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Abstract: A review of the problems in modeling, optimization and control of 
biotechnological processes and systems is given in this paper. An analysis of existing and 
some new practical optimization methods for searching global optimum based on various 
advanced strategies – heuristic, stochastic, genetic and combined are presented in the paper. 
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Introduction 
The optimization problems vary largely depending on the task formulation and the specific 
features of the process or system. For biotechnological processes in particular very often it is 
necessary to adapt mathematical models or to select a model from several ones competitive to 
each other. In such cases it is necessary to estimate parameters in strongly non linear 
mathematical models with some uncertainties. The created functional to be minimized in 
parameter estimation is very often multimodal. Occasionally the obtained optimal solution is 
“compromised” if the classical gradient or direct optimization methods are used for 
multimodal objective functions. The significant nonlinearities and uncertainties in 
mathematical models create also difficulties when optimal control strategies in 
biotechnological processes and systems are applied. 
 
Main problems in modeling, optimization and control 
of biotechnological systems 
The optimization problems in biotechnological processes and systems differ in the following 
signs: 

• The objective function is complex and requires a lot of time for evaluation even when 
using up-to-date computing systems; 

• The objective function is multimodal or/and of a ridge type; 
• The number of local minimums (or maximums) of the objective function can be small 

or very large (some times several hundreds or thousands); 
• The number of estimated parameters in the mathematical model is very large; 
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• The number of control variables is very large; 
• The optimization task is with mix – integer control variables; 
• The number of objective functions is more then one; 
• The experimental data used for process identification are highly noised. 

 
An attempt to review and to compare some of the up-to-date tendencies in optimization 
technique used for biotechnological systems is presented in this article. 
 
The peculiarities of problems in mathematical modeling of biotechnological processes are 
well presented in many studies [8, 9, 10, 11, 12, 18, 21, 32, 65, 84]. Let us examine as an 
example the mathematical model of the bioprocess for production of L-lysine in a bioreactor 
[31, 32, 60, 61]: 
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where: 
µ – specific growth rate of L-lysine synthesis, h-1; η – specific consummation rate of L-lysine, 
h-1; t – process time, h; Tr – Threonine concentration, mg·1-1; inTr  – initial Threonine 
concentration, mg1-1; F – feed flow rate, lh-1; S – glucose concentration, g·l-1; S0 – feed 
substrate concentration, g·l-1; Sin  – input feed substrate concentration, g·l-1; C* – equilibrium 
dissolved oxygen concentration, g·l-1; CL – dissolved oxygen concentration, g·l-1; L – L-lysine 
concentration, g·l-1; X – biomass concentration, g·l-1; V – working liquid volume, l; akl  – 
volumetric oxygen mass-transfer coefficient, h-1; k1 ÷ k16 – process model constants. 
 
The problems that might appear in modeling, optimization and optimal control in a similar to 
the above given object as in many other biological systems are as follows:  

(a) Selection of the best model if a number of competitive models exist [31]. 
(b) Estimation of the process constants k1 ÷ k16 and akl  in the accepted mathematical 

model using experimental data through minimization of the created functional for the 
nonlinear parametrical identification of the model: 
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Most often the functional (2) is multimodal and a reliable method for global minimization is 
needed [9, 16, 52, 54, 68, 69, 70, 80, 79, 83]. 
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(c) Selection of a method for smoothing the noised experimental data [1, 71]. 
(d) To find the optimal control uopt(t) (for example optimal profile of the feed flow rate 

F(t) of a fed-batch process, the stirrer rotation speed n(t), gas flow rate Q(t), etc.) over the 
certain period from initial time t0 to the final time of fermentation tf  in order to obtain 
maximum quantity of useful product (for example L-lysine). For this purpose it is necessary 
to maximize the functional: 

∫ ∈
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When solving the task for optimal control, the following problems could appear: 

• Estimation of the optimal number of discrete intervals during the time t0 ÷ tf; 
• Selection of en effective method for solving the task of dynamic programming: 

- Classical algorithm of Bellman [2]; 
- Iterative dynamic programming [46, 47, 48, 49, 50, 51]; 
- Neuro-dynamic programming [3, 30, 31, 32, 35, 37]; 
- Combined methods of dynamic programming [28, 29, 33, 34, 36], etc. 

