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Abstract: The problem of on-line state and parameter estimation (software sensors design) 
of a class of aerobic fermentation processes for metabolite product formation is considered. 
The class is characterized by: two limiting substrates one of which, growth factor, is 
practically depleted during the biomass growth where the product formation is negligible; 
corresponding general reaction scheme – a qualitative description of the main metabolic 
reactions between the main components in the liquid phase (biomass, substrates, product 
and dissolved oxygen concentrations). Two separate sensors – state and parameter 
estimators – are designed. The state estimator is developed based on knowledge of only one 
on-line measurable variable, the dissolved oxygen, and the yield factors assumed as constant 
coefficients. Parameter estimator of the specific reaction rates is developed under the 
assumption that all the process variables are known on-line by measurements or estimates. 
The yield factors are estimated also as non-stationary parameters, thus creating a basis for 
comparison with the specified constant values used for the state estimator design. As a case 
study industrial Lysine fermentation in fed-batch mode of operation is considered. 
Simulation investigations under different operating conditions are done in order to highlight 
the performances of the proposed sensors. 
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Introduction 
The main difficulty in bioreactor control lies in the absence, in most cases, of cheap and 
reliable instrumentation suited to real time monitoring-sensors, capable of providing on-line 
measurements of the biological variables (state of the system) required for implementation of 
high performance automatic control. In case of adaptive model-based control, which is proved 
to be suitable for this kind of processes, the estimates of the reaction rates and the yield 
coefficients should be also available. The design of model-based state and parameter 
estimators (software sensors), providing reliable on-line information for the biological 
variables and model parameters, for nonlinear systems in general, and particularly for the 
biotechnological systems, has always been a matter of intense research [1-3, 5-8, 10, 13-16, 
18-23]. The process model (sometimes in quite a general form with parameters that should be 
estimated on-line) plays an important role in the development of the estimation algorithms. 
Depending on the current knowledge for the concrete process with respect to the kinetics 
(kinetic rates and yield coefficients) the design can be based on the assumptions for 
completely known process kinetics, or on the more realistic assumption for partially known or 
completely unknown kinetics. The available on-line measured variables, the mode of 
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operation, the possibility to get solution for the particular task, and the quality of estimation 
that must be achieved play also important role in case of software sensors design.  
 
An opportunity to overcome the need of prior knowledge for the reaction kinetics lies in 
asymptotic estimators design [2, 5]. The approach is based on a General Dynamic Model 
(GDM) of the process, developed on the basis of a corresponding General Reaction Scheme 
(GRS) – a qualitative description of the main metabolic reactions. Such estimators are simpler 
in comparison with the exponential estimators, based on Kalman filtering method and full 
knowledge of the process kinetics [1, 6, 7, 14-16]. They are usually used when the process is 
not exponentially observable, or no hard requirements for the convergence speed exist, as 
well as especially for the industrial processes, because of the scaling problems. 
 
The process definition by a simple GRS and GDM, and based on them general form of 
asymptotic estimators [2, 5], create unique possibility for software sensors design, not only 
for a particular process, but for a class of processes with equal general properties. In this 
paper, taking into account the main characteristics of a class of aerobic fermentation 
processes for metabolic product formation (specific GRS and process dynamics), two 
software sensors (state and parameter estimators) are designed. The state estimator is 
developed based on knowledge of only one on-line measurable variable, the dissolved 
oxygen, and the yield factors assumed as constant coefficients. Parameter estimator of the 
specific reaction rates is developed under the assumption that all the process variables are 
known on-line by measurements or estimates. The yield factors are also estimated as non-
stationary parameters, thus a basis for comparison with the specified constant values used for 
the state estimator design is created. As a case study industrial Lysine fermentation in fed-
batch mode of operation is considered. Simulation results under different operating conditions 
are given in order to highlight the performances of the proposed sensors. The sensors are 
tuned for the process of industrial Lysine production and tasted by simulation investigations 
for fed-batch (and batch – when applicable) mode of operation.  
 
