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Abstract: This paper focuses on design of a glucose concentration control system based on 
nonlinear model plant of E. coli MC4110 fed-batch cultivation process. Due to significant 
time delay in real time glucose concentration measurement, a correction is proposed in 
glucose concentration measurement and a Smith predictor (SP) control structure based on 
universal PID controller is designed. To reduce the influence of model error in SP structure 
the estimate of measured glucose concentration is used. For the aim an extended Kalman 
filter (EKF) is designed. To achieve good closed-loop system performance genetic algorithm 
(GA) based optimal controller tuning procedure is applied. A standard binary encoding GA 
is applied. The GA parameters and operators are specified for the considered here problem. 
As a result the optimal PID controller settings are obtained. The simulation experiments  
of the control systems based on SP with EKF and without EKF are performed. The results 
show that the control system based on SP with EKF has a better performance than the one 
without EKF. For a short time the controller sets the control variable and maintains it at the 
desired set point during the cultivation process. As a result, a high biomass concentration of 
48.3 g⋅l-1 is obtained at the end of the process. 
 
Keywords: E. coli cultivation, Smith predictor, PID controller tuning, Genetic algorithm, 
Extended Kalman filter. 

 
Introduction 
Cultivation of recombinant microorganisms e.g. Escherichia coli, in many cases is the only 
economic way to produce pharmaceutical biochemicals such as interleukins, insulin, 
interferons, enzymes and growth factors. To maximize the volumetric productivities of 
bacterial cultures it is important to grow E. coli to high cell concentration. From different 
modes of operation, (batch, fed-batch and continuous), fed-batch operation is often used in 
industry due to its ability to overcome catabolite repression or glucose effect which usually 
occur during production of these fine chemicals. Moreover, fed-batch operation also gives the 
operator the freedom of manipulating the process via substrate feed rate. 
 
Control opportunities in fed-batch operated cultivations have been reviewed in detail in a 
number of articles. It is well known that the design of high performance model based control 
algorithms for biotechnological processes is hampered by some major problems which call for 
adequate engineering solutions. Different control loops are realized for control of temperature, 
pH, and dissolved oxygen as well as for the control of volume and anti foam considering 
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cultivation processes. Whereas, commercially available controllers exist only for such well 
established measurement systems, for substrate feed rate (i.e. glucose concentration) control 
there is a lack of control systems. The main reason for this is the difficulties in on-line 
measuring of the substrate concentration in a fast and reliable way during the cultivation 
process. Moreover in principle the substrate concentration measurement systems are 
characterized with significant time delay which sets the challenge to control considered 
processes. 
 
The control strartegy for substrate feed rate can be summarized in three groups: open 
(feedforward)-, closed-loop (feedback) control and mixed (feedforward-feedback). Widely 
used in feedback control of industrial cultivation processes is the proportional-integral-
derivative (PID) controller. When the object is characterized with significant time delay the 
conventional PID controller can not ensure the control system performance. A tool approved 
in the practice for time delay compensation is the Smith predictor (SP) [20]. In this predictor 
scheme, the mathematical model of the process is implemented in an internal feedback loop 
around a conventional controller. The distinctive scheme was proposed by O. J. M. Smith 
approximately 50 years ago, and is still attracting much attention for its usefulness. The major 
advantage of the SP is that delay issues can be ignored when designing the controller.  
The main disadvantage is that the performance of the SP control strategy is affected by the 
model unaccuracy. There are many applications of the SP based on linear (linearized) model 
plant [2-4, 12, 21] and a few based on nonlinear models [6, 9]. Considering cultivation 
processes there is a lack of such studies.  
 
The another significant challenge of control design of such high nonlinear processes is 
controller tuning. Tuning a PID controller appears to be conceptually intuitive but can be hard 
in practice, if complex systems, as cultivation processes are considered. For the controller 
tuning in a real plant a higher degree of experience and technology are required. Usually the 
PID controller is poorly tuned due to highly changing dynamics of cultivation processes, 
which is caused by the non-linear growth of the cells, the metabolic changes as well as 
changes in the overall metabolism. In control design of continuous cultivation processes the 
controller tuning could be done with traditional methodology [13]. The models of these 
processes can be linearized in an equilibrium point. In contrast, considering fed-batch 
cultivation processes such methodologies are inapplicable (impracticable). In these cases as 
an alternative for the quality controller tuning optimization methods could be applied.  
The tuning procedure is a big challenge for the conventional optimization methods.  
As an alternative various metaheuristics could be used.  
 