• Selection of a method for global optimization in the cases of multiple times 
maximization of the functional (3); 

• Selection of a strategy for optimization under uncertainty regarding the precise 
values of some parameters in the mathematical model (kinetic constants, heat 
transfer coefficients, etc); 

(e) Selection of a strategy for multicriteria optimization when several objective criteria 
are formulated (maximum quantity of useful product, maximum biological activity of the 
product, maximum degree of consumption of the substrate in the feeding solution, minimum 
time for conversion, etc.).  
 
Optimization tasks for searching global optimum  
Problem formulation for global optimization 
Searching the global optimum is necessary very often in modeling and control of biological 
processes and systems, because of the high nonlinearity of the system. The optimization 
problem considered is the determination of a vector of n control variables (or estimated model 
parameters) ),...,,( **

2
*
1 nxxx=*x , which will maximize (or minimize) a given multimodal 

objective continuous function (4) subject to constraints of control variables X∈x , equality 
h(x) = 0 and/or inequality g(x) ≤ 0 constraints, where X is the feasible region of the control 
variables: 

),...,,()(max 21 nX
xxxfQ =

∈
x

x
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Problems in selection of global search algorithms 
A large number of methods for searching of a global optimum have been proposed during the 
last years [17, 19, 23, 27, 38, 39, 43, 44, 45, 52, 54, 63, 75, 80, 87], however no effective 
method for solving complex practical problems with a large number of local optimums and 
for objective functions requiring a lot of computational time has been found to date. The 
probability to find the global optimum by use of classical gradient and non gradient methods 
is rather low. Because of the effort to identify a reliable algorithm, many new methods for 
global search have been introduced in the last 40 years. The methods of random search or 
combinations of positive features of different methods using different heuristic ideas seem to 
be relatively more effective. The so called “genetic algorithms” are widely discussed recently 
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[16, 44, 70, 75]. In spite of the fact that the genetic algorithms are introduced as new methods 
the earliest ideas are given by M. Box [5] and developed later by including new heuristic, 
clusters and genetic elements [39, 52, 54, 63, 80]. The controlled random search method 
proposed by Price [63] as a base of genetic algorithms is very promising. The method of Price 
has undergone many modifications towards its further perfection [6, 38, 39]. 
 
Genetic algorithms as up-to-date strategies for global optimization in 
biotechnological systems 
The genetic algorithms are largely used during the last years for optimization and 
mathematical models parameter estimation in biotechnological processes. They are highly 
interconnected with many other optimization methods and algorithms as heuristic, stochastic, 
adaptive and are using a lot of heuristic rules. This is the reason that many of the algorithms 
having genetic character are not defined as “genetic”. 
 
Genetic algorithms start from a great number of initial points (named “population”) in which 
the objective function is estimated. The solutions from one population are used in the next 
population. This is grounded on the expectation that the new population will be better than the 
old one. The points of the new population are chosen according to their “capacity for living” 
i.e. improved values of the objective function. Search for “better points” for the objective 
function and consecutively rejection of the “worst points” continues until certain accepted 
stop criterion of the algorithm has been fulfilled. For example: total number of iterations, the 
precision of the found solution, etc. The algorithms differ from each other in accepted 
heuristic constants, way of analysis of the set of solutions and the strategy to refuse worst 
solutions and to keep the better ones in each iteration of the search process. 
 
Genetic algorithms have been applied to a wide range of bioprocess engineering problems, 
such as parameter identification [43, 64, 65, 69, 71, 72, 75], feeding trajectory optimization 
[8, 9, 53, 74], etc. The presented solutions of the off-line parameter estimation problems of 
fermentation processes models are a stimulated sign of the very challenging nature of the 
bioprocess optimization problems [71, 73, 75]. 
 
However, the optimization technique using genetic algorithms is not a panacea, despite its 
apparent robustness. There are a lot of parameters involved in the algorithm. In general, some 
form of trial-and-error tuning is necessary for each particular instance of optimization 
problem. The appropriate setting of these parameters is a key point for success [65, 66, 67, 
71]. The main disadvantage of genetic algorithms is the large number of necessary 
computations of the objective function and slow convergence which could create difficulties 
in on-line process identifications and process control. This is the reason for continuous 
searching effective methods, which will satisfy the requirements for high convergence to the 
global optimum and minimum number of function evaluation. 
 
