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Abstract: The morphological and rhythm analysis of the electrocardiogram (ECG) is based 
on ventricular beats detection, wave parameters measurement, as amplitudes, widths, 
polarities, intervals and relations between them, and a subsequent classification supporting 
the diagnostic process. Number of algorithms for detection and classification of the QRS 
complexes have been developed by researchers in the Centre of Biomedical Engineering – 
Bulgarian Academy of Sciences, and are reviewed in this material. Combined criteria have 
been introduced dealing with the QRS areas and amplitudes, the waveshapes evaluated by 
steep slopes and sharp peaks, vectorcardiographic (VCG) loop descriptors, RR intervals 
irregularities. Algorithms have been designed for application on a single ECG lead, a 
synthesized lead derived by multichannel synchronous recordings, or simultaneous multilead 
analysis. Some approaches are based on templates matching, cross-correlation or rely on a 
continuous updating of adaptive thresholds. Various beat classification methods have been 
designed involving discriminant analysis, the K-th nearest neighbors, fuzzy sets, genetic 
algorithms, neural networks, etc. The efficiency of the developed methods has been assessed 
using internationally recognized arrhythmia ECG databases with annotated beats and 
rhythm disturbances. In general, high values for specificity and sensitivity competitive to 
those reported in the literature have been achieved.  
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Introduction 
The ventricular contractions and the depolarization phenomenon are identified in the 
electrocardiogram (ECG) by characteristic high-amplitude waves, named QRS complexes. 
Distances between them (RR intervals) define the rhythm, which is strongly influenced by the 
emotions and the physical activity and less in line by the respiratory act. In heart conduction 
disorders, ventricular excitation may not originate as it is normal from the sinus node, but 
from other ectopic centers in the myocardium. Thus premature contractions are generated, 
called also extrasystoles or ectopic beats. Typically, they are recognized by the irregular 
coupling RR intervals. The premature atrial contractions (PACs) produce normally shaped 
QRS complexes, while the premature ventricular contractions (PVCs) are generating a variety 
of QRS waveforms, quite differing from the normal ones. The premature beat itself does not 
cause symptoms but the occurrence of multiple single premature beats is considered clinically 
important, since it is a sign for disturbance in the depolarization process preceding in many 
cases the appearance of malignant cardiac arrhythmias.  
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The automatic detection and classification of the ventricular contractions as normal or 
premature is a subject of long-term studies. This is the basis of the rhythm analysis, which is 
usually applied to continuous 24-hour ECG recordings (Holter systems) and monitors in 
surgical and intensive care rooms to identify rhythm disorders. 
 
Recognition of premature contractions and their classification as PACs or PVCs is requires a 
reliable detection of the QRS complexes [3, 4, 9, 10]. During the QRS detection process, 
some extrasystoles may be initially identified as normal QRS complexes and consecutively 
separated by means of additional criteria. 
 
Two main strategies are set apart in the development of automatic beat classification methods 
in consideration to their application: (i) fast real-time or pseudo-real time implementations 
and (ii) complex offline classificators aiming at higher accuracy and reliability of the 
clustering results in more classification groups. 
 
Automatic classification in real or pseudo-real time 
Algorithm for PAC and PVC recognition has been developed by Christov [5], working in 
pseudo-real time. Two different areas are calculated for each beat within a window defined 
around the largest positive and the largest negative peaks, and the smaller area is selected. 
Adaptive thresholding is applied, depending on the difference in areas and the difference 
between the current RR interval and the previous regular RR interval. PVC is detected when 
the difference between the area of the analyzed beat and the mean area of the five preceding 
normal QRS complexes, stored in a reference buffer, exceeds a threshold value. PAC is 
discovered by comparison of the two coupling RR intervals around the current complex with 
the mean RR-interval calculated as an average of the five preceding regular RR intervals. If a 
normal ventricular contraction is recognized, the QRS complex is used to update the reference 
buffer. High values for sensitivity, specificity and positive prediction accuracy, respectively 
95.54%, 99.66% and 96.55%, have been reported for this method. 
 
