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Summary: Experimental investigations in different mixing conditions (impulse and 
vibromixing) in a Saccharomyces cerevisiae batch cultivation are presented in this paper. 
The investigation is carried out in a 5 l laboratory bioreactor (working volume 3 l). 
Mathematical models of the process for the two mixing systems are developed. The obtained 
results have shown that the models are adequate and will be used for process optimisation 
for the two mixing systems. 
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Introduction 
Problems of mass exchange in the liquid-cell system have been investigated for decades. 
There is enormous literature on the optimisation of aeration and mixing conditions, the 
internal design of bioreactors, etc., which accounts for hundreds of references annually, 
including our own publications [17-21]. The results of our studies, considered in this field, 
show that the intensive conditions of aeration and mixing inevitably lead to turbohypobiosis 
[9]. 
 
The deformation damage of cells in the intensively mixed zones proved to be much more 
dangerous than the insufficient mass exchange in the so-called dead zones of bioreactors. For 
simulation of these situations, a special bioreactor design EDF5-30 was developed to provide 
producers sensitive to deformation forces with even mixed cultivation conditions. For process 
control, specific instruments, BIO-3 and SIMD, were developed (www.bioreactors.net). 
BIO-3 [18, 19, 21] allowed the control of all conventional parameters: temperature, pH, pO2, 
gas flow rate, shaft rotational speed, etc. SIMD measured the kinetic energy of flow 
fluctuations (local stirring intensity e, w⋅m-3). 
 
It has been found that the mixing and/or aeration intensity, and the limiting concentration of 
the substrate contribute alternatively (within reasonable ranges of variation) to the efficiency 
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of bioreactors supplied with a gas mixture (air, nitrogen and oxygen) for pO2 stabilisation. 
However, for optimal cultivation performance, each specific system (culture + bioreactor) 
requires individual adjustment and optimisation of the cultivation conditions. 
 
The intensifying ways were conventional mixing, mechanical vibromixing and 
pneumovibromixing. For estimation of the efficiency of intensifying methods used and the 
peculiarities of mass transfer in different conditions, physiological, biochemical and 
technological (YX/S) responses of the Saccharomyces cerevisiae culture to different mixing 
types (impulse and vibromixing) were analysed. 
 
Another important step besides the reporting of the abovementioned factors is the modelling 
of the process of different mixing types of Saccharomyces cerevisiae cultivation. The 
developed models will be used for optimization and optimal control of the process in different 
mixing systems. 
 
Experimental material and methods 
The task of monitoring and control in fermentation processes is determined to a great extent 
by the potentialities of the control system. The typical potentialities of fermentation control 
are commonly included in the basic configuration of commercially available bioreactor 
controllers. Thereby, the control of the main parameters, namely, temperature, pO2, pH, foam, 
overpressure could be ensured, and the possibilities of the control of different parameters can 
be relatively wide. For the purpose of research or technological development, it is often 
necessary to realise the process control tasks, which are not so typical. In these cases, the 
controller must be flexible enough, ensuring relatively easy and quick adaptation of the 
program to the particular fermentation needs. 
 
It becomes increasingly urgent nowadays to ensure the conditions of good manufacturing 
practice (GMP) for commercial fermentations. It means that, for fermentations also at the 
research stage, from the viewpoint of control registration, conditions must be ensured, which 
are as far as possible approximated to GMP. These conditions mainly apply to the user access 
control and differentiation, as well as the registration of all events, including also alarm 
notification and the operator’s activities registration. To ensure this, the process registration 
and control computerised program (SCADA), devised in compliance with the corresponding 
requirements, should be used. 
 
The design conception of SCADA 
Computerised fermentation monitoring and control systems were developed according to the 
requirements of 21 CFR Part 11 (document of US Food and Drugs administration). The 
software is based on the ARC Informatique PC Vue industrial SCADA development package. 
The applications of these principles promote the performance of the conditions of GMP. 
 