Many variations of the genetic algorithms can be found in the literature [13, 23, 42]. 
A modifications that aims to adapt the algorithm to particular problem domain – parameter 
identification of fermentation processes models are presented in [70, 73]. 
 
Analysis of the efficiency of global optimization strategies 
Surveys on convergence and efficiency of different algorithms with regards to global search 
[27, 54, 79, 80, 83] demonstrate that the combinations of different algorithms may lead to 
improvement the effectiveness of the global search. A number of algorithms for global 
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optimization have been investigated with real practical and test multimodal objective 
functions with small and very large (up to several hundreds) local optimums [20, 39, 54, 83] 
comparing the convergence and the average number of objective function evaluations only for 
solved tasks. The results are shown on Fig. 1 and Fig. 2. The investigated algorithms are the 
following: 

(1) Multi random search [80]; 
(2) Modified method of Gelfand and Tcetlin for global optimization [22, 83]; 
(3) Multi-complex method – genetic algorithm [5, 80]; 
(4) Random search – interval metrics [83]; 
(5) Random search – directed cones [83]; 
(6) Modified Luus – Jaacola method [45, 83]; 
(7) Modified Wang – Luus method [83, 87]; 
(8) Shifting constraints with complex method [80]; 
(9) Modified genetic algorithm of Price [63, 80]; 
(10) Tunneling method [43]. 

 
 

17

14
11

14

11

15
17

18

22

17

0

5

10

15

20

25

N
um

be
r 

of
 so

lv
ed

 ta
sk

s

1 2 3 4 5 6 7 8 9 10
Algorithm

 

Total number of tasks: 23
23 

 
Fig. 1 Number of solved global optimization problems 
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Fig. 2 Average number of function evaluation for solved tasks 

 
The genetic algorithm of Price modified with new heuristic rules has the best convergence 
(96%) (Fig. 1). The method of shifting constraints combined with complex method also 
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demonstrates good convergence (78%). This algorithm uses every better local optimum found 
by complex – method as an inequality constraint in order to avoid unnecessary search in the 
domains without expectation. This combination reduces the number of objective function 
evaluations about six times in comparison to the Price method (Fig. 2). 
 
The very well theoretically grounded tunneling method shows 74% convergence, but it has 
about 7 times lower efficiency concerning the number of required computations in 
comparison to the Price method.  
 
Optimization problems under uncertainty 
Another significant optimization problem in design and control of biotechnological systems is 
the existence of uncertainty from various kinds: 

• Structural and parametric; 
• Internal and external; 
• Quantitative and qualitative; 
• Total or partial uncertainty. 

 
The most common optimization cases comprise external quantitative and qualitative 
uncertainties and process coefficients and other parameters. It is presumed that there is partial 
knowledge for at least one of the following characteristics: nominal value, the expected value, 
the interval of expectance, dispersion (standard deviation) or the distribution function. 
 
The uncertainties can be involved in the objective function and (or) in the constraints. The 
uncertainties are related mainly to imperfect knowledge of the values of kinetic, heat transfer 
catalytic or other constants (for example the constants 161 kk ÷  and kla in mathematical model 
(1)) or external changes of the quality and property of feeding flows, raw materials and 
energy supply. The quality requirements, the prices of raw materials or energy, also the trade 
policies are always potential uncertainties in searching of optimal solutions. 
 
A variety of aspects on optimization tasks under uncertainties problem have been examined 
and different approaches for overcoming the problem have been published [4, 59, 76, 78, 80, 
82]. 

• Maximum determination of the uncertainty; 
• Synthesis of robust systems; 
• Synthesis of adaptive systems; 
• Applying different optimization strategies in cases of partial knowledge. 

 
Three different strategies for optimal design and optimal operations are mostly applied in the 
case of uncertainty: 

• Strategies based on the minimization of the sensitivity of the optimal solution in the 
presence of uncertainty [7]; 

• Strategies based on the probability characteristics of the uncertain parameters 
[4, 24]; 

• Mixed strategies [56]. 
 