Heuristics can obtain suboptimal solution in ordinary situations and optimal solution in 
particular. Since the considered problem has been known to be NP-complete, using heuristic 
techniques can solve this problem more efficiently. Three most well-known heuristics are the 
iterative improvement algorithms, the probabilistic optimization algorithms, and the 
constructive heuristics. In the probabilistic optimization group, genetic algorithms (GA) based 
methods and simulated annealing are considerable which extensively have been proposed in 
the literature. The GA are highly relevant for industrial applications, because they are capable 
of handling problems with non-linear constraints, multiple objectives, and dynamic 
components – properties that frequently appear in the real-world problems [13]. Since its 
introduction and subsequent popularization [8], the GA has been frequently utilized as an 
alternative optimization tool to the conventional methods [15].  
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This paper focuses on the design of a glucose concentration control system based on nonlinear 
model plant of E. coli MC4110 fed-batch cultivation process. Due to significant time delay in 
real-time glucose concentration measurement system a correction in measurement glucose 
concentration is proposed and the modified SP control structure based on universal PID 
controller is proposed. In this structure the estimate of measured glucose concentration is used 
to reduce the influence of model error. An extended Kalman filter (EKF) is designed to obtain 
this estimate. To achieve good closed-loop system performance GA based optimal controller 
tuning procedure is applied. 
 
Mathematical model of E. coli MC4110 fed-batch cultivation 
The mathematical model (1) – (5) is based on real fed-batch cultivation process of  
E. coli MC4110. The cultivation process is carried out in the Institute of Technical 
Chemistry, Hannover University, Germany. The cultivation conditions and data 
measurements are discussed in [1, 18]. The model is presented as: 
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where: X is the concentration of biomass, [g⋅l-1]; S – concentration of substrate (glucose),  
[g⋅l-1]; F – feed rate, [l⋅h-1]; V – bioreactor volume, [l]; Sin – substrate concentration of the 
feeding solution, [g⋅l-1]; µmax – maximum growth rate, [h-1]; kS – saturation constant, [g⋅l-1]; 
YS/X – yield coefficient, [-]; ηX – biomass concentration process noises, [g⋅l-1]; ηS – substrate 
concentration process noise, [g⋅l-1]; 

maxµη  – maximum growth rate process noise, [h-1];  
( )tξ  – measurement noise, [g⋅l-1]. 

 
Based on real experimental data (feeding rate data and off-line measurements of biomass 
and on-line data of substrate (glucose) measurements) and GA identification procedure the 
following numerical values of the model parameters are obtained [18]:  

kS = 0.012 g⋅l-1, YS/X = 0.5. 
 
The initial process conditions are [1]:  

t0 = 6.68 h, X(t0) = 1.25 g⋅l-1, S(t0) = 0.8 g⋅l-1, Sin = 100 g⋅l-1.  
 
The model inaccuracy is modeled via zero mean white Gausian noise. The corresponding 
variances are [1]: ηX = 0.001 g2⋅l-2⋅h-1, ηS = 0.001 g2⋅l-2⋅h-1 and 

maxµη  = 0.05 l⋅h-3. 
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The glucose measurement system [1] used during the process has time delay s, which 
is acceptable. But during this time the cells in the samples continue glucose consuming. In the 
beginning of the cultivation, consumed amount of glucose is neglectable at lower biomass 
concentration. When the biomass concentration is higher this amount is not neglectable  
(as could be seen in Fig. 1). This process significantly affected the control of system 
performance. To overcome this problem the following correction of glucose measurements is 
proposed: 

60t∆ =

( ) ( ) ( ) ( )
COR

S / X

µ t X t
S t S t

Y
= + ∆t . (6) 

