCV of 7.4e-4 is greater than that obtained by 
MIHDE-MUM-APP. It means that the optimal solution is less feasible than that obtained by 
MIHDE-MUM-APP so that both production rate and extraction efficiency are a little greater 
than those obtained by MIHDE-MUM-APP. Following the similar procedures, MIHDE with 
penalty function method is also applied to the penalty function problem (30). The 
computational results are also shown in Case 1c of Table 2. The solvent obtained is referred to 
as an ethyl isopropyl ketone, which was identified by CAS registry number as 565-69-5. 
However, the SCV of 0.24 is high violation to constraints so the solution departs from the 
feasible domain.  
 
Following the similar procedures, MIHDE-MUM-APP, MIHDE-MUM-FPP and 
MIHDE-PFM with the initial penalty parameters of 10 and 103 are respectively applied to 
solved the flexible goal attainment problem (26). For the initial penalty parameters of 10 and 
103, MIHDE-MUM-APP can be still obtained feasible solutions as shown in Case 2a and 3a 
of Table 2, respectively. However, for the smaller penalty parameters, the adaptive penalty 
updating scheme is able to achieve a global solution as observed from Case 1a and 2a, so the 
solvent for both cases are identical. If we use the smaller penalty parameters for the fixed 
computational algorithm, both MIHDE-MUM-FPP and MIHDE-PFM cannot find a feasible 
solution as observed from Table 2. Conversely, for the larger penalty parameters, i.e. 103, the 
three methods can achieve a feasible design, as shown in Case 3, but it is a premature 
solution. 
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Table 2. Comparison of optimal design results for MIHDE-MUM-APP, 
MIHDE-MUM-FPP and MIHDE-PFM with using different initial penalty parameter values 

Case Initial 
penalty value 

Solving 
method Solvent PD 

(g/hL)
EE
(%)

Conv
(%)

vπ  
(g/hL)

η 
(wt/wt) 

-logLC50 
(mol/L) SCV 

1a MIHDE- 
MUM- 
APP 

methyl 
isovalerate 45.66 82.8 99.1 3002.9 11.9 1.97 2.7e-10

1b MIHDE- 
MUM- 

FPP 

methyl 
isovalerate 45.74 82.9 99.7 2998.3 11.9 1.97 7.4e-4

1c 

0.1 

MIHDE- 
PFM 

ethyl 
isopropyl

ketone 
52.07 86.0 99.6 2629.0 10.8 2.38 2.4e-1

2a MIHDE- 
MUM- 
APP 

methyl 
isovalerate 45.76 82.9 99.8 2996.9 11.9 1.97 1.1e-6

2b MIHDE- 
MUM- 

FPP 

ethyl 
isopropyl

ketone 
43.16 86.4 79.6 2843.8 11.0 2.38 4.8e-3

2c 

10 

MIHDE- 
PFM 

ethyl 
isopropyl

ketone 
46.46 85.2 78.8 2843.8 10.9 2.38 6.4e-2

3a MIHDE- 
MUM- 
APP 

ethyl 
isopropyl

ketone 
22.25 86.5 80.2 1487.5 11.0 2.38 5.0e-11

3b MIHDE- 
MUM- 

FPP 

ethyl 
isopropyl

ketone 
45.21 83.2 80.4 3029.5 11.0 2.38 7.5e-8

3c 

1000 

MIHDE- 
PFM 

ethyl 
isopropyl

ketone 
42.80 87.0 82.6 2843.8 11.0 2.38 7.3e-8

The rigid boundary values in Eqs. (13)-(15) are assigned as BLc50 = 3.5 mol/L, 
[Tb

L, Tb
U] = [383 K, 403 K], Tf

U = 288 K 

MIHDE-MUM-APP: MIHDE with multiplier updating method using adaptive penalty 
parameters 
MIHDE-MUM-FPP: MIHDE with multiplier updating method using fixed penalty 
parameters 
MIHDE-PFM: MIHDE with penalty function method 

 
Conclusions 
Bio-ethanol is a bulk chemical and needs continuous fermentation to be carried out in order to 
achieve economic beneficial In this study, we introduced the extractive fermentation 
processes with cell recycling to achieve a higher cell density in the fermentor and to reduce 
ethanol inhibition, which can in turn enhance ethanol production rate. The process/solvent 
design problem was formulated as a fuzzy multiobjective optimization problem. A trade-off 
method was introduced to convert the multiobjective optimization problem in to the goal 
attainment problem, which was described as the constrained MINLP problem. Three MIHDE 
computational algorithms were employed to solve the constrained MINLP problem, 
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respectively. The adaptive penalty updating scheme was able to achieve a global design if we 
assigned a smaller penalty parameters. Conversely, for the larger penalty parameters, the three 
methods could yield a feasible design, but it is a premature design. 
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Nomenclature 
a flow rate ratio for the extractive fermentor 
b bleed ratio for extractive fermentor 
Conv  substrate conversion (%) 

0 ,  RD D   dilution rate based on influent and effluent aqueous flow rate for extractive 
fermentor (h-1) 

,  v ED D  dilution rate based on influent and effluent solvent flow rate for extractive 
fermentor (h-1) 

EE  extraction efficiency (%) 
ke  distribution coefficient for ethanol between extract and raffinate phase (wt/wt) 
Ks  saturation coefficient for cell growth on glucose 

'
sK   saturation coefficient for ethanol production on glucose 

KsI  inhibition coefficient for cell growth on glucose 
'
sIK   inhibition coefficient for ethanol production on glucose 

Kp  saturation coefficient for cell growth on ethanol 
'
pK   saturation coefficient for ethanol production on ethanol 

KpI  inhibition coefficient for cell growth on ethanol 
'
pIK  inhibition coefficient for ethanol production on ethanol 

LC50  the lethal concentration causing 50% mortality in fathead minnow (mol/L) 
j

MW  molecular weight for j component  

,R EP P  effluent ethanol concentration in raffinate and extractive phase (g/L) 
qp  specific production rate for extractive fermentor (h-1) 

0S  influent substrate concentration (g/L) 
SR, SE  effluent substrate concentration in raffinate and extractive phase (g/L) 
Vi   the volume for the i-th extractive fermentor (L)  

E
jx   mole fraction of component j in extractive phase for the extractive fermentor 
R
jx   mole fraction of component j in raffinate phase for the extractive fermentor 

X0, X influent and effluent cell concentration in raffinate phase (g/L) 
 
Greek letters 
µ  specific growth rate for the extractive fermentor (h-1) 
µmax  maximum specific growth rate (h-1) 
δl   contribution of group l in group contribution-based model for LC50 

η   the overall solvent selectivity (wt/wt) 
E
jγ  activity coefficient of component j in extractive phase for the extractive fermentor 
R
jγ   activity coefficient of component j in raffinate phase for the extractive fermentor 
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νj   valence of group j 
vπ    mass flow rate of fresh solvent (g/hL) 

vρ    density of solvent (g/L) 
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