Problem statement 
A wide class of aerobic fermentation processes for metabolic production in two limiting 
substrates media, characterized by the following General Reaction Scheme is considered: 
 

1

2

,
,

S R C X A
S C X X A

ϕ

ϕ

+ + ⎯⎯→ +

+ + ⎯⎯→ +
 (1) 

 
where: a) the process variables (state of the system) are: X – biomass concentration, [g⋅l-1];  
A – product concentration, [g⋅l-1]; S – limiting substrate concentration, [g⋅l-1]; R – limiting 
substrate concentration which determines the growth (growth factor), [g⋅l-1]; C – dissolved 
oxygen concentration, [%]; b) the process parameters are the kinetic rates ( 1 2)i i ,ϕ = , [h-1] 
and the yield factors ( 1, )ik i l= , [g⋅g-1], which participate in the General Dynamical Model 
corresponding to this reaction scheme. 
 
The first path (microbial growth with a negligible production, with kinetic rate 1ϕ ) requires 
limiting substrates S and R. The second path (enzyme catalysed product formation with 
kinetic rate 2ϕ ) is determined by the first limiting substrate S, only, since the growth factor R, 
is completely depleted during the biomass growth. For the sake of generality the product A 
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will be kept in the first reaction, but in the process of software sensors design it will be taken 
into account that no significant product formation is presented. 
 
It is also assumed, for the case of state estimator design, that the control input, i.e. the feed 
rate F (the dilution rate D) is not zero during a long period of time, which means that the 
results are valid for continuous and fed-batch mode of operation. This assumption is due to 
the requirements for the convergence of the developed below algorithms [9]. 
 
The corresponding general mass-balance model (accounting for the components in the liquid 
phase only) has the form:  
 

( ) inK D Fξ ϕ ξ ξ= − +& , (2) 
 
where: 
– 1 5Rξ ×∈  is state vector of the system:  
 

[ ]TX A S R Cξ =  (3a) 
 
– 5 2K R ×∈  is matrix of the yield coefficients 
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– 2 1( ) Rϕ ξ ×∈  is vector of the kinetic rates 
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– 1 5

inF R ×∈  is vector of the transfer rates 
 

T
0 0 0 0

S R

T

in in in in f f inF F F Q DS DR Q⎡ ⎤ ⎡ ⎤= = ⎣ ⎦⎣ ⎦ ; (3d) 
 
– 1 1

fS R ×∈  and 1 1
fR R ×∈  are the concentrations of the limiting substrate and the growth 

factor in the input flow, respectively; 
 
– 1 1D R ×∈  is dilution rate which for the case of fed-batch mode of operation can be also 
expressed as follows: 
 

FD
V

= ; (3e) 
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– F  is the feed rate and V  is the volume: 

F
dt
dV

= ; (3f) 

 
– 1 1

inQ R ×∈  is the oxygen transfer rate. 
 
The aim of the present work is, for the class of aerobic fermentation process under 
consideration, and in particular for Lysine fermentation: 
a) the possibility for on-line estimation of the main process variables based on on-line 

measurements of the dissolved oxygen only to be studied; 
b) estimation algorithms (software sensors) for the main process variables and the kinetic 

parameters (reaction rates and yield coefficients), based on General Reaction Scheme of 
the process (1) and general mathematical model (2)-(3) to be developed.  

 
As a case study industrial Lysine fermentation (100 m3 bioreactor) with Brevibacterium 
flavum will be considered. A biochemical model [9] of the process will be used for tuning the 
algorithms, and simulation investigations will be carried out in order to validate the results.  
 
Process state estimation 
The problem is to design an asymptotic state estimator (software sensor) of the unknown 
variables ( , , ,X S R A ), based on on-line measurements of the dissolved oxygen C. Matrix K 
of the yield coefficients and on-line information for the transfer rates Fin and Qin should also 
be available. 
 
In order to use the proposed method for asymptotic estimators design the number q of 
measured state variables should be equal to or greater than the rank of the matrix K: 

( ) ( )1q dim p rank Kξ= ≥ =  [2]. Since in our case ( ) 2rank K =  and the dissolved oxygen C, 
only is measured on-line, i.e. 1q = , the last requirement is not fulfilled.  
 
From the description of the class of processes under consideration, it can be seen that the two 
biological paths are mutually exclusive, i.e. only one reaction is activated at each time. In this 
case the process could be divided on two separate phases. They could be easily recognized by 
the estimates of the growth factor: growth without, or with very small, negligible, production 
(Phase A) and production without growth (Phase B). This allows us to consider two different 
dynamical models for description of each phase (Model A and Model B).  
 