 
Specific grow rate  is described by Monod kinetics as: ( )µ t

( ) ( ) ( )
( )max=
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S t
t t
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Control algorithm  
A conventional PID control is a generic control algorithm widely used in control systems. 
More of 90% of control loops in industrial control system are based on PI(D) controllers. 
During E. coli MC4110 fed-batch cultivation process a time delay is observed due to 
particularities of on-line glucose measurement system. This contributes to the significant error 
in glucose concentration measurement. In this case the conventional PID controller can not 
ensure satisfactory performance of the control system. To overcome this problem a SP is 
used. It is a well-known control structure based on the linear plant model. The basic idea is to 
use the process model to obtain an estimate of non-delayed system output. This output is used 
in an inner feedback loop, combined with an outer feedback loop based on the delayed 
estimation error.  
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Fig. 1 Measured glucose concentration and the corrected one 

 
In this paper a modified SP structure based on nonlinear plant model is proposed. The 
structure of the control system is shown in Fig. 2. In conventional case of SP only the plant 
output is used to form the inner feedback. Here to form the feedback term of control signal a 
universal PID controller is used [2-4, 7]. In addition, the predicted by nonlinear model process 
variables are used to form the feedforward term of control signal. This term is utilized to hold 
the nonlinear plant at the actual equilibrium point. It is proposed to use the estimate  
obtained by EKF to reduce the influence of measurement noise 

Ŝ
ξ  on the model error .  me
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Fig. 2 Structure of the designed control system 
 
The block named “Nonlinear process model” predicts the non-delayed model output by 
equations: 
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where: mX  is the evaluated by model concentration of biomass, [g⋅l-1];  – evaluated by 
model delayed concentration of substrate (glucose), [g⋅l

mS
-1];  – evaluated by model 

bioreactor volume, [l];
mV

maxm
µ  – model maximum growth rate, [h-1];  – predicted by 

model non-delayed concentration of substrate, [g⋅l
CORmS

-1]. Here max 0 5=
m

.µ  h-1. 
 
The PID controller algorithm is described as follows: 
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( )fbu s  is the feedback term of control variable, [l⋅h-1]; ( )r s
 – derivative tim

 – reference signal, [g⋅l-1];  
Kp – proportional gain, [-]; Ti – integral time, [h] Td e, [h]; b, c – set-point 

weight coefficients, [-]; dT
N

 – low-pass first order filter of D-term time-constant, [h]. 
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The coefficients b and c are used to weight out the ( )r s  respectively in the proportional and 
in the derivative term  the controller. Typically the coefficients are ch
0 1, 0 1≤ ≤ ≤ ≤b c . In industrial applications b and c are chosen to be equal to 0 or 1 [2

 of osen as: 
-4]. 

 erro
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( )CORmS s  (Eq. (6)); the model error ( )me s  is the difference between the measured glucose 

concentration (S s  the evaluated by process model one)  and  ( )s . 
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For considered here E. coli MC4110 cultivation process desired set-point is at S  = 0.1 g⋅l-1 
glucose concentration [1]. C
process, i.e. to a negative effect on the productivity and yield of a desired cultivation product. 
 

 SP

oncentrations above this value lead to a substrate inhibition of the 

Considering real applications usually digital PID controller is implemented. There are many 
techniques for discretization. Here for discretization of the PID controller (Eq. (11)) backward 
Euler method [10] is used. The mathematical description of the designed digital PID 
controller is: 
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trol variable used to control the feed rate has the following form: 
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To reduce the influence of measurement noise 
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( )kξ  on the measured glucose concentration 

( )Ŝ k  instead ( )S k  is proposed to form the error: ( )me kand the model error , the estimate 
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 EK
(1) – (

To obtain the glucose concentration estimate an F is designed. Based on discretization of 
process model (Eqs. 5)) the following EKF is obtained (see Appendix): 

( ) ( )( ) ( ) ( ) ( )( )( )
( ) ( )

ˆ ˆ ˆ1 1 1 ,k S k k+ + −EKF dHf x
 (21) 

ˆ ˆ1 1 ,

k k

S k k

+ = +

+ = +

dx f x K

Hx

[ ]Tˆ (0) 1.25 0.8 1.35 0.5 ,=x  

( )( ) ( ) ( )( )0ˆ ˆ ˆk k T k= +df x x f x , (22) 

where:  and  are the estimates of ( )ˆ ⋅x ( )ˆ ⋅S ( )⋅x  and ( )S ⋅ ; ( )⋅EKFK  – the EKF gain. 
 
