
 BIOAUTOMATION, 2009, 12, 53-69 
 

 
Time Delay and Epo Dose Modulation 
in a Multilevel Model for Erythropoiesis 
 
Svetoslav Nikolov1,†, Xin Lai2, Olaf Wolkenhauer2, Julio Vera2, †,*

 
1Institute of Mechanics and Biomechanics – Bulgarian Academy of Sciences,  
4 Acad. G. Bonchev Str., 1113 Sofia, Bulgaria 
 
2Systems Biology and Bioinformatics Group, Department of Computer Science 
University of Rostock, 18051 Rostock, Germany 
E-mail: julio.vera@informatik.uni-rostock.de
 
* Corresponding author 
† Equal contributors 
 
Received: December 29, 2008 Accepted: February 12, 2009 

  
 Published: March 16, 2009 

 
Abstract: In this paper we have extended and adapted a multi-level model in ordinary 
differential equations accounting for erythropoiesis. At the subcellular level, the model 
includes equations for the regulation of red blood differentiation through Epo stimulated 
JAK2-STAT5 activation, while at the cell population level the model describes the basic 
physiological features involved in erythropoiesis. Furthermore, we included additional 
equations describing the exogenous injection of Epo, one of the usual treatments for several 
haematological diseases. Our analysis indicates that time-delay associated with the 
proliferation-differentiation process can provoke pathological sustained oscillations in the 
erythropoiesis, while other (shorter) time-delays in the model accounting for nucleo-
cytoplasmic shuttling of STAT5 or hypoxia-mediated control of Epo synthesis cannot. The 
consequences of time delays on the dynamics of the multi-level model are analysed using 
Hopf’s bifurcation theorem. We also investigated the effects that subcellular-level 
downregulation of the proteins involved in the JA2-STAT5 pathway have in the dynamics of 
red blood cells population. We found that downregulation of Epo receptor or STAT5 
synthesis can reduce considerably the mean value of red blood cells concentration. Our 
analysis revealed that a realistic scenario for Epo injection (twice-per-day short pulses) can 
compensate effects of low-medium downregulation, while for intense down regulation Epo 
injection seems not able to restore the desired hematocrit levels. 
 
Keywords: Systems biology, Signalling pathways, Bifurcation analysis, Epo, Anaemia, 
Leukaemia. 

 
Background 
Erythropoiesis is the process in which mature red blood cells (erythrocytes) are generated 
through the differentiation of the hematopoietic stem cells (HSCs) into colony forming units 
(CFUs), progenitors of red blood cells [11]. The process is controlled through a feedback loop 
involving the hypoxia level and modulated through the production and subsequent delivery of 
the hormone erythropoietin (Epo) in the bone marrow, where HSC are. This feedback loop 
ensures the adequate balance between generation of new red blood cells and destruction of old 
ones in the spleen. Among the signalling pathways involved in erythropoiesis, the activation 
of JAK2-STAT5 pathway through Epo receptor plays a major role. When the hormone 
erythropoietin (Epo) binds the receptor, constitutively associated JAK2 is activated and 
promote receptor activation by phosphorylation of several tyrosine residues in the receptor 
[15]. In subsequent steps, the transcription factor STAT5 is recruited to the activated EpoR, is 
phosphorylated, dimerises and gets activated. The activated STAT5 translocates to the 
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nucleus, where it initiates the transcription of several target genes involved in the control of 
erythropoiesis [12]. Several authors claim that proper functioning of JAK2-STAT5 signalling 
is crucial for red blood cells differentiation and maturation and the pathway appears 
deregulated in several kinds of leukaemia [14]. From a physiological perspective, some 
experimental works suggest the ability of a deregulation in this system to induce long period 
oscillations in their circulating reticulocyte counts (N) and hemoglobin levels (Epo) [23]. In 
addition, several pathologies have been described inducing oscillations in the red blood cells 
dynamics, including cyclic neutropenia [8] and chronic myelogenous leukemia [5]. 
 
Previous work, based on mathematical modelling of this pathway, studied the relevance of the 
nucleo-cytoplasmic shuttling of STAT5 [26] and the signal responsiveness and amplification 
[27]. In addition, physiological aspects of erythropoiesis have been investigated for long time 
with the help of mathematical models in either ordinary or partial differential equations [1, 2, 
4, 6, 7, 16, 17, 24]. In this paper we modified the model presented in [22] to investigate the 
effects of time delay and the ability of (exogenous) injected Epo dose modulation to 
compensate deregulation in the JAK2-STAT5 pathway. 
 