The software provides all standard SCADA functions, and ensures the audit trail of user 
actions, where the time of login/logout, set point changes, setting on/off of executive devices, 
start/stop of the process, etc. are fixed. The access to operations is allowed only for authorised 
users. The access level of each operator is defined through passwords. 
 
The program drivers ensure communications between the software and many popular PLCs, 
for example, Siemens Simatic, Schneider Electric Quantum, General Electric Fanuc, etc. The 
communications can be provided also with the help of an OPC server, which gives the 
possibility to connect software with control units in a wide range. 
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pO2 control by using cascade control 
Dissolved oxygen tension, pO2 or DOT (sometimes marked as the dissolved oxygen 
concentration, DOC) is a useful parameter to control aerobic processes. In BIO-3, pO2 can be 
controlled in one of the following ways: stirrer rotational speed, air flow, oxygen enrichment, 
substrate feeding, gas mixing and pressure (overpressure). All these pO2 control variants can 
be included in the cascade control. The cascade control functions according to the following 
rules: 
 
1. pO2 control is started with the first cascade. The process is controlled in the current 

cascade until the limits of the controlled elements are not achieved. If the limits are 
achieved, then the control is continued with the next or previous cascade after expiring of 
the “cascade delay” time. The transition direction (to the next or previous cascade) 
depends on the trend of the pO2 varying dynamics and the limit achieved. The transition to 
the next cascade is not possible, if the current cascade is the last, and also the transition to 
the previous cascade is not possible if the current cascade is the first. 

2. The cascade can be paused or stopped. If the cascade pauses, the current control variable 
is “frozen” until the process continues again. If the cascade is stopped, then the pO2 
control is also stopped. The control variables return to the starting conditions, and the 
process is started from the first cascade. 

3. The concrete cascade process starts with the defined value of the corresponding controlled 
parameters. This value corresponds to one of the limits (these are defined according to 
Table “Cascade control conditions”). In the next cascade, the previous controlled 
parameter acts with the last limit value. This value of this parameter remains in all next 
cascades. The control parameters of all included cascades have starting values in every 
other cascade until the other limit of this parameter is not achieved. If the other limit of 
the controlled parameter is achieved, then this is the value of the controlled parameter in 
other cascades. 

 
For the current fermentations, the following 3 cascades were used: 

1. Stirrer rotational speed; 
2. Oxygen enrichment; 
3. Substrate feeding. 

 
The use of oxygen enrichment instead of gas mixing is reasoned, if it is necessary to add 
oxygen. This variant is more feasible technically and economically than gas mixing. The 
control in each cascade is carried out in the following way: 
 
1. Stirrer rotational speed: nnfpO ~)(2 = , n – stirrer rotation speed, rpm. 
 
Control conditions: 
 

pO2 < SP – DZ SP – DZ < pO2 < SP + DZ pO2 > SP + DZ 
n ↑ PID n = const. n ↓ PID 

 
Limit conditions: [nmin, nmax] 
 
2. Oxygen enrichment: 222 ~)( RoRofpO = , Ro2 – ratio of oxygen valve Vo2 opening time to 

the impulse period. 
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Control conditions: 
Air flow Qair = const. 

pO2 < SP – DZ SP – DZ < pO2 < SP + DZ pO2 > SP + DZ 
Ro2 ↑ PID Ro2 = const. Ro2 ↓ PID 

 
Limit conditions: [Ro2min, Ro2max] 
 
3. Substrate feeding: )(2 feedPfpO = and feedPpO ~2  (Substrate portion increases pO2) 
 
Control conditions: 
 

pO2 < SP – DZ SP – DZ < pO2 < SP + DZ pO2 > SP + DZ 
Pfeed ↑ PID Pfeed = const Pfeed ↓ PID 

 
Limit conditions: [Pfeed min, Pfeed max] 
 
On-line measurement of viscosity 
When the process is monitored by substrate feeding and especially by control of biomass 
concentration and quality, the role of viscosity values in media increases notably. Therefore, 
within the set of conventionally controlled parameters, we considered also viscosity and 
developed its special indicating instrument. For this task, the possibility of on-line 
measurement was extremely important. So, for on-line measurement of viscosity, special 
easily operated robust and sufficiently accurate measurement and control equipment has been 
devised. Thereby analysing the oscillations and applying the signal processing formulae, the 
current viscosity was determined using the correlation between the oscillation decrease and 
viscosity. The given sensor is sterilisable and applicable for continuous measurements during 
the fermentation process [20]. 
 