Dotsinsky and Christov [11] have clustered ventricular contractions by delineation of QRS 
onsets and offsets, supported by an algorithm for rejection of high amplitude T-waves, and 
some untypical P-waves. The algorithm examines the slopes of the ventricular contractions. 
The QRS onsets are defined by two alternative criteria that follow two consecutive differences 
of samples, standing 20 ms apart from each other (one period of the 50 Hz powerline 
interference). The first criterion requires the magnitude of the two equal-signed differences to 
exceed a threshold of L = 280 µV. In order to cancel false threshold activation by sharp peaks, 
it is additionally required that the absolute value of the difference between the candidate 
central sample and the last detected offset is < L. The second criterion provides recognition of 
extrasystoles of low slew rates but of high amplitudes if the absolute value of the difference 
between the candidate and the last detected QRS offset is > 2L and if the candidate is < 240ms 
apart from the previous QRS offset. 
 
The QRS offset is marked if the absolute difference between the candidate and the last onset < 
L and all samples within the next 20 ms do not differ considerably in amplitude (the absolute 
values of the successive intersample differences are < L/4). Fig. 1 illustrates two ECG signals 
with normal QRS and extrasystoles for which the onsets and offsets are measured (circle ‘o’ 
marks) and peaks of the QRS complexes are recognized (asterisk ‘*’ marks). 
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Fig. 1 Delineation of onsets, offsets (marked with circles), and peaks (marked with asterisks) 

of the QRS complexes. On the left – 1st, 2nd and 4th complexes are normal and the 3rd is 
extrasystole. On the right – 1st and 3rd are extrasystoles and the 2nd is normal QRS. 
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(h)  
Fig. 2 Examples of different cardiac arrhythmias with correct (a-d) and erroneous (e-h) 

detection of A-beats according to the method in [19]. Detection labels are marked at the top of 
each subplot, while the annotation labels are shown between the two ECG leads. 

The resolution on the x-axis is 50mm/s and on the y-axis is 20mm/mV. 
(a) Arrhythmia with premature contractions excited from ectopic centers both in the atria and 

in the ventricles; (b) Atrial fibrillation; (c) - Atrial Tachycardia; (d) - Blocked rhythm:  
A-beats between 2 pathologic pauses; (e) - Arrhythmia with polymorphic ventricular 

contractions; (f) - arrhythmia with atrial PBs; (g) - Atrial fibrillation at rapid heart rate;  
(h) - Arrhythmia with interpolated V-beat. 
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The method by Dotsinsky and Stoyanov [9] applies searching for a PVC starting 120 ms after 
the previously detected QRS complex. The basic criterion is the presence of a biphasic wave, 
which exceeds predefined thresholds for durations and amplitudes of the two phases. If no 
candidate for extrasystole is found, the threshold requirements are reduced and a second 
verification is applied. Meeting the reduced criteria clusters the biphasic wave as a 
‘suspicious’ candidate for an extrasystole. A second branch of the algorithm verifies whether 
the candidate is located between two normal QRS complexes, < 1.3 s apart from each other. A 
third branch compares the parameters of the currently detected QRS complex to a QRS 
template selected initially as normal QRS. The parameters are: maximal positive and negative 
amplitudes, peak-to-peak amplitude, and the number of samples exceeding the defined above 
threshold. The candidate is clustered as extrasystole in case of significant difference between 
the parameters. 
 
Krasteva et al [19] have suggested a method for detection of single PACs, or PACs 
propagating during supraventricular tachycardias, postoperative or paroxysmal atrial 
fibrillations. The PACs detection algorithm applies heartbeat classification by estimation of 
the QRS waveform morphology and RR-intervals irregularity in two-channel ECGs. The 
estimator of the RR-intervals is adopted from [5] taking the difference between the two 
surrounding RR intervals, normalized to the mean value of the five preceding RR intervals. 
Three other parameters estimate the QRS waveform morphology by comparing the current 
heartbeat to a reference QRS pattern calculated after averaging of the five preceding beats. 
The suggested parameters evaluate: (i) the difference in QRS widths; (ii) the difference in 
QRS areas; (iii) the difference between the amplitudes of the maximal QRS-loop vector in the 
vectorcardiographic (VCG) plane. The developed method applies a sequence of tests to search 
for different types of atrial arrhythmias, including test for absolute arrhythmia, for 
supraventricular tachycardia, for pathologic pause,  for single premature heartbeat, including 
additional verification for PAC. The proposed decision-tree classifier clusters the heartbeats 
as normal, PACs and PVCs, marked respectively by ‘N’, ‘A’ and ‘V’ in Fig. 2. The testing of 
the algorithm with the publicly available MIT-BIH arrhythmia database presented a relatively 
high accuracy with sensitivity of 92.2% and specificity of 96%. 
 