Finally, the real control variable has the following form: 
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parameters is required. T e controller parameters are: 

( )me s
 
To provide control action designed for specific process requirements tuning the PID controller
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h .  

onsidering control system based on linear plant models there are many classical and novel or 

. Th
m in If a linear 

pproximation is found, the resulting model will be valid only for a small range around the 

encoded chromosomes (individuals). Each chromosome 
orresponds to one different objective function value. The objective functions (cost values) of 

the next step individuals represented by their 

 
C
modified approaches for PID controller parameters tuning [2-4, 7, 11]. These methods are 
inapplicable to the considered here non-linear control system e regarded fed-batch 
cultivation process can not be linearized around an equilibriu  po t. 
a
linearization point. The controller tuned by the linear model will work properly only for this 
limited range and for a very small time interval. Therefore, to achieve the best overall PID 
control it is necessary to use non-classical tuning methods for the entire operating envelope of 
the given system. In this work GA are applied for PID controller parameters tuning, based on 
control system presented in Fig. 2. 
 
Background of the genetic algorithm 
Genetic algorithm is guided largely by the mechanisms of three operators: reproduction, 
crossover and mutation [8] (Fig. 3). To derive a solution to a problem, the GA initializes a 
single population of n randomly 
c
generated population are then evaluated. In 
associated cost are ranked and the corresponding individual fitness is received. The selection 
algorithm chooses individuals for reproduction on the basis of their relative fitness.  
Thus solutions from one population are taken and used to form a new population. Through 
reproduction, chromosomes representing better possible solutions (most fitted individuals) are 
chosen from the population. Certain function is used performing selection concordant with 
generation gap. Selected individuals are then recombined. To form new offspring (children), 
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the parents are crossed over with a crossover probability. Mutation is then applied with 
determinate probability. The mutation is intended to prevent falling of all solutions in the 
population into a local optimum of the solved problem. The crossover and mutation operators 
are realized to yield improved off-springs for successive generations. For the new individuals 
the objective function and fitness function values are again calculated. The new offspring are 
inserted in the population. The new generated population is used for a further run of the 
algorithm. 
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Best 
individuals 
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Yes 

Result 

Selection 

Recombination

Mutation 

No

Generate 
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Fig. 3 Outline of the genetic algorithm 

 
In the used here GA a binary 20 bit representation is considered Binary representation is the 
most common one, mainly because of its relative simplicity [5, 14]. The selection method 
used here is the roulette wheel selection. Crossover can be quite comp cated and depends  
(as well as the technique o f chromosomes. A double 
oint crossover is used here. In the accepted encoding a bit inversion mutation is used. 

es not 
prove performance of GA, especially regarding how fast the solution will be found. 

li
f mutation) mainly on the encoding o

p
 
There are two basic parameters of genetic algorithms – crossover probability and mutation 
probability. Crossover rate should be high generally, about 65% – 95%. Mutation is randomly 
applied with low probability, typically in the range 0.01 and 0.1. The rate of individuals to be 
selected (generation gap) should be defined as well. Very big generation gap value do
im
Particularly important parameters of GA are the population size and number of generations.  
If there are too low number of chromosomes, GA has a few possibilities to perform crossover 
and only a small part of search space is explored. On the other hand, if there are too many 
chromosomes, GA slows down. Based on results in [16, 17, 19], genetic algorithm operators 
and parameters for considered here PID controller parameters tuning are summarized in  
Table 1.  
 

Table 1. Genetic algorithm operators and parameters 
Operator Type Parameter Value 
encoding binary generation gap 0.97 
crossover double point crossover rate 0.70 
mutation bit inversion mutation rate 0.05 

selection roulette wheel 
selection 

precision of binary 
representation 20 

fitness function linear ranking number of individuals 200 
  number of generations 200 
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Representation of ch order to use the GA 
to identify contro ters, it is necessary to en meters in accordance with 
the method of concatenated, mu eter, m int c [8]. Here, a 
chromosome is a sequence of k- parts each of them g prec  genes. In this 
case the chromos quen  –

romosomes is a critical part of the GA application. In 
ller parame code the para

ltiparam apped, fixed-po
w

oding 
ith n (encodin ision)

ome is a se ce of six parts  pK , iT , dT , b, c and N.  
 