 
 

Fig. 1 Structure of the mathematical model proposed to describe Epo signalling related to 
differentiation and proliferation of red blood cells. The model contains a module describing 

the molecular processes accounting for the activation of JAK2-STAT5 pathway and a second 
module describing how these processes affect the dynamics of red blood cells. In addition, the 

dynamics of the hormone Epo are also represented. 
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Results 
Mathematical model 
A multi-level mathematical model in ordinary differential equations describing the 
erythropoiesis was proposed in [22]. The model includes two aspects of erythropoiesis: i) cell 
signalling regulation of red blood differentiation, for which we used and adapted the model in 
[27] that described the dynamics of Epo stimulated JAK2-STAT5 pathway; and ii) simplified 
description of the physiological features involved in erythropoiesis, for which we modified 
and expanded the simple model in ODE for the dynamics of erythropoiesis proposed by [1]. 
In the current work, we modified the model in [22] including additional equations accounting 
for exogenous injection of Epo, the usual treatments in case of anaemia. The model is 
depicted in Fig. 1. 
 
The model includes six differential equations accounting for the dynamics of the Epo receptor 
complex (Eq. (1) – (2)), the transcription factor STAT5 (Eq. (3) – (4)), the population of red 
blood cells (5) and the extracellular concentration of Epo (6). In case of EpoR/JAK2 complex 
the model includes two state variables accounting for not bound to Epo and therefore non-
activated receptor complex, EJ, and Epo-bound activated EpoR/JAK2 complex, pEpJ. The 
biochemical processes described are: i) Epo mediated receptor activation; ii) receptor 
deactivation; iii) recruitment of new receptor complex to the plasma membrane; and 
iv) degradation of non-activated EpoR/JAK2. 
 
In case of STAT5, the two states considered accounts for activated cytosolic STAT5, DpS, 
and activated nuclear STAT5, DpSn. We have implicitly included mass conservation 
accounting for the balance between STAT5 synthesis and degradation, in way non-activated 
cytosolic STAT5, S, is  with S2 2TOT ncS S DpS DpS= − − TOT total amount of STAT5. The 
model includes the following processes related to STAT5 dynamics: i) activated receptor 
mediated activation of STAT5; ii) nuclear translocation of cytosolic activated STAT5; 
and iii) deactivation and subsequent cytosolic translocation of nuclear STAT5. 
 
The equation accounting for the dynamics of extracellular concentration of Epo, Epo, includes 
a description of the following processes: i) synthesis on new Epo controlled by the 
erythrocytes concentration through a hypoxia feedback loop; ii) degradation of Epo; and 
iii) exogenous injection of Epo. The equation describing the dynamics of red blood cells 
population includes a term accounting for activated nuclear STAT5 mediated proliferation-
differentiation of new erythrocytes and another for their degradation. 

0 2 1
d EJ EJ Epo EJ
dt

γ γ γ= − −  (1) 

2 3
d pEpJ EJ Epo pEpJ
dt

γ γ= −  (2) 

( )5 2 2TOT nc
d

6DpS S DpS DpS pEpJ DpS
dt

γ= − − −γ  (3) 

((6 4nc nc
d DpS DpS DpS t
dt

))1γ γ= − −τ  (4) 

( ) ( ) ( )5
3 7 3 1 8

g
nc

d N N t DpS t F N N
dt

τ γ τ⎡ ⎤= − − −⎣ ⎦ γ   (5) 

( ) ( )9 2 10 inj
d Epo F N Epo t
dt

γ γ γ= − +  (6) 
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where: ( ) ( )31

1
1 11

1

τ
β

−+
=

tNk
kNF gg

g

, ( ) ( )22
2 21

1
τ−+

=
tNk

NF g ; 1τ  is the elapsed time of 

activated STAT5 in the nucleus; 2τ  is the time associated to the hypoxia controlled process 
of Epo synthesis, release and transport; 3τ  is the delay associated to the set of processes 
accounting for the differentiation-proliferation of the red blood cells from progenitors. With 

1γ - 10γ  are denoted the kinetic rate constants;  and 21, kk β  are positive parameters;  
and  are kinetic orders. 