 
Fig. 3 Heartbeat waveform descriptors evaluated in [20] based on area difference (on the left), 

frequency spectrum difference (on the right-top), and maximal cross-correlation (right-
bottom). 

 
Krasteva and Jekova [20] have proposed a method for discrimination of PVCs from normal 
beats, PACs and paced beats (PBs) by analysis of single channel ECG with resource efficient 
algorithms. The method requires minimal expert annotation of a few normal ventricular 
complexes, accepted as static QRS patterns. During the ECG monitoring, self-learning of the 
method is achieved by permanent update of dynamical QRS patterns to capture slight 
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variations in the heartbeat waveforms of the patient’s sustained rhythm. The method is based 
on matching of the evaluated heartbeat with the QRS templates by a complex set of ECG 
descriptors, including maximal cross-correlation, area difference, and frequency spectrum 
difference. The example in Fig. 3 illustrates the potential of the three descriptors to 
distinguish a normal QRS from PVC when they both are compared to the QRS template. 
Temporal features are also evaluated by analyzing the R-R intervals. Fuzzy classification rule 
is integrated. Analysis of all recordings in MIT-BIH and the MIT-SVDB databases show high 
values for sensitivity (98.4%) and specificity (98.9%) of the developed method.  
 
Iliev et al [15] have suggested a very fast software technique for real-time detection of 
pathological cardiac events in ECG designed especially for event/alarm recorders carried by 
high-risk cardiac patients. The method implements simple QRS detection by amplitude and 
slopes thresholding (Fig. 4 – left plots), and QRS waveform evaluation by 64x32 histogram 
matrix, which accumulates dynamically the amplitude-temporal distribution of the successive 
heartbeat waveforms. Fig. 4 (right plot) depicts such a matrix, where normal and PAC beats 
are superimposed within the dark area of repeating waveforms, while PVC beats fall outside 
this area. The evaluation of the heartbeats by this histogram matrix provides high rating for 
normal and PAC beats but low rating for PVC beats. Simple decision-tree classifier is 
implemented. The performance of the method is tested with AHA, MIT-BIH and the 
European ST-T Databases. The specificity and the sensitivity are reported to be about 99.5% 
and 95.7% for all databases and about 99.81% and 98.87% for the noise free dataset.  
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Fig. 4 Illustration of the heartbeat analysis method implemented in [15]:  

(left plots) performance of the real-time QRS detector; (right plot) 64x32 histogram matrix for 
accumulation of the amplitude-temporal distribution of the successive heartbeat waveforms. 

The normal beat is shown with white dotted trace and the PVC beat is with black dotted trace. 
 
Jekova and Krasteva [16] have investigated the projection of the cardiac electrical vector on 
the VCG plane formed by two non-orthogonal Holter chest leads, searching for significant 
differences between the QRS loop dispositions of normal and PVC beats. Fast calculations are 
aimed during the analysis of the spatial correlation of two QRS loops. They are achieved by 
approximation of the QRS loop in the VCG matrix space of 100x100 elements, each element 
taking a value of 0 or 1, assigned by a fast algorithm for verification of whether the element is 
external or internal to the QRS loop (Fig. 5). Thus the complexity of the calculations is 
reduced to operations with binary matrixes for assessment of the spatial displacement of the 
tested QRS loop area to a reference QRS loop area. In addition to the VCG analysis, which 
considered alone does not contain information about the temporal ECG characteristics, a 
parameter for assessment of the interbeat RR interval differences independent from the 
momentous heartrate is introduced. The reliability of the proposed parameter set for clustering 
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of normal and PVC beats was estimated by two classification methods – a stepwise 
discriminant analysis and a decision-tree-like classification algorithm, both tested with the 
MIT-BIH arrhythmia database. The accuracy achieved for the stepwise discriminant analysis 
is sensitivity of 91% and specificity of 95.6%. Comparable results are also achieved with the 
simpler decision-tree-like technique, including sensitivity of 93.3% and specificity of 94.6%. 
 