Formulation of the optimization task under uncertainty 
Since optimization under uncertain parameters р appears most often at design stage, let us 
divide the searched optimal variables into design d and control х variables, despite that the 



 BIOAUTOMATION, 2009, 13 (2), 1-18 
 

 7

design variables d can be added to the control variables х. Let us assume searching the 
maximum of the objective function: 

),,(max
,

pdx
dx

Q
DX ∈∈

 (5) 

in the feasible domain of control and design variables DX ∈∈ dx ,  subject to equality and/or 
inequality constraints 

( ) 0=h x, d, p  (6) 
( ) 0≤g x, d, p  (7) 

 
Basic strategies for optimization under uncertainty 
A universal strategy to solve the task (5) is still to be suggested for all optimization tasks 
under uncertainty. All strategies aim at finding an optimal solution which is maximum 
invariant to the incomplete information. Some of the widely applied strategies for 
optimization under quantitative parametric uncertainties are the following: 
 
Strategies based on the sensitivity. The basic strategy is simultaneously to maximize the basic 
objective function (5) Q(x, d, p) and to minimize the normalized sensitivity function 
SN(x, d, p) 
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Nip  are the nominal values of pi and piλ  are the accepted weight coefficients for pi. Methods 
for estimation of piλ  can be found in [80]. 
 
Another approach is to add the sensitivity to the optimization task as an inequality constraint: 
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s.t. miSS iN ,...,2,1,)( 0 =≤pd,x,  (11) 
 
The main difficulty in the strategy (10), (11) is to define the value of S0i. 
 
Optimization task under uncertainty can be also expressed as a double criteria optimization 
problem [78, 80] and to be solved using the methods of reference solutions trough 
minimization of function of losses 
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or maximization of the function of usefulness 
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The strategies using the sensitivity function are suggested for the following cases:  

• Small deviations of uncertain parameters; 
• Possible linearization of the objective functions in the region of uncertainty; 
• The boundaries of the uncertain parameters are known; 
• Small number of uncertain parameters. 

 
Stochastic strategies. If the probability function of distribution f(p) of uncertain parameters pi 
is known the following strategy can be used 
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For the tasks of optimal design and optimal operation the following strategy is proposed in 
[24]: 
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For the same optimization task subject to constraints in [59, 78] the following strategy is 
proposed: 
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where { }...
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 is a mathematical expected value of { }...  in the region of uncertainty p∈P. 

 
The comparative analysis of the strategies (20) and (21) in [59] solving some practical 
problems is showing that the strategy (21) is giving almost the same optimal solutions as (20) 
but the time for solution is much shorter. 
The amount of calculations of stochastic methods is very large. The stochastic methods are 
suggested for the following cases: 

• The function of distribution of uncertain parameters is known; 
• The deviations of the uncertain parameters are large; 
• The objective function is non linear in respect to the uncertain parameters. 

 
Strategies using the game theory (min-max strategies). The basic game strategies used for 
optimization under uncertainty are the following 
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The following strategy is proposed in [59, 78] 
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The game theory strategies are better for discrete number of solutions and suggested if: 

• The boundaries of the uncertain parameters are known; 
• The objective function is linear in respect to the uncertain parameters. 

 
Strategies for optimization under uncertainty with discreet number of variants 
The number of possible variants for selecting the optimal one is a finite number Vj, 
j = 1, 2, …, M in many practical optimization tasks. Let us assume existence of a finite 
number of combinations jθ , j = 1, 2, …, K of possible uncertainties. For example it is 
necessary to invest in one of three possible biotechnologies in the presence of two 
uncertainties: p1 – the energy price and p2 – the price of raw materials in order to maximize 
the annual profit 

V
pVQ max),( → . Let us assume that the combinations of the possible 

uncertainties of p1 and p2 is also finite number jθ , j = 1, 2, 3, 4 created by the four boundaries 
of the uncertain parameters minip  and maxip . The following strategies are used in such cases: 

Stochastic strategy. The probabilities Sj of the combinations jθ , j = 1, 2, …, K are given. The 
optimal variant is selected by 
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“Pessimistic” game strategy. The optimal variant is 
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“Optimistic” game strategy. The optimal variant is: 
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The strategy of “regret”. The values of the objective function for each variant of the possible 
uncertainties jθ  are transformed to a “matrix of regret” ijr . The optimal variant is searched by 
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Neutral strategy (bracketing strategy, average max-min strategy). The optimal variant is 
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Bracketing strategy with weight coefficients. Weight coefficients αV, 0.10 ≤≤
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α  for the variants are given and used. The optimal decision is 
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The steel non solved optimization problems under uncertainty are relative to qualitative, 
structural and dynamic uncertainties. 
 