An other problem that arise in solving the particular task is concerned to the fact that the 
growth factor can be added trough the input feeding flow. Thus the assumption for complete 
depletion of the growth factor during the growth phase cannot be used. In order to account for 
these peculiarities a low level (different than zero) of the growth factor minR , is assumed to be 
a basis for different phases recognition. The value of minR  is determined by expert knowledge 
or previous investigations, taking into account the possible values of fR . In other words, it is 
assumed that the growth factor is practically depleted during the biomass growth and it is not 
added during the process, or added to a certain low level minR  that cannot influence 
significantly the growth rate. As it has been shown on Fig. 1, for the case of industrial fed-
batch Lysine fermentation, where Sf = 220 g⋅l-1 and Rf = 0.95 g⋅l-1, the growth factor added 
during the feeding does not influence significantly the biomass growth rate [9].  
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Taking into account the abovementioned considerations, two different models, representing 
the different phases, are considered. 
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Fig. 1 The main process variables , , ,X A S R ,  
the corresponding specific rates , , ,x a s rV V V V  

 
MODEL A – description of the Phase A (growth with negligible production), given by (2) 
where: 
 

[ ]TX A S R Cξ = , (4a) 

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−
−
−=

4

3

1

6

1

k
k
k

k
K , 06 ≈k ,  (4b) 

1)( ϕξϕ = , (4c) 
T

0 0in f f inF DS DR Q⎡ ⎤= ⎣ ⎦  (4d) 
 
MODEL B – description of Phase B (production without growth, in absence, or presence of 
very limited amount of growth factor, that cannot influence significantly on the growth rate, 
given by (2) where: 
 

[ ]TX A S Cξ = , (5a) 

2)( ϕξϕ = , (5b) 
T
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Thus, the rank of the matrix K  of both models is equal to 1, and the measurement of 
dissolved oxygen only, can be used for the state observation. Now, assuming that: 
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( ) ( )Gϕ ξ ξ α= . (6) 
 
Model (2) can be rewritten in the form: 
 

( ) inKG D Fξ ξ α ξ= − +& , (7) 
 
where: 2 1Rα ×∈  is vector of the specific reaction rates (the “unknown part” of the kinetic 
reaction): 
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α ;  (8) 

 
( ) 2 2G Rξ ×∈  is diagonal matrix, presenting the “known” part of the kinetic reaction, the 

elements of which include the substrates that participate in the corresponding reaction: 
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=

SCX
SRCX

G
0

0
)(ξ . (9) 

 
From the basic properties of the General model (2) it is known that, for the system (2), (4), 
(6)-(9) (or (2), (5)-(9)) there exist (at least) one state partition ( ba ξξ , ) of the state (and the 
corresponding aK , bK , 

ainF , 
binF  partition), one ( )N p p− ×  matrix ab KKA /0 −= , and one 

vector Z  of dimension pN −  defined as the following linear combinations of the state 
variables: 
 

baAZ ξξ += 0  (10) 
 
and whose dynamics, given by: 
 

0 a bin in
dZ DZ A F F
dt

= − + +  (11) 

 
are independent of the reaction rate ( )ϕ ξ , where N  is the number of the state variables [2].  
 
With appropriate definitions of the ( )N p q− ×  and ( ) ( )N p N q− × −  matrices A1 and A2, the 
vector Z can be rewritten explicitly as a linear combination of the vector of the measured 
variables, 1ξ , and the vector of unmeasured state variables, 2ξ : 
 

2211 ξξ AAZ += . (12) 
 
The design of the estimation algorithm for the Phase A and Phase B is based on the Model A 
and Model B, respectively. 
 
Phase A: ( min

ˆ 0R R> > ) 
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The design is based on the Model A (7), (4a-4b, 4d) where the vector α  and the matrix G are 
given by: 
 

1αα = , (13a) 
SRCXG =)(ξ .  (13b) 

 
The following state partition is chosen: 
 

Ca =ξ , [ ]Tb X A S Rξ =  (14a) 
 
and 
 

4kK a −= , [ ]T6 1 31bK k k k= − − , (14b) 

inain QF = , 
T

0 0b f fF DS DR⎡ ⎤= ⎣ ⎦ . (14c) 
 
The matrix aK  is full rank and the partition is admissible. Hence:  
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Since the dissolved oxygen C, is assumed to be the only on-line measurable variable: 
 

C=1ξ , [ ]T2 X A S Rξ =  (17a) 
 
and in accordance to (12) and (16) 4 1 4 4

1 2,A R A R× ×∈ ∈ : 
 