The range of PID ationa and it i itatio luence the 
results of the GA search; it is in nd rate solutions. 
For regarded problem ng par s f s:  

 values is r lly chosen s true that the lim n will inf
tended to obtain more stable, efficient a  accu

 the range of the tuni ameters is considered a ollow
pK , iT , dT  ∈ [0, inf]; b, c ∈ [0, 5] and N ∈ [5, 1000].  

oving behavior in respect to some fitness 
easure. 

a is used: 

 
Following a random initial choice, entire generation of such strings is readily processed in 
accordance with the basic genetic operators of selection, crossover and mutation. In particular, 
the selection process ensures that the successive generations of PID controller parameters 
produced by the GA exhibit progressively impr
m
 
The GA is terminated when some criteria are satisfied. To evaluate the significance of the 
tuning procedure and controller performance the integrated square error (IISE) criteri

( )2

0

= ∫
T

*
ISEI e t dt , (25) 

r the tuning procedure a GA is applied. Using the considered objective function  
q. (25)) a series of tuning tests are performed based on non-linear model (Eqs. (1) – (5)). 

l PID controller  

where t is time, h; T – end time of the cultivation, h. 
 
Results and discussion 
On the base of the control system shown on Fig. 2 the parameters of a PID controller are 
tuned. Fo
(E
For prediction of non delayed system output the model Eqs. (8) – (10) are used. Resulting 
optimal PID controller settings are presented in Table 2.  

 
Table 2. Optimal controller parameters 

PID controller  Digita
Parameter Value Parameter Value 

pK  0.0200 0.0030 1ib  

iT  0.0368 db  0.0992 
Td 0.0558 da  0.5007 
b 0.7980 b 0.7980 
c 0.9998 c 0.9998 
N 9.9305  N 9.9305 

ISEI  16.6943   
 
The results about the system performance are graphically presented in the next figures.  
 
In Fig. 4 resulting dynamics of glucose concentration during the cultivation process is 
presented. As it can be seen the controller sets fast the control variable to the desire set-point 
of 0.1 g⋅l-1 and keep it to the end of the process. The maximum deviation from the set-point is 
0.02 g⋅l-1 at time 15.8 h. Before the 14 h of cultivation the maximum deviation is 0.012 g⋅l-1. 
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In Fig. 5 the control sign  not reached the actuator 
limitations and has n illations ude for the feed rate 
pump.  
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In Fig. 6 and Fig. 7 the resulting glucose concentration and control signal of the two control 
systems (with EKF and without EKF) are presented.  
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In comparison a control system based on the SP structure with universal PID controller 
without EKF is designed. The main deference between this system and the system on Fig. 2 is 
the formation of a model error. In case of the control systems with EKF (Fig. 2) the model 
error is f
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The results show the advantages of the control system with EKF. For the system with EKF 

-1

lations of the glucose concentration for 
e are observed. In result the oscillations of the control signal are observed too  

(Fig. 7). After 12 h both measured and delayed glucose concentration evaluated using process 
model (Eqs. (8) – (10)) are decreased. It result, the ratio noise/signal in the measured glucose 
is increased leading to a significant increase of the model error. Thus, significant increase of 

the maximum deviation from the set-point is 0.02 g⋅l  and for the system without EKF is  
0.08 g⋅l-1. In Fig. 6 it could be seen a single peak of the maximum deviation 0.25 g⋅l-1for the 
ystem without EKF. Moreover, for this system oscils

whole tim

 110



 INT. J. BIOAUTOMATION, 2011, 15(2), 101-114 
 
the control signal after 12 h is observed (Fig. 7). Applying the control system with EKF such 
effect can not be obtained. 
 
In Fig. 8 resulting dynamics of biomass concentration for both control systems are presented. 
In Fig. 9 the same results for bioreactor volume are shown. 
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Fig. 8 Biomass concentration for the systems 
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Fig. 9 Bioreactor volume for the systems 

with EKF and without EKF 
 
Presented results confirmed the advantages of the control system with EKF. In this case good 
controller performance allows the cultivation process to be carried out for almost 16 h.  
At time 15.8 h the bioreactor volume is 1.7 l (for the cultivation a 2 l bioreactor is used [1]. 
Whereas the control system without EKF must be stopped at time 15.194 h. At this time the 
ioreactor volume reached the limitation of 2 l.  

ration at the end of the process is 
8.3 g⋅l . In case without EKF the final biomass concentration is 27.4 g⋅l-1 (at time 15.194 h). 