Multicriteria optimization of biotechnological processes and systems 
Multicriteria optimization task is formulated when the requirements for several criteria 

mjxy j ...,,2,1),( =  (useful product yield, biological activity, toxicity, stability, solubility, 
economic criteria) have to be fulfilled simultaneously. The set of several objective criteria 
(32) is called vector criterion: 

)](),...,(),([)( 21 xxxxy myyy=  (32) 
 
The optimization task with a vector criterion requires to find a set of control variables x*, 
called optimal decision, under which the objective parameters mjy j ,...2,1),( * =x  will meet 
the complex requirements. This task is a basic task for quality control of production of bio-
products. The multicriteria optimization task is incorrect, because there is not a sole solution 
of the task. The number of solutions is infinite. The multicriteria optimization task can be 
converted to the classical task if one criterion is chosen and all the others are imposed as 
constraints.  
 
During recent years lots of strategies have been proposed in order to find the so called Pareto 
– optimal solutions, which are compromised solutions satisfying to certain extent the imposed 
requirements of all objective criteria [14, 15, 79, 80, 86, 90]. The concept of Pareto-
optimality, proposed by Vilfredo Pareto [58, 80] is mostly used in multicriteria optimization 
tasks. The Pareto-optimal solution (Pareto-optimal control) has the property that each 
deviation from it for the purpose of improving one or more criteria leads to a deterioration of 
at least one or more of the remaining criteria. The Pareto-optimal solutions are also called 
effective, non dominative, non improved, compromise or acceptable.  
 
The basic strategies of solving vector criteria optimization problems are the following: 

• Strategies of reference points; 
• Strategies of goal programming; 
• Scalarisation of the vector criteria; 
• Methods of weight priorities; 
• Finding a set of Pareto-optimal solutions. 

 
Reference point strategies 
The most widely used strategies for multicriteria optimization are the so called reference 
point approach strategies [26, 78, 85, 88, 89, 90]. These methods are a part of the wide class 
of the scalarizing methods.  
 
Each objective variable is given a referenced value (referenced point) jry , j = 1, 2, …, m. The 
idea in the different variants of the method is to maximize the exceeding over the referenced 
value jry , or/and to minimize the insufficiency to the referenced value jry . 

 
The reference point approach has a few modifications: 
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• Function of losses method (optimistic approach); 
• Function of usefulness method (pessimistic approach); 
• Bracketing approach (combined optimistic and pessimistic approach); 
• Statistical-average referenced point method [85]; 
• Desirability function method [26]. 

 
Optimistic strategy (function of losses method). This approach is called “optimistic” because 
the best values y j mj

∗ =, , ,...,1 2  are assigned to the referenced values of the objective 
functions )(xy j  depending on the required value (maximum or minimum) and the losses, i.e. 
the under-achievement to the optimistic values are minimized. The generalized function of 
loses )(xopt

aF  to be minimized is 
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where maxjy  and minjy  are accepted as the maximal and minimal values of each objective 
parameter )(xy j used to normalize the function of losses.  
 
Pessimistic strategy (function of usefulness method). In this strategy the “pessimistic” values 
(minimal or maximal admissible) pes

jy  are assigned to the referenced values of the objective 
functions yj(x) and the over-achievement above them, called “usefulness” )(xjη  is maximized  
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In the generalized function of usefulness (35) weight coefficients Wj, ( mj ,...,2,1= ) [40, 41, 
80] can also be introduced in order to express the priorities of the objective functions yj(x) in 
the compromise optimal solution: 

( )
x
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=

m
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aw W

m
F η  (35) 

 
Besides the generalized arithmetic mean function of usefulness )(xpes

aF  (34) geometric mean 
(multiplicative) generalized function of usefulness )(xpes

aF  is also applied in the pessimistic 
strategy: 

x
m

m
pes

gF max))(...())(.())(()( 22
2

2
1 →= xxxx ηηη  (36) 

The function (36) is used in order to reduce the risk in finding a compromise solution which is 
in or near to the most undesired value pes

jy  of some objective functions [81]. The geometric 
mean function (36) usually is multimodal and needs a method for searching global maximum. 
 