01 AA = , 42 IA = . (17b) 
 
The general form of the asymptotic state estimator is given by [2]: 
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The matrix +
2A  is a left inverse of A2. Ẑ  and 2ξ̂  denote on-line estimates of Z and 2ξ  

respectively. Taking into account (14)-(17) the process state estimator (observer) for the class 
of processes under consideration is obtained: 
 

1
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Phase B: ( 0min
ˆR R> > ) 

The design is based on the Model B (7), (5a-5b, 5d), where the vector α  and the matrix G are 
given by: 
 

2αα = , (20a) 
SCXG =)(ξ . (20b) 

 
The following state partition is chosen: 
 

Ca =ξ , [ ]Tb X A Sξ = , (21a)  
 
and 
 

5kK a −= , [ ]T20 1bK k= − , (21b) 
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The matrix aK  is full rank and the partition is admissible. Hence: 
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Since it is assumed that the dissolved oxygen C, is the only on-line measurable variable, 
C=1ξ , [ ]T2 X A Sξ =  (24a) 

 
and in accordance to (12) and (23): 

01 AA = , 42 IA = . (24b) 
 
The process state estimator in this case is found to satisfy the system: 
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Consequently, the state observer for the class of processes under consideration has the form 
(19) for the time when 0minR̂ R> >  and (25) when 0min

ˆR R> > . 
 
The convergence of the algorithm is proved by the theorem, which implies that the dilution 
rate D(t) does not remain equal to zero for excessively long periods of time [2]. Hence, the 
convergence of the observer is valid only for fed-batch and continuous operating conditions. 
The speed of convergence of the estimation is completely determined by the experimental 
conditions through the value of the dilution rate.  
 
Estimation of the reaction rates and yield coefficients  
Software sensor of the kinetics (reaction rates and the yield coefficients), based on on-line 
knowledge (measurements or estimates) of the process variables and on-line knowledge of the 
transfer rates, is designed. It will be shown that if the dissolved oxygen C, is omitted from the 
reaction scheme the accurate estimates of the reaction rates and yield coefficients, could be 
achieved. It has also done in order to create a basis for comparison of the yield coefficients 
assumed as constants in case of process state estimator design on the basis of dissolved 
oxygen measurements only, and the corresponding yield factors (non-stationary parameters) 
estimated by observer-based estimator, without taking into account the dissolved oxygen. The 
following reduced reaction scheme can be used for estimator design: 
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,
.

S R X
S X X A

ϕ
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 (26) 

 
The state space model corresponding to the reaction scheme (26) has the form (2), where:  
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Under the assumption (6) the model (2) can be rewritten in the form (7), where:  
 

⎥
⎦

⎤
⎢
⎣

⎡
=

2

1

α
α

α , (28a) 

0
.

0
SRX

G( )
SX

ξ
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

 (28b) 

 
The total number m  of unknown yield coefficients in K (denoted as 1 2k , k , ...) is given by: 
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where: 
 
– jN  is the number of components involved in the reaction with index j; 
– M is the number of the reactions.  
 
For the class of processes under consideration: 3=m . The total number of the unknown 
parameters is 5 (three yield coefficients and two reaction rates). 
 
The vector ( ) 4 1KG Rξ α ×∈  in (7) may be rewritten in a linear regression form as follows: 
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It can be also present in the form:  
 

( ) ( )θξαξ Φ=KG , (30) 
 



 INT. J. BIOAUTOMATION, 2010, 14(2), 99-118 
 

 109

where: 
 
– ( )ξΦ  is a ( ) 4 5N m M× + = ×  matrix of known multilinear combinations of the state 
variables;  
– [ ]T

1 2 5...θ θ θ θ=  is vector of bilinear combinations of the unknown parameters 
( 1, ..., 3)ik i =  and ( 1, 2)j jα = , formally written as follows: 

( ),f kθ α= . (31) 
 
The function f  in (31) must be invertible, that is α  and k can be computed uniquely from θ : 
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With definition (30) the process model (7) can be rewritten as follows: 
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where the matrix )(ξΦ  and the vector of the unknown parameters θ  must be defined so that 
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SRX
SXSRX

SX
SRX

0000
000
0000
0000

)(ξ , (34a) 

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

13

22

11

2

1

α
α
α
α
α

θ

k
k
k . (34b) 

 
The general form of an asymptotic parameter estimator has the form [2]: 

ˆ ˆ ˆ( ) ( )d D
dt
ξ ξ θ ξ ξ ξ= Φ − −Ω − , (35a) 
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1

ˆ ˆ( ) ( ),

ˆ ˆ( ),ˆ

Td
dt

k

θ ξ ξ ξ

α
θ−

= Φ Γ −

⎡ ⎤
= Γ⎢ ⎥

⎣ ⎦

 (35b) 

 
where: N NR ×Ω∈  is a diagonal matrix with negative elements ( 1, )i i Nω = ; N NR ×Γ∈  is 
diagonal matrix with positive elements ( 1, )i i Nγ = . 
 