21, gg

5g 1τ  and 2τ  are in the range of minutes, while 3τ  lasts for several 
days. 
 
We notice that the simplistic description of some processes provokes the emergence of time-
delay in Eq. (4) – (6) [21]. Our previous results [22] indicated that only the time delay 
associated to the differentiation-proliferation of the red blood cells from progenitors have 
relevant dynamical consequences (τ3). Values for the parameters were taken from [22]. 
 
In our investigation, we were especially interested in two features of the model. Firstly, the 
effect that time-delays ( inj constγ = ) have in the stability of the system; in order to investigate 
this, we used qualitative (bifurcation) analysis. Secondly, we analysed the pathological effects 
that downregulation of the Epo receptor and the STAT5 transcription factor have in the 
dynamics of red blood cells population, phenomena associated to the pathological conditions 
existing in several kinds of leukaemia and anaemia [14]. In some of our simulations we 
investigated how tuning of the time-dependent function accounting for exogenous injection of 
Epo ( ( )tinjγ ) can compensate pathological states with downregulation of Epo receptor 
recruitment (represented by γ0) and/or STAT5 total available amount (STOT). 
 
Analysis of time-delay effects on stability through bifurcation analysis 
Let NyDpSyDpSypEpJyEJy nc ===== 54321 ,,,, , and Epoy =6 . Thus, after some 
algebraic calculations for fixed points of the system (1) - (6) we obtain: 
 

( )

( )
( ) ( )

( )[ ]
( ) ( )

( )( ) ( )[ ]
( ) ( )

( )( ) ( )[ ]
( ) ( )

,,0,
2

,
2

,,

10

9
1

6

_1

5

_

92101643964520

96520
1

4

_

92101643964520

95420
1

3

_

921013

920
1

2

_

92101

100
1

1

_

γ
γγ

γγγγγγγγγγγγγγγ
γγγγγγ

γγγγγγγγγγγγγγγ
γγγγγγ

γγγγγγ
γγγγ

γγγγγ
γγ

inj

injinj

injTOT

injinj

injTOT

inj

inj

inj

yy
S

y

S
y

yy

+
==

+++++

+
=

+++++

+
=

++

+
=

++
=

 (7) 

( ) ( ) ( )
( )

( )
( )

( ) ( ) ( )

( ) ( )

( )
( )

( )

( )

( )
.,

1

1,1

,
2

,,
2

,1

7

8
2

4

_

72

5

_

2

9

10

2

6

_
3

8

2

4

_

7
1

2

5

_

64

6
2

4

_2

4

_

6

4
2

3

_

2

4

_

6465

2

4

_

64
2

2

_2

2

_

30
1

2

1

_

βγ
γγγ

γγ
βγ

γγ
γ

γ
γ

γγγγ

γγ
γγ

γ

>

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

+

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

=−=

−
+

==
+−

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

ywhere

yk

y
y

ky

SSyyy
yS

y
yyy

inj

TOT

TOT

 (8) 

 

 56



 BIOAUTOMATION, 2009, 12, 53-69 
 

 
Further, we obtain the characteristic equation for the linearization of system (1) – (6) near the 

equilibrium 
_ _

( ) 1 6iE y i = ÷ . Thus, we consider a small perturbation about the equilibrium 

level, i.e. . Substituting these into the differential equations in system (1) – (6), we 
have 
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Note that functions ( )NF1  and  are written in Maclaurin series near equilibrium( )NF2

_

E , 
when only linear term is taken. Hence, we obtain the stability matrix in the form 
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The stability matrix (11) leads to the following characteristic equation: 
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Because of the presence of more than one delay in (1) – (6), the analysis of the sign of the real 
parts of the eigenvalues is very complicated, and a direct approach cannot be considered [3], 
[19]. Thus, in our analysis we will use a method consisting of determining the stability of the 
steady state when two delays are equal to zero, and using some analytical arguments we will 
deduce conditions for stability of the steady states when three delays are nonzero. 
 