Bracketing approach for multicriteria optimization. The bracketing approach combines the 
function of losses method and the function of usefulness method, i.e. the optimistic and the 
pessimistic approach. The optimal compromise solution is searched by simultaneous 
minimizing the under-achievement to the best values (desired, ideal values) *

jy  and 

maximizing the over-achievement over the necessary (required) values pes
jy . 
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Method of a mean statistical desired value. The method [85] is a variant of the bracketing 
approach. A recommended mean value jy  for each objective yj(x) is given. The normalization 
of the deviation between yj(x) and jy  is in respect to an accepted standard deviation Syj. 
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Method of desirability function. All objectives yj(x) are transformed in a function of 
desirability dj(x) using the formula [26, 80] 

))]}((exp[exp{)( 1 xx jjojj ybbd +−−=  (39) 
 
The compromised solution is searched by maximization of the generalized multiplicative 
function of desirability D(x) 

x
xxxx max)()...()()( 21 →= m

mdddD  (40) 

 
The exponential transformation (39) is giving much slow transition to the desired and 
undesired values for each objective comparing to the linear transformations in functions of 
losses, usefulness and bracketing transformation. The generalized function of desirability is 
usually multimodal. Solved problems for multicriteria optimization of biotechnological 
processes are given in [61]. 
 
Noise reduction in biotechnological processes 
The experimental data taken from fermentation and other bioprocesses and used for modeling 
of the processes are significantly influenced by various disturbances. In order to reduce the 
risk of making wrong conclusions and taking wrong decisions the data are usually filtered. 
The following digital filters are mostly used for smoothing the data: filters of Butterworth 
[57], Chebishev [77] and Elliptic filter [25]. The choice of the best filter is still under 
investigation [1, 71]. 
 
Optimal control of biotechnological processes and systems 
An effective method for optimal control of biotechnological systems has to be chosen. The 
method has to assure an adequate optimal control having in mind the strong nonlinearity of 
biotechnological systems, the process memory problem and large number of control and state 
variables. An additional problem to appear is related to the uncertainty in process 
development and necessity of parametric identification in reasonable real time. The methods 
of maximum principal of Pontryagin [62] and dynamic programming of Bellman [2] are 
mainly used for optimal control of biotechnological processes and systems. 
 
The maximum principle of Pontryagin seems to be one of the most perspective methods for 
optimal control for biotechnological processes. The necessity of strongly adequate 
mathematical model of the process and well defined constraints, relatively precise defined 
initial and final conditions as well the necessary and sufficient conditions to apply the method 
make the maximum principle of Pontryagin still one with restricted practical application. 
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The method of dynamic programming using the formulated by Bellman “optimality principle” 
[2] has found large application for optimization of multistage in the space and the time 
biotechnological processes and systems. Dynamic programming is mostly used for finding the 
optimal control profile for batch or fed – batch processes using discretization of the system 
functioning time in intervals and finding the optimum control for each time interval. The 
optimization task is to find the optimal control strategy uopt(t) of each stage (i = 1, 2, …,N) or 
of each discreet time interval which will assure maximum (or minimum) of the selected 
integral criteria for optimality of the process subject to the imposed constraints. The optimal 
discretization of the time interval is also an optimization task. 
 
To overcome the so called “the curse of dimensionality” in dynamic optimization the 
researches are still looking for improving the computational process. The following dynamic 
programming methods with improved computational efficiency have been developed during 
the recent years: 

- Iterative dynamic programming [46, 47, 48, 49, 50, 51]; 
- Neuro-dynamic programming [3, 30, 31, 32, 35, 37]; 
- Combined – dynamic programming methods [28, 29, 33, 34, 36]. 

 
However these methods need global search on each stage of the numerical procedure and also 
a comparative study of their efficiency. 
 
Conclusion 
A lot of strategies and methods have been proposed for dealing with multimodal optimization 
tasks, tasks with parametric uncertainties, tasks with several objective functions and tasks for 
optimal dynamic control of biotechnological systems. Many of these strategies are still not 
sufficient enough. For further investigations it is expected that combined methods and 
algorithms would be developed, which would be more effective and reliable to overcome the 
problems of finding global solutions, maximum robust to the incomplete information, dealing 
with vector criteria and searching for optimal control with a reduced amount of computations. 
The choice of the relevant methods has to be based on the comparative analysis of the most 
perspective methods and algorithms, taking into account the specific features of biological 
processes with regards to their modeling, optimization and control.  
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