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Abstract: The present paper presents a hybrid model of yogurt starter mixed culture 
fermentation. The main nonlinearities within a classical structure of continuous process model 
are replaced by neural networks. The new hybrid model accounts for the dependence of the 
two microorganisms’ kinetics from the on-line measured characteristics of the culture medium 
– pH. Then the model was used further for calculation of the optimal time profile of pH. The 
obtained results are with agreement with the experimental once. 
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Introduction 
In starters’ mass production the continuous microorganisms’ cultivation mode has unarguable 
advantages in comparison with fed-batch cultivation mode: it overcomes numerous 
difficulties related to the mixed cultures cultivation, provides high productivity and automated 
process control and hence cheaper production, and creates conditions for production of 
standardized starters with homogenous properties and biochemical activity [4, 16].  
 
The continuous yogurt bacteria cultivation as mono or mixed cultures is conducted first by 
Whittier and Rogers [12]. These authors established important dependence between cultural 
medium active acidity (pH) and the dilution rate. The system that neutralizes produced lactic 
acid with fresh milk is firstly described by Wilkowske and Fouts [4] and it is classified as pH-
stat [11]. The microorganisms’ concentration is controlled by the feeding rate based on the 
information about the pH change rate. The pH-stat regime is conducted in the case of 
optically non-homogeneous mediums. In this the pH must not be controlled by means of acid 
or alkali addition into the apparatus [4, 11]. The first and most exhaustive investigations of 
continuous mode cultivation for Bulgarian starter milk bacteria are conducted by Girginov 
(1965). Later similar investigations on the continuous cultivation of S. Thermophilus +  
Lb. bulgaricus are carried out by several other authors [5-7]. 
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As biotechnological process include living microorganisms, their models are highly nonlinear. 
Moreover the physical and chemical conditions in the cultural medium reflect on the model’s 
parameters in complex manner that is difficult to describe mathematically sometimes. Hence 
there is need to develop new mathematical models accounting for such variables as pH, 
dissolved oxygen concentration etc. 
 
One possible decision offers so called “grey-box” or hybrid modeling. It combines 
mechanistic (white-box) component comprising the knowledge of the overall process’s 
dynamics and empirical (black-box) component that substitutes the nonlinear subsystems. A 
possible candidate for black-box component in such hybrid model is some kind of artificial 
neural network since neural networks are known as good nonlinear dependences’ 
approximates [3]. By now the artificial neural networks’ techniques are widely applied to 
modeling and optimization of biotechnological processes [2]. There are also many examples of 
hybrid models that incorporate neural networks for specific kinetic rate’s models [8, 9]. 
 
The process under consideration here is continuous fermentation for yogurt starter culture 
formation. It is mixed culture consisting of the strains S. thermophilus 13а and Lb. bulgaricus 
2-11 in which the symbiotic co-existence of both microorganisms determines the typicality and 
strict individuality of yogurt. In a previous work [10] the process was modeled by a system of 
ordinary differential equations with different structures of specific kinetic rates. However there 
is no one between tested model’s structures that accounts for the on-line measurable variables –
pH of the medium. Hence the main purpose of present work is to model the kinetics of yogurt 
starter culture using hybrid model including neural networks that account for on-line 
measurable variable pH. The aim is to use the new model for process control synthesis further. 
 
Yogurt starter culture continuous fermentation process 
The natural strains S. thermophilus 13а and Lb. bulgaricus 2-11 are isolated from home made 
original fermented milks from Rodopi Mountains. A highly effective symbiotic starter culture 
consisted of S. thermophilus 13а and Lb. bulgaricus 2-11 was developed. It has high extent of 
proto-cooperation between these two strains and high technological characteristics needed for 
original Bulgarian yogurt production [1, 13, 14].The inoculums in both cases (mono and 
mixed cultures) were obtained as follows: full-cream cow milk with checked microbial and 
biochemical characteristics was sterilized at 121°С for 15 min, then cooled to 430С and 
inoculated with the desired culture [1, 13, 14]. 
 
Continuous pH-stat pre-fermentation cultivation of the starter culture S. thermophilus 13а + 
Lb. bulgaricus 2-11 in bioreactor MBR AG Ltd. (Switzerland) with geometrical volume of 
2dm3 and control device IMCS – 2000 was investigated (Fig. 1) [5, 6, 10]. The apparatus was 
equipped with six-blade turbine stirrer and four baffles. On the head-plate there are mounted 
sub-pipes used for cultural medium feeding and standing of heat-exchangers and temperature, 
pH and dissolved oxygen sensors. The installation also includes measurement and control 
units for the main process variables – pH, temperature, dissolved oxygen concentration and 
stirrer rotation speed (Fig. 1). The desired constant pH value of the cultural medium was 
maintained by neutralization with nutritional medium (cow milk). During the experiment the 
dissolved oxygen concentration was maintained constant (DO2 = 3%). The dissolved oxygen 
concentration was measured by sterilizable electrode type „Clark” Ingold. The system was 
calibrated with stilled water and the obtained data are in percents form the saturation value. 
The dissolved oxygen concentration was controlled with ± 0.2% accuracy. The dilution rate 
was determined by measuring the outlet volume of the liquid from the bioreactor. The 
working volume of the apparatus is 1.5 dm3. The nutritional medium (sterilized dissolved 
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powder milk with 12% dry compound) and the inoculums are introduced into the apparatus by 
peristaltic pump 10. The pre-fermented milks are coagulated in thermostat at 440С. The 
obtained coagulants were kept into refrigerator at 40С. The partial pressure of the dissolved 
carbon dioxide in the milk was measured by means of sterilizable potentiometric СО2-
electrode Ingold and amplifier type 525 Ingold (Switzerland). The system was calibrated 
using the method proposed by Spinnler [15]. 
 