The case 0321 === τττ . 
Assume that 0321 === τττ . Then the characteristic Eq. (12) is written as a six degree 
polynomial equation 

.0*
6

*
5

2*
4

3*
3

4*
2

5*
1

6 =++++++ KKKKKK χχχχχχ  (14) 
 
where: 

21191366
*
620181255

*
5171411744

*
4

161033
*
315922

*
2811

*
1

,,
,,,

TTTTKKTTTTKKTTTTTKK
TTTKKTTTKKTTKK

−−−−=−−−−=−−−−−=

−−−=−−−=−−=
 (15) 

 
According to Routh-Hurwitz criterion for stability of steady state, defined by (7) and (8), all 
eigenvalues of (12) have negative real parts if only if  

,0* >iK  (16) 
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Hence, we have the following lemma. 
 
Lemma. 
If  , the equilibriums (7) and (8) of system (1) – (6) are locally asymptotically 
stable. 

,0* >iK 61÷=i

 
The case 021 ==ττ  and 03 >τ . 
Here, we consider the case 021 ==ττ  and 03 >τ . Our choice is motivated by the following 
biological reasons: the time delay 1τ  represents the delay associated to the nuclear shuttling of 
STAT5, the time delay 2τ  represents the time that takes the hypoxia level to control Epo 
synthesis. Setting 021 ==ττ  in (12), the characteristic equation becomes 
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This characteristic Eq. (17) is transcendental and cannot be solved analytically. Moreover, it 
has an indefinite number of roots [9, 10, 20, 21]. The stability of equilibrium state depends on 
the sign of the real parts of the roots of (17). We let inm +=χ  ( )Rnm ∈,  and rewrite (17) in 
terms of its real and imaginary parts as 
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To find the first bifurcation point we look for purely imaginary roots in±=χ , , of (17), 
i.e. we set . Then the above two equations are reduce to 
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or another one 
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Note that  can be solution of (20) if 0=n 56 MB = . If the first bifurcation point is ( )00 , bbn τ , 
then the other bifurcation points ( bbn )τ,  satisfy 0 0 2 , 1, 2, ..., .b b b bn nτ τ ν π ν= + = ∞  One can 
notice that if n is a solution of (19) (or (20)), then so is –n. Hence, in the following we only 
investigate for positive solutions n of (19), or (20) respectively. By squaring the two equations 
into system (19) and then adding them, it follows that 
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Here, we note that this is a hexatic equation about  and that the left side is positive for large 
values of 2  and negative for  if and only i 2

6B , i.e. when Eq. (21) has at least 
one positive real root. Moreover, to apply Hopf bifurcation theorem the following theorem in 
this situation appli

2n
n  0=n  

 
Theorem 1.  
Suppose that  is the least positive simple root of (21). Then, bn ( ) bb inin =τ  is a simple root of 
(17) and ( ) ( )33 ττ inm +  is differentiable with respect to 3τ  in the neighbourhood of bττ =3 . 
 
The proof of this theorem in details can be found in [13]. To establish an Andronov-Hopf 
bifurcation at bττ =3 , we need to show that the following transversality condition 

0
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d
dm
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 is satisfied. Hence, if we denote  
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Denote (without loss of generality) by 4...,,1, =lU l , the positive roots of H, and set 

ll Un = . Note that the unique solution ]2,0[ πϕ∈  of (20) is  
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It is easy to see that function 3( )ϕ τ  defined above is continuous on I (assume that ). 
Furthermore 
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( ) 02 ≠Ψ τ . When ( ) ,2/3;2/2 ππτϕ =  we have ( ) .02 =Ψ τ  Evaluating the real part of Eq. (23) at 
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Let 2

bn=θ ; then, (21) reduces to  
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Then, for ( )θ'g  we have 
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If  is the least positive simple root of (21), then bn
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According to the Hopf bifurcation theorem [18], we define the following theorem: 
 
Theorem 2. 
If  is the least positive root of (21), then an Andronov-Hopf bifurcation occurs as bn 3τ  passes 
through bτ . 
 
Corollary 2.1. 

If bττ <3 , then the equilibrium 
_

E  (Eq. (7) or (8)) of system (1) – (6) is locally asymptotically 
stable. 
 