The parameter estimator for the class of processes under consideration is obtained in the form: 
 

1 1

2 2

3 4 3

5 4

( ),

( ) ,

( ) ( ),

( ) ( ),

f

f

ˆdX ˆ ˆSRX DX X X
dt
ˆdA ˆ ˆSX DA A A

dt
ˆdS ˆ ˆ ˆSRX SX D S S S S

dt
ˆdR ˆ ˆSRX D R R R R

dt

θ ω

θ ω

θ θ ω

θ ω

= − + −

= − + −

= − − − − + −

= − − − + −

 (36a) 

1
1

2
2

3
3

4
3

5
4

( ),

( ),

( ),

( ),

( ),

ˆd ˆSRX X X
dt
ˆd ˆSX A A

dt
ˆd ˆSRX S S

dt
ˆd ˆSX S S

dt
ˆd ˆSRX R R

dt

θ γ

θ γ

θ γ

θ γ

θ γ

= −

= −

= − −

= − −

= − −

 (36b) 

1 1

2 2

3 3
1

1 1

4 4
2

2 2

5 5
3

1 1

,

,

,

,

ˆˆ
ˆˆ
ˆ ˆ

k̂ ˆˆ
ˆ ˆ

k̂ ˆˆ
ˆ ˆ

k̂ .ˆˆ

α θ

α θ

θ θ
α θ

θ θ
α θ

θ θ
α θ

=

=

= =

= =

= =

 (36c) 

 
The specific rates can be calculated from: 
 



 INT. J. BIOAUTOMATION, 2010, 14(2), 99-118 
 

 111

1

2

3 4
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ˆ ˆ ˆ ˆˆ ˆV S R S
ˆ ˆˆ ˆV S R

θ

θ

θ θ

θ

=

=

= +

=

 (37) 

 
The elements of the diagonal matrixes 4 4Γ R ×∈  and 4 4Ω R ×∈  must satisfy the matrix equation 
derived from stability point of view [2]: 
   

2 TΩ 4ΦΦ Γ= , (38) 
 
that for the class of processes under consideration has the following form: 
 

2
1

2
T 2

2 2
3 3

2
4

4 ( ) 0 0 0
0 4 ( ) 0 04 0 0 4 ( ) 4 ( ) 0
0 0 0 ( )

SRX
SX

SRX SX
SRX

γ
γ

γ γ
γ

⎡ ⎤
⎢ ⎥

ΦΦ Γ = ⎢ ⎥+⎢ ⎥
⎣ ⎦

.  

 
Simple equations for γ  calculation are determined from the equation (38): 
 

2
1

1 2

2
2

2 2

2
3

3 2 2

2
4

4 2

,
4( )

,
4( )

,
4( ) 4( )

,
4( )

SRX

SX

SRX SX

SRX

ωγ

ωγ

ωγ

ωγ

=

=

=
+

=

 (39) 

 
where ( 1, ..., 4)i iω =  are the tuning parameters. 
 
Case study: Lysine fermentation  
Lysine production process is a typical example of a class of processes under consideration  
[4, 9, 11, 12, 17, 23-25]. As a case study industrial scale Lysine fermentation in a  
fed-batch culture of Brevibacterium flavum using the molasses’ technology is considered [9]. 
The biochemical model, corresponding to the process and used for a real process simulation, 
has the form: 
 

x
dX FV X X
dt V

= − , (40a) 

A
V
FXV

dt
dA

a −= , (40b) 

( )s f
dS FV X S S
dt V

= − + − , (40c) 
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)( RR
V
FXV

dt
dR

fr −+−= , (40d) 

)100( CKXV
dt
dC

Lac −+−= , (40e) 

F
dt
dV

= , (40f) 

)()( 1211
10 Ca

C
Ra

RaVx ++
= , (41a) 

)()()()( 171615

15

14
13 Ca

C
Aa

A
Sa

a
Sa

SaVa ++++
= , (41b) 

)( 432 aVaVaV axs ++= , (41c) 

xr VaV 1= , (41d) 
)( 765 aVaVaV axc ++= , (41e) 

V
FaaK air

La 98 += , (41f) 

 
where: Sf is the sugar concentration in the feed, [g⋅l-1]; Rf – growth factor concentration in the 
feed, [g⋅l-1]; airF  – flow rate of the air, m3·h-1; Vx – specific growth rate, [h-1];  
Va – specific Lysine production rate, [h-1]; LaK  – volumetric mass-transfer coefficient, [h-1]; 

( 1, ..., 17)ia i =  – model parameters.  
 