Beat: T-5 Beat: T-4 Beat: T-3 

Beat: T-2 Beat: T-1 Reference 

(a) 

Lead 1 

Lead 2 

N PVC N N 

T-5     T-4              T-3           T-2        T-1         T 
Tested Beat

PVC * # 

Lead 1 (V) Lead 1 (V) Lead 1 (V) 

Lead 1 (V) Lead 1 (V) Lead 1 (V) 

Lead 2 (V) 

Lead 2 (V) 

Lead 2 (V) 

Lead 2 (V) 

Lead 2 (V) 

Lead 2 (V) 

(b)  
Fig. 5 Illustration of 2-lead ECG and the QRS loop approximation in the VCG matrix plane. 
(top plot): Extraction of N and PVC beats in a fixed size window around the fiducial point. 

(bottom plots): The QRS loops and their approximated areas for the beats with indexes from 
T-5 to T-1. The black elments are assigned with a value of 1, the white elements are assigned 
with a value of 0, used in the calculations of the QRS loop areas. The last subplot illustrates 

the calculated reference VCG Matrix, which summarizes the QRS loop spatial distributions of 
the five consecutive QRS complexes. 

 
A review article of real or pseudo real-time methods and algorithms for detection of 
extrasystoles has been presented by Dotsinsky et al [4].   
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Advanced algorithms for automatic heartbeat classification 
The goal of the advanced algorithms for automatic heartbeat classification is higher accuracy 
and reliability of the clustering results in more classification groups. They are implemented in 
systems for which working in real or pseudo-real time is not imperative. 
  
Three major trends in the advanced algorithms for automatic heartbeat classification were 
pursuit during the last decade: (i) evaluation of reliable heartbeat descriptors from the ECG or 
VCG; (ii) application of different classification methods; (iii) comparative studies of 
descriptors, classification methods and learning datasets of different sizes.  
 
Descriptors of the ventricular contractions 
Christov and Bortolan [6] have defined and measured 26 morphological parameters, 
including: width of the QRS complex, its positive and negative peak amplitudes, positive and 
negative areas, slew-rate of different segments, magnitude and angle of the main VCG vector, 
etc (Fig. 6) The parameters are measured for all QRS complexes annotated as ‘normals’ (N) 
and PVCs from the 48 ECG recordings of the MIT-BIH arrhythmia database. Neural 
networks (NN) were used for the analysis of the large quantities of descriptors. Separate 
ranking of any descriptor and homogeneous group ranking (amplitude, area, interval, slope 
and VCG vector) were performed. From the two ECG leads, the first three ranked parameter 
groups for clustering of PVCs are QRS amplitude, slope and interval, while for N clustering 
they are VCG vector, QRS amplitude and area. 
 

 
Fig. 6 Graphical illustration of the morphological descriptors, obtained after analysis of:  

(a) the ECG lead; (b) the main VCG vector. 
 

Feasibility of the Karhunen-Loève transform (KLT) for detection of ventricular ectopic beats 
is studied by Gómez-Herrero et al [13].  The KLT basis functions are derived for a small-
sized training set of normal QRS complexes to extract their major components. The relevant 
KLT features are obtained by comparison between five selected heartbeats of the predominant 
rhythm and all other heartbeats in the tested ECG recording. Statistical analysis of the KLT 
features for MIT-BIH arrhythmia database contributes to the definition of threshold criteria 
for discrimination between the predominant and the ventricular ectopic beats. The achieved 
accuracy is about 97.7% for single-lead analysis and 98.3% for joint two-lead processing. The 
method is attractive and suitable for implementation in an automatic analysis module because 
of the necessity for supervisor annotation of only five beats of the predominant rhythm in one 
ECG recording. 
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Gómez-Herrero et al [14] have proposed a method based on the Matching Pursuits algorithm 
for selecting time-frequency descriptors that can be used for heartbeat classification. The 
clustered groups are not only ‘normal’ (N) and PVC, but also left bundle branch blocks 
(LBBB), right bundle branch block (RBBB), and paced beats (PB). The authors have 
investigated the usefulness of Independent Component Analysis for extracting additional 
spatial features from multichannel ECG recordings. The computing resources required by the 
proposed system are high during the training of the feature extractors. However, once the 
system has been trained, the extraction of the time-frequency features only requires the 
projection of the new beats into the selected wavelet packets atoms. 
 