Two experiments were carried out in a bioreactor with the total volume 5 litres and the 
working volume V = 3 litres. Impulse mixing system included a double Rushton turbine with 
baffles. Maximum rotation speed of the stirrer n = 260 rpm and mixing impulses with the 
frequency 0.5 s-1 (Fig. 1). Vibromixing is realised with replacing the turbine stirrer with 
vibrator plate – amplitude 10 mm and frequency 10 s-1. 
 

The experiments were realised in a batch culture 
(2% glucose broth) of Saccharomyces cerevisiae 
in aerobic conditions (aeration – 1 l gas per 1 l 
broth). In the experiments of the current article, 
were used a laboratory bioreactor EDF-5.3, 
equipped with a novel upper magnetic drive, a 
bioprocess controller BIO-3 and a SCADA 
(Fig. 2). 
 
Software package STATSOFT 2 (Randec Ltd.) is 
used for processing of experimental data. 

 
Experimental results 
The experimental results for the different mixing systems are shown in Table 1 and the 
following figures, where X1, X2, S1, and S2 – cell and glucose concentration for impulse and 

 
n, rpm 

nmax 

time, h 
 

Fig. 1 
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vibromixing, g·l-1; µ1, µ2, qS1, and qS2 – specific growth rate and glucose consumption rate for 
impulse and vibromixing, h-1; dS1/dt and dS2/dt – glucose consumption rate for the 
Saccharomyces cerevisiae growing process, g·l-1·h-1; Y1 and Y2 – yield of biomass from 
glucose growing for impulse and vibromixing. 
 

 
 

Fig. 2 Schematic diagram of the fermentation process 
 

Table 1. Experimental investigations for different mixing systems 
Impulse mixing Vibromixing 

t 
h 

X1(t) 
g·l-1 

S1(t) 
g·l-1 

µ1 
h-1 

qS1 
h-1 

dS1/dt 
g·l-1·h-1

Y1 
- 

X2(t)
g·l-1 

S2(t) 
g·l-1 

µ2 
h-1 

qS2 
h-1 

dS2/dt 
g·l-1·h-1 

Y2 
- 

0 0.89 13.80 - - - - 1.20 15.75 - - - - 
1 1.08 13.30 0.17 0.56 0.50 0.37 1.31 14.54 0.08 0.92 1.21 0.09
2 1.46 9.60 0.26 3.44 3.70 0.14 1.68 12.81 0.22 1.04 1.74 0.16
3 2.51 4.70 0.42 3.37 4.90 0.18 2.25 7.96 0.25 2.15 4.84 0.13
4 3.19 0.60 0.21 1.63 4.10 0.17 3.02 4.35 0.26 1.20 3.61 0.16
5 3.00 0.10 0.06 0.16 0.50 0.15 3.99 0.63 0.24 0.93 3.72 0.18

 
Fig. 3 shows the biomass and the substrate concentration curves for Saccharomyces 
cerevisiae cultivation using impulse and vibromixing systems. 
 