 
For the comparison of the two systems, standard deviations (

b
 
Based on the control system with EKF the biomass concent

-14

Sσ ) are evaluated. The resulting 
values are:  

• for the system with EKF: Sσ  = 0.0057 g⋅l-1; 
• for the system without EKF: Sσ  = 0.0246 g⋅l-1. 

 
For the system with EKF four times smaller Sσ  than the one for the system without EKF is 
obtained. 
 
Conclusions 

edf n  
E. coli M  process are presen  control 

e glucose concentration at a desired set-point via feed rate. To reflect on time delay of 

ned by the designed EKF. For PID controller 
arameters tuning GA are applied. As a result optimal PID controller settings are obtained 

and good closed-loop system performance is achieved. The designed control system is 

In this article the results of a designed fe
C4110 fed-batch cultivation

orward feedback control systems for a
ted. The controller is used to

th
glucose measurement system the SP structure with universal digital PID controller is 
designed. To model the time delay a correction in measurement glucose concentration is 
proposed. To reduce the influence of measurement noise on the glucose concentration and on 
the model error in SP, evaluation of model error by estimated glucose concentration instead 
measured one is proposed. This estimate is obtai
p
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oncentration (control variable) and maintains it at the desired set-point during the cultivation 
rr

rocess for a time 15.8 h. As a result, a high biomass concentration of 48.3 g⋅l  is 
. T ues for the standard deviations of control 

variab trated that the GA provide a simple, 
effic h predictor structure based on PID 
ontroller. Moreover, obtained results show that GA tuning can be considered as an effective 

compared to the same system without EKF. The results show the advantages of the control 
system with EKF. For a short time the genetic algorithm tuned PID controller sets the glucose 
c
process. Furthermore, the control system with EKF allows ca ying out the E. coli fed-batch 
cultivation p -1

obtained at the end of the process he obtained val
le are sufficiently small. Finally, it is demons

ient and accurate approach of tuning the Smit
c
methodology for achievement of high quality and better performance of the designed control 
system. 
 
Appendix 
The EKF gain is presented as: 

( ) ( )
( )

T T

1
T T

1 ( ) ( ) ( )

( ) ( ) ( ) ,

k k k k

k k k Dξ

−

⎡ ⎤+ = + ×⎣ ⎦

⎡ ⎤× + +⎣ ⎦

d

d

EKF η

η

K F P F D H

H F P F D H
 (A-1) 

where: ( )⋅P  is the covariance matrix; ( )F k  – the Jacobian of nonlinear function 

( )( )
( ) ( )ˆk k

kd x =x
f x . 

 
The noise covariance matrixes have the following forms: 

2
0d

0.001 0 0 0
0 0.001 0 0

, 0.0025,
0 0 0 0
0 0 0 0.05

T Dξ

⎡ ⎤
⎢ ⎥
⎢ ⎥= =
⎢ ⎥
⎢ ⎥
⎣ ⎦

ηD  (A-2) 

where: 
dη

D  is covariance matrix of discrete-time process noise ( ) ( )0=dη ηk T t ; Dξ  – the 
covariance of measurement noise. 
 
The ( )⋅P  and ( )F k  are obtained from:  

(kP ) ( )( ) ( ) ( ) ( )( )TT1 1k k k k+ = − + +
dEKF ηI K H F P F D , (A-3) 

, (A-4) 
 (A-5) 

where  

( ))

0 0 0

a a a a
a a a a

k

⎡ ⎤
⎢ ⎥

⎢ ⎥
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(0) d=P iag(0.02 0.02 0 10)
( )( ) ( )( )ˆ ˆ ,k T k= +4F x I Φ x0
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21 22 23 24
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( )13 2

ˆ
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F k X k
a

V k
, ( ) ( )

( )14

ˆˆ
ˆ=

+S

X k S k
a

k S k
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/
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