Classification methods for clustering of the ventricular contractions 
The potential of the 26 morphological parameters as defined and measured by Christov and 
Bortolan [6], has been tested to discriminate all N and PVC beats in MIT-BIH arrhythmia 
database, applying the following classification methods:  

- Neural networks (NN) [6]. Very good clustering of the two heartbeat groups is 
achieved using all 26 descriptors. The NN classifier can be quite simplified (with 
some small compromise towards the accuracy), by decreasing the number of the 
descriptors; 

- K-th nearest neighbor rule – Christov et al [7]; 
- Discriminant analysis – Jekova et al [17]. Considering the two available ECG leads, 

7 parameters with the highest discriminant power for N and PVC has been extracted. 
- Hyperbox (HB) or hyperellipsoid classifier [1]. In order to characterize and to search 

in the feature space for the optimal HB that better characterize the considered class, 
different learning processes have been developed with the use and the combination of 
fuzzy clustering and genetic algorithms. Example of hyperellipsoids classifier is 
shown in Fig. 7.  

 
Fig. 7 Example of classification with two hyperellipsoids (PVC: red dots; N: blue ‘+’ marks) 

 
Comparative studies of descriptors, classification methods and learning atasets 
of different sizes 
Christov et al [8] have presented a comparative study of the heartbeat classification abilities 
of two techniques for extraction of heartbeat features from the ECG: (i) QRS pattern 
recognition method for computation of a large collection of morphological QRS descriptors 
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[6], and (ii) Matching Pursuits algorithm for calculation of expansion coefficients, which 
represent the time-frequency correlation of the heartbeats with extracted learning basic 
waveforms (Fig. 8). The K-th nearest neighbor classification rule [7] has been applied for 
assessment of the performances of the two ECG feature sets with the MIT-BIH arrhythmia 
database for QRS classification in five heartbeat classes: N, PVC, LBBB, RBBB, and PB. 
Five learning datasets are explored: one general learning set (GLS, containing  
424 heartbeats), and four local sets, respectively GLS + about 0.5, 3, 6, 12 min from the 
beginning of the ECG recording. The achieved accuracies by the two methods are sufficiently 
high and do not show significant differences. The optimal size of the learning set is found to 
be about 3 min for which sensitivity between 94.8% and 99.9%, and specificity between 
98.6% and 99.9%, are reported. The repeating waveforms, like N, RBBB, LBBB, and PB are 
better classified by the Matching Pursuits time-frequency descriptors, while the wide variety 
of bizarre PVCs are better recognized by the morphological descriptors. 
 

 
Fig. 8 Five classes of heartbeats (on the right-bottom) analyzed by the Matching Pursuits 

algorithm in [8].  Time-frequency support (a-e on the top) and time-domain representation  
(a-e on the bottom) of the ten top-ranked time-frequency atoms from the' Symmlet 8' wavelet 

packet, which were selected by the Matching Pursuits algorithm to best correlate with the 
signal structures of each heartbeat class in GLS.  

 
The learning capacity and the classification ability for N and PVC clustering by four 
classification methods have been compared by Bortolan et al [2]. The classifiers are: neural 
networks (NN), K-th nearest neighbour rule (Knn), discriminant analysis (DA) and fuzzy 
logic (FL). The descriptors are the 26 morphological parameters [6]. One global and two local 
learning sets are tested. Better accuracy is reported for the local classifiers because of their 
good adaptation to the patient rhythm, while the capacity of the global classifier to process 
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new records without additional learning is expectedly balanced by lower accuracies. NN 
assure the best results (high and balanced indices for specificity and sensitivity) using one of 
the local learning set, while the Knn provides the best results with the other local learning set. 
Using the global learning set, DA and the FL methods perform better than the NN and Knn 
 
As an addition to the work of Bortolan et al [2], Jekova et al [18] presented comparative study 
of the learning capacity of the four classification methods – Knn, NN, DA, and FL using the 
26 morphologic parameters [6]. One global, one basic and two local learning sets have been 
used. A small-sized learning set, containing the five types of QRS complexes collected from 
all patients in the MIT-BIH database, was used either with or without applying the leave one 
out rule, thus representing the global and the basic learning set, respectively. The local 
learning sets consist of heartbeats only from the tested patient, which are taken either 
consecutively or randomly. Using the local learning sets the assessed methods achieve high 
accuracies, while the small size of the basic learning set is balanced by reduced classification 
ability. Expectedly, the worst results have been obtained with the global learning set. 
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