If the yeast growing process is analysed using the specific growth rate of the culture, it is 
shown from the curves (Fig. 4a) that, using a Rushton turbine with impulse mixing, the 
growing of microorganisms occurs rapidly in the first three hours and then the rate of the 
process decreases. It may be due to decreasing of the substrate concentration and therefore a 
slower mass exchange. For vibromixing conditions, at the beginning of the process, the value 
of the specific growth rate increases in the first two hours and then the changes are minor. It is 
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shown better on the specific glucose consumption rate curve (Fig. 4b), where, at the end of 
the process, this indicator for impulse mixing processes practically reaches zero, while, for 
vibromixing conditions, the curve of the glucose consumption rate has increased only in the 
third hour of cultivation. 
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Fig. 3 Biomass and substrate concentration curves for the Saccharomyces cerevisiae 
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 Fig. 4a Specific growth rate (µ) Fig. 4b Specific glucose consumption rate (qS) 

 
Fig. 4 Specific grown rate and specific consumption rate for the Saccharomyces cerevisiae 

growing process 
 
In the case of impulse mixing, the classic growing curve with a plateau region is observed at 
the end of the process (Fig. 3). It can be concluded from the curve that the substrate is 
completely used and the cells started to die. This is confirmed also by the glucose 
consumption rate (Fig. 5a). One of the main process parameters is the product yield; in this 
case, it is yeast biomass. Fig. 5b shows that, for a rotary stirrer, the yield of biomass decreases 
twice and then remains approximately at the same level (slightly increases only in the third 
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hour). In the case of vibromixing, the yield of biomass increases practically slowly, in the 
second hour, reaches the turbine process level, and then the curves of both the processes have 
an approximately common tendency. 
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 Fig. 5a Glucose consumption rate Fig. 5b Yield of biomass from 
 (dS1/dt) and (dS2/dt) glucose (Yi) growing 
 

Fig. 5 Glucose consumption rate and yield of biomass from glucose growing of the 
Saccharomyces cerevisiae growing process for impulse and vibromixing 

 
Kinetic models 
The mathematical model of the process for impulse and vibromixing is based on the mass 
balance equations by perfect mixing in bioreactor: 
 

ii
i X

dt
dX µ=  (1) 

iiS
i Xq

dt
dS

−= , i = 1, 2 (2) 

where iiiiiS YSXq /),(η=  or iiiiS YSq /)(µ= . 
 
The initial conditions for impulse and vibromixing is (Table 1): 
 
X1(0) = 0.89 g·l-1, S1(0) = 13.80 g·l-1; 
X2(0) = 1.20 g·l-1, S2(0) = 15.75 g·l-1; V1(0) = V2(0) = 3 litres. 
 
Evaluation of the model parameters 
The mathematical estimation of the model parameters is based on minimization of some 
quantity that can be calculated and that is a function of the parameters to be estimated. If the 
model under consideration is linear, the estimation is generally an easy task. There exists, 
however, no general theory for nonlinear parameter estimation. The least-squares error is 
commonly employed as a criterion to inspect how close the computed profiles of the state 
variables come to the experimental observations. In this study, we consider the time weighted 
least-squares error as a criterion for each experiment. The criterion is expressed in the form 
[22]: 
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where Xe(tj) and Se(tj) are the measured data at t = tj; Xm(tj) and Sm(tj) are the concentrations 
calculated using the model; Xe max, Se max, Xe min, and Se min are the maximal and minimal 
measured concentrations. Here Ns is the number of the sampling data. The least-squares 
regression sums up every observed error in (3) to yield an objective function. 
 
For parameter identification, we consider the worst observed error for all experiments as an 
objective function. This approach is a special case of multiobjective parameter estimation 
problems so that the parameter estimation problem becomes a min–max problem [22]: 
 

{ }exp...,,1,maxminmin NkJJ kk
==

uu
 (4) 

where Nexp is the number of experiments and u is a vector of the estimated parameters. 
 
Now, the min–max problem can be solved by the random search with back step (RSBS) 
algorithm [16]. The algorithm was written by a FORTRAN 77. All computations have been 
performed on an Intel 1.8 GHz computer using Microsoft Windows XP Pro Edition operating 
system. 
 