During the fermentation the following variables were measured too: lactobacillus and 
streptococcus concentrations (CFU ml-1); lactic acid concentration (product, Р) (g⋅l-1); dilution 
rate D, h-1. The samples were taken at the system output and were kept in thermostat at 430С 
for further coagulation. 
 

 
Fig. 1 Laboratory bioreactor MBR AG Ltd 

1 – apparatus with geometrical volume 2 dm3; 2 – baffles; 3 – thermo resistor Pt 100; 4 – 
heater; 5 – heat-exchanger for cold water; 6 – turbine stirrer; 7 – рН electrode; 8 – oxygen 
electrode; 9 – filter; 10 – peristaltic pump; 11 – sterilized milk vessel; 12 – drive; 13 – control 
connections; 14 – control device; 15 – head plate. 
 
Laboratory bioreactor MBR AG Ltd. is shown on Fig. 1. Number of vital lactic acid bacteria 
cells (CFU, ml-1) is measured by analytical method described in IDF Standard 117B, 1977 
and lactic acid (lactose) – by enzyme methods (UV test Boehringer Mannheim, GmbH 
Biochemica) 
 
Hybrid model of the process 
The main structure of a continuous fermentation classical model [7] is the following: 
 

( )

( )

( ) )( 0 SSDX
dt
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Here X is biomass (microorganisms’) concentration, P is product’s concentration, S is limiting 
substrate concentration and µ, ε  and η are nonlinear dependences describing specific kinetic 
rates of biomass growth, product synthesis and substrate consumption respectively [7], D is 
dilution rate, S0 is concentration of substrate in feeding solution (milk). The star in the 
brackets replaces the process state variables that could influence these specific kinetic rates. 
There are known numerous structures of µ, ε  and η and the choice of proper one is matter of 
process’s specifics.  
 
Here since we have two microorganisms in the culture there must be two separate equations 
for each biomass concentrations (X1 and X2) respectively. Moreover the equations for product 
(lactic acid) and substrate (lactose) have to be ac accounted for in each microorganism’s 
production and consumption rates of as follows: 
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Previously in [6] it was determined that specific production and consumption rates ε  and η 
depend on specific growth rate µ, as follows: 
 

( ) ( )

( ) ( )∗+=∗

+
∗
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µη

µε

ba

m
Y  (3) 

 
Here Y, a, b and m are process parameters. Hence there is need to train neural networks only 
for µ and to use previous knowledge from [14] to compose overall hybrid model. 
 
Since the main on-line measurable variable is pH the purpose of the present work was to 
account for their influence in the model. Hence the specific growth rate function becomes: 
 

( ) ( )( )tpHtt ,µµ =  (4) 
Hence the inputs to both neural networks for specific growth rates of the two microorganisms 
have to be pH for each time step.  
 
As there are off-line measured data only for the main process state variables (biomass, 
substrate and product) the specific growth rates have to be calculated from that data. Using 
the first two equations from the system (2) it is obtained: 
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Since the experimental data are collected at large time intervals (1 hour) the spline 
interpolation was used to generate training data for smaller time step (0.1 hours) in order to 
achieve better results. 
 
The structures of both neural networks for the specific growth rate modeling are feedforward 
with one hidden layer with 9 neurons. The hidden neurons have log sigmoid transfer function 
and the one output neuron has hyperbolic tangent sigmoid transfer function. The training 
procedure was Levenberg-Marquardt backpropagation method. 
 
There are available experimental data for several dilution rates: D = 1.83 h-1, D = 1.86 h-1,  
D = 2 h-1 and D = 2.06 h-1. They are derived into training and testing data sets. The training 
and testing mean square errors for both trained neural networks are given in Table 1 below. 
 

Table 1. Training and testing errors 
 Training 

error 
D=1.83 

Testing 
error 

D=1.83 

Training 
error 

D=1.86 

Testing 
error 

D=1.86 

Training 
error 
D=2 

Testing 
error 
D=2 

Training 
error 

D=2.06 

Testing 
error 

D=2.06 
1NN 0.0192 0.0258 0.0022 0.1813 0.0007944 0.0130 0.0129 0.0323 
2NN 0.0251 0.0359 0.0062 0.1847 0.0088 0.0545 0.0144 0.0878 
 
The trained neural networks for the specific growth rates of both microorganisms in the 
culture are incorporated in the system equations (2) and the hybrid model is tested with 
experimental data for all experimental dilution rates. The values of parameters a, b, m and Y 
are taken from previous work [6]. The mean square errors for all four state variables (two 
microorganisms’, product and substrate concentrations) are given in Table 2 below. 
 