The model parameters, obtained on the basis of 143 industrial fermentations have the values 
given in Table 1.  
 
 Table 1. Biochemical model coefficients 

1a  2a  3a  4a  5a  6a  7a  8a  9a  
068.0  1.15 2.62 310.682.0 − 410.138.0  310.421.0  7.60  13.5−  75.4

10a  11a  12a  13a  14a  15a  16a  17a   
81.0  2.1  8.54  357.0  4.17  172  6.23  9.47   

 
The typical initial conditions and the standard values of some other parameters for the case of 
fed-batch operation (suboptimal control of the process by the flow rate of feed supply F) are 
given in Table 2. It should be also noted that: 
 

* *

*

0 ,       ,
( )  ,       , , , , 0,f

F F V V
S t S X A S R C
< < <

< >
 (42) 

 
where tf is the end of the process – about 55-60 h for fed-batch mode of operation.  
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 Table 2. Typical initial conditions and standard values of parameters 
)0(X  )0(A  )0(S  )0(R  )0(C  )0(V  

1.0   1.0  g⋅l-1 125  g⋅l-1 1.3  g⋅l-1 100%  56 m3 
*V  *F  *S  fS  fR  aF  

75 m3 1.3  m3·h-1 4  g⋅l-1 220  g⋅l-1 0.95  g⋅l-1 5000  m3·h-1

 
The following parameters of the suboptimal feed supply program have been as derived [9]: 

0
1 23.5t =  h; 0

2 40.8t =  h; 0 1.3F =  m3·h-1. All the variables and specific rates are given in  
Fig. 1.  
 
The General model of the Lysine production process, in this case has the form: 
 

1 1

2 2

1 1 2 2 1 1 2 2

3 1 3 1

4 1 5 2 4 1 5 2

,

,

( ) ( ),

( ) ( ),

.

f f

f f

in in

dX DX SRX DX
dt
dA DA SX DA
dt
dS k k D S S SRXk SXk D S S
dt
dR k D R R SRXk D R R
dt
dC k k Q k SRX k SX Q
dt

ϕ α

ϕ α

ϕ ϕ α α

ϕ α

ϕ ϕ α α

= − = −

= − = −

= − − − − = − − − −

= − − − = − − −

= − − + = − − +

 (43) 

 
The comparison between the biochemical model (40)-(41) with completely known kinetics, 
used for real-life process simulation, and the General model (43), with completely or partially 
unknown kinetics, used for estimation, leads to the following relations for the yield factors:  
 

xV
aak 4

21 +=      (valid for Phase A only), 

aV
aak 4

32 +=      (valid for Phase B only), 

13 ak =  (44) 

xV
aak 7

54 +=      (valid for Phase A only), 

aV
aak 7

65 +=      (valid for Phase B only). 

 
The yield factors are functions not only of the model coefficients, but of the specific growth 
rates ( ,x aV V ), too. It means that they are not constant and should be estimated as time-varying 
parameters. In case when they are accepted as known constant parameters (state estimator 
design), their values were estimated by optimization procedure (minimum least square error) 
fitting the main state variables generated from the two models (40)-(41) and (44). 
 
The following main points should be especially noticed for the case of state estimator design: 
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Different yields factors participate in each of the two phases of the process – 1 3 4, ,k k k  and 

2 3 5, ,k k k  for Phase A and Phase B, respectively. 
 
1. Since it is accepted that 0≈aV  during the Phase A, and 0≈xV during the Phase B, the 
second terms of the coefficients 1 4,k k  and 2 5,k k can be omitted during the corresponding 
phases. 
 
2. The range of variation of the different coefficients 1 4,k k  and 2 5,k k  can be estimated taking 
into account the range of variation of the specific rates xV  and aV  during Phase A and Phase 
B respectively.  
 