Models validation 
The model (1) and (2) validations is made by statistic λ. It is that statistic λ has F(m, Nexp-m) 
distribution [1]. Statistic λ is defined with: 
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Specific growth rate (µ) and specific glucose consumption rate (qS) for different mixing 
conditions are liable to structural and parametric identification.  
 
The structural identification of µ and qS is based on the statistical criteria: the Fisher quotient 
(F), the correlation quotient (R2), and relative error (SL). The relative error SL is determined 
with the help of the following equation [1]: 
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where ν is the degree of freedom. 
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Results and discussion 
Structural identification of the specific rates 
The specific rates for the different mixing systems were investigated in dependence on 
glucose concentration (S) for the structure identification. The results are shown in Fig. 6. 
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Fig. 6 Dependence of the specific rates on the glucose concentration 
 
The obtained experimental results (Fig. 3, Fig. 4) and trajectories of µ = µ(S) and qS=qS(S) 
(Fig. 6a, Fig. 6b) show in the impulse mixing from 0 h to 3rd hour and the glucose 
concentration change from S1 = 13.80 g·l-1 to S1 = 4.70 g·l-1 there is an increment of µ(S) and 
qS(S). After that, both rates decrease. Furthermore, experimental data show (Fig. 3) that 
together with the synthesis of biomass and glucose consumption for impulse mixing we have 
and autolysis of the biomass. This fact must be taken into account in the structural 
identification of µ1. 
 
For vibromixing, situation is similar: to 3rd hour (Fig. 4a) we have rapid growth of µ2(S) 
(Fig. 6a) almost linear reduction of qS(S) – from S2 = 15.75 g·l-1 to S = 12.81 g·l-1 (Fig. 6b). 
For S < 12.81 g·l-1, we have low (almost linear) variation of µ2(S). The change of qS 2(S) is 
similar with the change of µ1(S1) in impulse mixing (Fig. 6a), as we have initially increase to 
3rd hour with a further decrease, as the two parts of the curve are almost symmetrical. 
 
The developed abovementioned reasoning for the two mixing systems suggest us that instead 
a mathematical description of the specific rates of the process by global models (models of 
the specific rates for the all time of the cultivation) to be searched is more appropriate 
different relationships depending on the dependences of glucose over time to be to sought. 
This is confirmed also by the initial structural identification. The most used dependences for µ 
and η were investigated. Only one of them adequately described the specific glucose 
consumption rate change for the whole cultivation period, and that was the Contois model. It 
will be used for description of η for the different mixing systems.  
 
In this paper we will use an alternative concept of the global models, namely functional state 
modelling [5-8, 12, 14]. In this approach the whole process is decomposed to functional 
states, each of which is described with a local model. This approach was successfully applied 
in modelling of bacteria and yeasts [2, 4, 10, 11, 13, 15]. 
 
Experimental results show and it easy can be seen the two mixing systems have two phases. 
This division is conditional and not in some preliminarily criteria. 
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The structural identification of the specific rates is not made separate from the decision of the 
models (1) - (2). It is done simultaneously by testing of different dependencies. The best 
dependences are defined by the statistical criteria: experimental Fisher quotient (FE), 
experimental correlation quotient (R2

E), and relative error (SL). 
 
The dependences for the specific rates with the best statistical indexes of (1) and (2) for the 
two mixing systems are the Moser, Monod, and Contois models (Table 2). 
 

Table 2. Kinetics models of the specific rates for different mixing systems 
Phase 1: 0 ≤ t ≤ 3 h and 

S1 ≥ 4.70 g.l-1 Coefficients Phase 2: t > 3 h and 
S1 < 4.70 g.l-1 Coefficients 

2
12

2
11

1)(
SK

SKS
+

=µ  K1  =  0.254 
K2  =  4.465 14

13
1)(

SK
SKS
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)(1)( 1
1,1

1 S
Y
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116

15
11 ),(

SXK
SKSX
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=η  K5  = 0.907 
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Phase 1: 0 ≤ t ≤ 3 h and 
S2 ≥ 12.81 g.l-1 Coefficients Phase 2: t > 3 h and 

S2 < 12.81 g.l-1 Coefficients 
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22 ),(
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k8   = 1.521 

 
 
After structural identification, models (1) and (2) have the following type: 
 
– impulse mixing 
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where Kd = 0.035 and Y1,2 = 0.113. 
 