The case .0,, 321 >τττ Now, we return to the study of (12), when .0,, 321 >τττ  In order to 

investigate the local stability of the equilibrium state 
_

E  of system (1) – (6), we prove a result 
regarding the sign of the real parts of the characteristic roots of (12) in the next theorem: 
 
Theorem 3. 
If all roots of (17) are with negative real parts for 03 >τ , then there exists a ( ) 032 >ττ bif  (or 

) such that all roots of the characteristic Eq. (12) have negative real parts at 1 3( ) 0bifτ τ >

2 2 3( )bifτ τ τ<  (or 1 1 3( )bifτ τ τ< ), i.e. when )2 20, ( )bif
3τ τ τ⎡∈ ⎣  (or )1 10, ( )bif

3τ τ τ⎡∈ ⎣ ) respectively. 
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Here, the proof of Theorem 3 is omitted because she is a private case of Theorem 2.1 proved 
in [25] for general case, i.e nτττ <<<= ...0 10 . 
 
Corollary 3.1. 
If bif

3τ  is defined as in Theorem 2, then for any [ )bττ ,03 ∈  there exists a  (or 

) such that the steady state 

2 3( ) 0bifτ τ >

1 3( ) 0bifτ τ >
_

E  of system (1) – (6) is locally asymptotically stable 

when )2 20, ( )bif
3τ τ τ⎡∈ ⎣  (or )1 10, ( )bif

3τ τ τ⎡∈ ⎣ ). 
 
Simulations of the effects of Epo dose modulation on downregulation 
of STAT5 and EpoR 
We first simulated the effects that the downregulation in Stot (total amount of STAT5) and γ0 
(EpoR recruitment) have in the dynamics of the system. In Fig. 2 we represent the effect that 
modulation of Stot and γ0 have in the mean value of the cell population, represented in our 
model by N. Downregulation for any of the two parameters reduces the mean value of N, 
which could be interpreted as a reduction in the hematocrit levels of an individual. Interesting 
enough, our simulations indicate that the combined strong upregulation of both parameters 
would provoke a significant increase in the mean value of N and the emergence of sustained 
oscillations with high peak and period of several days [22]. 
 

Mean Value plot of N
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Fig. 2 Simulation of the mean value of the cell population N  

for different values of parameters Stot and γ0
 

We further simulated the effect that injection of exogenous Epo would have in the dynamics 
of red blood cells for different levels of downregulation in Stot and γ0. Towards this end, we 
first assume continuous injection of exogenous Epo, modelled as an extra constant rate γinj in 
the differential equation accounting for Epo dynamics. We then simulated different scenarios 
for Stot and γ0 downregulation ranging from the original value to 10% of it (strong 
downregulation) for both parameters (Fig. 3). For each set of parameters (Stot, γ0) we compute 
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]

the minimum value of constant Epo injection γinj necessary to recover the original value in the 
mean of red blood cells population (N0). We allowed a physiological interval of values in 
continuous injection of [ 10,0∈injγ . As we can see in Fig. 3, the intensity of necessary 
continuous Epo injection increases when the downregulation of STAT5 amount or EpoR 
recruitment increases. Both effects are additive and higher amount of Epo injection are 
required to restore the original state when both parameters are downregulated at the same 
time. Blank area in Fig. 3 represents the range of values in Stot and γ0 downregulation for 
which continues injection of Epo (in the physiological interval considered) is not enough to 
recover the initial average blood cell population.  
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Fig. 3 Minimum value of constant Epo injection γinj necessary to recover the original value 

in the mean of red blood cells population N 
 
We further simulated the effect of short periodic injections of exogenous Epo in the system, 
which corresponds to the way Epo is administered to real patients. Fig 4 is a sketch of this 
procedure where injections are characterised by the elapsed time of every injection (Tinj) and 
the average value of exogenous Epo injected (Epoinj). 
 

 
Fig. 4 Scheme representing the periodic pulse injections of exogenous Epo in the system 