3. The simulation results show significant fitting of the estimates and the model values of the 
variables, including in case of different initial conditions. A 5% white noise was added to the 
generated values of the measured variable C (Fig. 2). 
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Fig. 2 State estimator: the model values 
, , , ,X A S R C  (solid line) and the estimated 

values , , ,е е е еX A S R  of the biomass, product, 
substrate and growth factor, under exact 

(dotted line) and inexact initial conditions 
(dashed line) 

Fig. 3 Parameter estimator: the model values 
, , ,x a s rV V V V  (solid line) and the estimated 

values , , ,xе aе sе rеV V V V  (dotted line) of the 
specific rates; the constant values 1 2 3, ,k k k  

(solid line) and the estimated values 
1 2 3, ,e e ek k k  (doted line) 

 
In case of observer-based estimator design, i.e. the following main points should be noticed:  
1. The parameter estimator was tuned by the values of , (1, 4)i iω =  which was found to be:  
 

1 2 3 410; 38; 23; 10ω ω ω ω= = = = .  
 
2. The simulation results show perfect fitting of the estimated and model values of the kinetic 
rates (Fig. 3). 
 
As it could be expected, some difference exists between the estimated values and the constant 
values of the yield factors k1 and k2 (Fig. 3). The significant difference for k1 and k2 however 
appears during the Phase B and Phase A respectively, where the corresponding yield factor 
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does not participate in the Phase description (Model B and Model A). For example the 
estimated value of k2, the yield factor with respect to the Lysine production, is equal to the 
constant value during the production phase, but there exists big error during the growth phase.  
 
Similar result is observed for the coefficient k1. However, in this case there is small difference 
during the second half of the growth phase too, where the product formation is negligible, but 
not completely zero. 
 
3. Simulation investigations under different initial conditions for , 1 5i iθ = −  variables (36), 
which determine the estimated variables, are also done. The results show very good 
convergence properties of the estimator in case of wide range of different initial conditions for 

, 1 5i iθ = − . The specific rates and the yield coefficients, corresponding to changes in the 
initial conditions for , 1 5i iθ = −  variables (50% decrease of their exact initial values) are 
given in Fig. 4. 
 
4. Simulation investigations under different initial conditions for the main process variables  
X, A, S, R are also done. The results show very good convergence properties of the estimator 
in case of wide range of different initial conditions. The specific rates and the yield 
coefficients, corresponding to the changes in the initial conditions for X, A, S, R variables 
(50% decrease of their exact initial values) are given in Fig. 5. 
 
The results confirm the applicability of the designed software sensors. It should be especially 
noticed, that in general, the two estimators could be used for continuous fermentation too. 
However in this mode of operation, where the steady state is the main regime, the dissolved 
oxygen is usually kept constant and it could not be used as main on-line measurable variable 
for the case of state estimator design.  
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Fig. 4 For , 1 5i iθ = −      Fig. 5 For X, A, S, R  

(50% decrease of the exact initial conditions)      (50% decrease of the exact initial conditions) 
Parameter estimator: the model values , , ,x a s rV V V V  (solid line) and the estimated values 

, , ,xе aе sе rеV V V V  (dotted line) of the specific rates; the constant values 1 2 3, ,k k k  used for state 
estimator design (solid line) and the estimated values 1 2 3, ,e e ek k k  (doted line) of the yield 
coefficients under inexact initial conditions. 
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Conclusion 
Present paper is aimed to give solution of the measurement problems in bioreactors with 
respect to the biological variables, on the basis of only one relatively easy measurable 
variable, thus creating a firm basis for adaptive control systems design. Two separate sensors 
(state and parameter estimators) for a class of aerobic fermentation processes are designed. 
The state estimator is developed based on knowledge of only one on-line measurable variable, 
the dissolved oxygen, and the yield factors assumed as constant coefficients. Parameter 
estimator of the specific reaction rates is developed under the assumption that all the process 
variables are known on-line by measurements or estimates. The yield factors are also 
estimated as non-stationary parameters. Thus a basis for comparison with the specified 
constant values used for the state estimator design is created. As a case study industrial Lysine 
fermentation in fed-batch mode of operation is considered. Simulation results under different 
operating conditions are given in order to highlight the performances of the proposed sensors. 
The sensors can be used for (easily adapted to) any bioprocess that belongs to the defined 
class (for example bio-ethanol production). Further research is going on to estimate the 
software sensors performance in an adaptive control system. 
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