A linear dependence that reflects autolysis for the biomass is included in the equation for the 
biomass change for Phase 2 (8). It change is related to the biomass concentration and depends 
on the coefficient Kd. 
 
–vibromixing 
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where Y2,1 = 0.161, Y2,2 = 0.113. 
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The statistical indexes of the model are shown in Table 3. The theoretical Fisher quotient and 
correlation coefficient are determined for each phase for the two mixing systems and are 
shown in the table for the relevant degrees of freedom. 
 
Theoretical Fisher quotient that is compared with statistic λ in the table is noted with F’T. 
 

Table 3. Statistics criteria of the models 
Impulse Variable R2

E R2
T FE FT SL Statistic λ F’Т 

X1 0.993 1.024 0.055 Phase 1 
S1 0.941 1.306

199.50
0.107 

237495 199.50

X1 0.994 1.011 0.018 Phase 2 S1 1.000 

0.811 

0.998 6.26 0.350 1134609 6.94

Vibromixing Variable R2
E R2

T FE FT SL Statistic λ F’Т 
X2 0.966 1.190 0.074Phase 1 
S2 0.996 1.039

199.50
0.015

27084 199.50

X2 0.999 1.004 0.039Phase 2 S2 0.998 

0.811 

1.010 6.26 0.267 236987 6.94

 
The results after simulations for the biomass (X) and glucose concentrations (S) curves for 
Saccharomyces cerevisiae cultivation using impulse and vibromixing conditions are shown in 
Fig. 7 and Fig. 8. 
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Fig. 7 Experimental and simulation results for biomass and glucose concentrations using 

impulse mixing system 
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Fig. 8 Experimental and simulation results of biomass and glucose concentrations using 

vibromixing system 
 
The obtained results (Fisher, correlation quotients and relative error) show that the models for 
the specific rates µ and η are adequate (R2

E > R2
T and FE < FT) and can be used for modelling 

of the specific grown rate and specific consumption of glucose. 
 
The obtained results for models (1) and (2) (Table 3, Fig. 7, Fig. 8, and statistic λ > F’T) show 
that the models are adequate and can be used for optimisation and optimal control of the batch 
fermentation process. 
 
Conclusions 
1. In comparison with the traditional continuous mixing, impulse and vibromixing decrease 

the ability of cells to be present in the local intensive zone in similar mixing conditions. 

2. In the Saccharomyces cerevisiae fermentation with impulse mixing, a higher maximum 
growth rate is achieved than in the case of vibromixing, while a similar process yield is 
reached in the case of vibromixing, because, with reaching a certain density of biomass, 
the impulse mixing starts to affect adversely the cell growth. It means that, at a greater 
biomass density, it was not possible to prevent sufficiently the presence of cells in locally 
intensive zones. 

3. The application of pO2 cascade control in fermentation makes it possible to optimise the 
oxygen consumption at different process stages. The application of oxygen enrichment by 
pO2 control is an economical alternative comparing with the use of a gas mixing unit. 
Oxygen enrichment can be used successfully enough if the oxygen impulses do not 
disturb the performance of the process. 
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4. The results of this experiment show that, for real fermentation processes, the optimisation 
of process control is even more important than the design of the mixing system. 
Therefore, the second part of the study will be devoted to the optimisation and optimal 
process control. 

5. The obtained results show the models are adequate and can be used for optimisation and 
optimal control of the batch fermentation process. The application of functional state 
modelling approach shows in this case it is better than development of a global model for 
the specific rates. In this work, the phase separation is conditional, not strictly. This 
division depends on the mixing type. In optimization and optimal control of processes and 
the mixing type in models will be incorporated. 
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