 
Towards this end, we assumed that Epo is injected twice per day in doses lasting for two 
hours (Tinj = 2 hr) and with an average value ranging in the interval of normalized values for 
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][ 30,0∈injEpo . We further simulated the minimum average Epo injection (Epoinj) necessary 

to recover the 95%, 90% and 80% of the original value in the mean of red blood cells 
population, N0 (Fig. 5). Getting the full recovery (represented as 95% of the original value of 
N) of the initial average of red blood cells is only possible for reduced downregulation of Stot 
and γ0; high doses of Epo are required for medium downregulation, while the recovery is 
unfeasible for strong downregulation of both parameters, alone or in combination (Fig. 5 top 
left). In case of a 90% recovery for N, injections of Epo are able to restore the initial state 
when only one of the parameters is downregulated in the interval considered; however, when 
both parameters are downregulated at the same time the system can recover 90% of N0 only 
for low and medium downregulation, but high doses of Epo injection are required (Fig. 5 
centre left). Finally, for 80% recovery for N, injections of Epo are able to restore the desired 
state when only one of the parameters is downregulated at even low doses of Epo injection; 
the recovery of 80% of N0 is still only possible for intermediate levels of concurrent 
downregulation in Stot and γ0 in the interval considered, but in most of the cases the values of 
Epo injections required are low (Fig. 5 down left). Interesting enough, low doses of Epo pulse 
injection are required for most of the feasible couples (Stot, γ0) when the objective is to reach 
80% of N0 and only in the boundary of feasibility high doses or Epo are required (Fig. 5 down 
right); on the other hand, when the aim is to get almost total recovery of the initial population 
of red blood cells, the intensity of Epo injections required increases monotonically, with very 
low Epo dose for very reduced downregulation and the maximum allowed Epo in the border 
of feasibility (Fig. 5 top right). 
 
Discussion and conclusions 
In this paper we extended and adapted a multi-level model in ordinary differential equations 
accounting for erythropoiesis discussed in [22]. The model considers the cell signalling 
regulation of red blood differentiation through Epo stimulated JAK2-STAT5 activation, but 
also a reduced description of the physiological features involved in erythropoiesis. We have 
modified and expanded such model by including additional equations describing the 
exogenous injection of Epo. 
 
We have investigated two features of the model. Firstly, we analyse changes in the stability of 
the system due to the existence of time-delay. By using qualitative bifurcation analysis we 
have confirmed that changes in the time-delay associated with the proliferation-differentiation 
process can provoke the emergence of pathological sustained oscillations in the 
erythropoiesis, in accordance with previous results for simpler versions of the model [1, 2]. 
However, our analysis suggests that other (shorter) time-delays considered in our model 
related to nucleo-cytoplasmic shuttling of STAT5 or hypoxia-mediated control of Epo 
synthesis are not able to induce self-oscillations in the system. 
 
We were also concerned about the effects that subcellular-level downregulation of EpoR and 
the STAT5 have in the dynamics of red blood cells population. Some authors claim that these 
phenomena are associated to the pathological conditions existing in several kinds of 
leukaemia and anaemia [14]. When we simulated and analysed the direct effect of 
downregulation in the mean value of the red blood cells population, N, we found that 
downregulation for any of the two parameters reduces considerably the mean value of N, 
which could be interpreted as a (pathological) reduction in the hematocrit levels of an 
individual. In order to compensate that hematocrit reduction, we have simulated the effect of 
external injection of Epo in the system, considering different experimental conditions and 
designs for such injection. 
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Fig. 5 Computation of the minimum average Epo injection (Epoinj) necessary to recover the 
95% (top), 90% (centre) and 80% (down) of the original value in the mean of red blood cells 
population N when downregulation of STAT5 and EpoR occur (left). The behaviour over the 

diagonal for equal downregulation of Stot, and γ0 is represented on the right side for every 
level of N, with logarithmic scale also for Epo injection levels. 
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Among other, we simulated the realistic scenario of twice-per-day short pulses of Epo 
injection and analysed the long-term response of the system to such a design for the treatment, 
when different intensities in the pulse were considered. We computed the minimum intensity 
of Epo pulse required to stabilise the average amount of erythrocytes around 80-95% the 
original value N0. For intense downregulation, Epo injection at the levels simulated is not able 
to restore the desired hematocrit levels, which suggest that acute downregulation cannot be 
treated with the injection of Epo alone and could become critical. In case of low-medium 
downregulation, our simulations predict low doses of Epo pulse injection required if the 
objective is to reach 80% of N0, but increasing high levels of Epo when the aim is the total 
recovery of the hematocrit levels. In this latter case the outcome of the treatment is quite 
sensitive to changes in the Epo injection intensity. 
 
In the future we want to expand our model considering the processes involved in the 
physiological level in higher detail, but also the effect of concurrent signalling pathway that 
control erythropoiesis. 
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