Table 2. Hybrid model errors 
D D=1.83 h-1 D=1.86 h-1 D=2 h-1 D=2.06 h-1 
X1 1.8414x10-5 1.8911x10-5 1.8902x10-5 1.4051x10-5 
X2 4.1875x10-5 4.1477x10-5 3.9424x10-5 3.4326x10-5 
S 1.2608x10-5 1.0966x10-5 1.0927x10-5 9.8235x10-5 
P 2.1778x10-4 1.6773x10-4 1.8257x10-4 1.6384 x10-4 

 
The simulation results for different dilution rates are shown on Figs 12, 3, 4 and 5, 
respectively. In all figures stars represent the experimental data while the dots – calculated by 
the hybrid model values. As can be seen from the figures in all cases the new hybrid model 
approximates very well the process.  
 
The contrast to the model from [10] is that there are no different model parameters’ values for 
different dilution rates. Moreover the hybrid model accounts for the influence of pH on the 
process state variables. 
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Fig. 2 Simulation results for D = 1.83 h-1 
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Fig. 3 Simulation results for D = 1.86 h-1 
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Fig. 4 Simulation results for D = 2 h-1 
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Fig. 5 Simulation results for D = 2.06 h-1 
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Optimal time profile of pH 
Since the yogurt quality depends on the final ratio between two microorganisms in the starter 
it can be a subject of optimization and control. As the only control variable in our case is pH 
that influences directly specific growth rates of both microorganisms the aim is to obtain its 
optimal value that will yield the desired ratio.  
 
Since the ratio X1/X2 has to approach with time the desired value X*, linearizing feedback 
control low can be applied as follows: 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

∂
∂

2

1*21

X
XX

t
XX λ  (6) 

 
Here λ is parameter determining the transient time of the closed loop system’s dynamics. The 
following dependence about the ratio between two microorganisms can be derived: 

⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

−
∂

∂
=

∂
∂

t
XX

t
XX

Xt
XX 1

1
1

22
2

21 1  (7) 

 
Then by replacing the partial derivatives with first two equations from model (2) and using 
above two equations it is obtained: 

( ) ( ) ( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−==− 1*

1

2
21 X

X
XpHfpHpH λµµ  (8) 

 
In this way applying the inverse modeling of the time dependence of f(pH) from the 
difference of the two specific growth rates its time trend can be obtained as follows: 
 

( ) ( )( ) ( )2121
1 µµµµ −=−= − NNpHpHfpH  (9) 

 
Here NN denotes neural network structure used for inverse modeling. Training of the inverse 
model is done using the above equation. The neural network structure is with one input, one 
output and two hidden layers with neuron’s numbers 1:7:3:1 respectively. The two hidden 
layers have logsig transfer functions while the output one – purelin. For the training 
Levenberg-Marquardt backpropagation method was used.  
 
After inverse NN training Eq. (6) was used to calculate desired time trend of the ratio X1/X2 
for different initial conditions. Then by feeding the dependence: 
 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−1*

1

2 X
X
X

λ  

to the inverse NN model (9) the optimal time trend of pH for different initial ratios between 
two microorganisms was calculated. The obtained results (for λ = 0.2 and X* = 3) are shown 
on Fig. 6 below. 
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Fig. 6 Optimal time profiles of pH 

The obtained results confirm the experimental once. In all cases the optimal value of pH for 
the steady state stage of the process is about 5.5. This value was also determined by 
experienced technologists who are familiar with the process’ peculiarities. 
 
The only difference in the obtained pH profiles is in the time when its steady state value has 
to be reached. Since pH influences in different manner the growth rates of the two 
microorganisms its initial trend (for the transition part of the process) will depend on their 
initial ratio. As can be seen from the above figures the smaller is value of X1(0)/X2(0) the 
faster must be reached pH steady state. This is mainly due to the fact that the set point X* for 
the final microorganisms’ ratio is closer to the smaller initial ratio between them. The bigger 
values of pH at the beginning of the process will balance both microorganisms’ growth rates 
in such manner that the first microorganism will grow faster and will reach the second one’s 
concentration thus approaching the desired final microorganisms’ ratio in the starter. 
 
Conclusions 
The proposed new hybrid model of yogurt starter continuous fermentation accounts for the 
only on-line measurable variable (pH) on the specific kinetic rates of the process. Its main 
advantage is in using neural networks for approximation of nonlinear parts of the model in a 
black-box manner so there is no need to know or to reveal the complex mathematical 
relationships of that dependences. The obtained model fits well experimental data for 
different dilution rates in contrast to the classical mass-balance equations model that has 
different parameters’ values for different dilution rates (as in [10]). 
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The proposed approach to pH time profile optimization allows fast and easy calculation using 
inverse neural network model of difference between two microorganisms’ specific growth 
rates in dependence on pH. The optimization results are with good agreement with 
experimental once. They can be explained with process’s specifics and confirm the expert’s 
opinion as well. 
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