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Abstract: The artificial neural networks are inspired by biological properties of human and 
animal brains. One of the neural networks type is called ART [4]. The abbreviation of ART 
stands for Adaptive Resonance Theory that has been invented by Stephen Grossberg in 1976 
[5]. ART represents a family of Neural Networks. It is a cognitive and neural theory that 
describes how the brain autonomously learns to categorize, recognize and predict objects 
and events in the changing world. In this paper we introduce a GN model that represent 
ART1 Neural Network learning algorithm [1]. The purpose of this model is to explain when 
the input vector will be clustered or rejected among all nodes by the network. It can also be 
used for explanation and optimization of ART1 learning algorithm. 
 
Keywords: Neural Networks, Generalized Nets, ART1. 

 
Introduction 
Every learning system must be able to adapt in changing environment (it must be plastic). 
Constant changes can lead to the instability of the system, due to the fact, that the system can 
obtain information by learning, only when the old information is forgotten [3, 4]. 
 
The type of neural network that solves this problem is called ART [5, 6]. The essence of 
ART's predictive power is its ability to autonomously carry out fast, incremental, 
unsupervised and supervised learning in response to the changing world, keeping previously 
learned memories at the same time [4]. More generally, we can quickly learn about new 
environment, even if it has not been told about the difference of the rules in each 
environment. In a remarkable degree, humans can rapidly learn new facts without being 
forced to just as rapidly forget what they already know. As a result, we can confidently go out 
into the world without fearing that, in learning to recognize a new friend's face, we will 
suddenly forget the faces of our family and friends [4]. The ART method consist two layers. 
The first one is known as Comparison layer and the second is called Recognition layer, fully 
connect with “bottom-up” and “top-down” weights and reset module which control the degree 
of similarity between both layers. There are two methods of learning – supervised and 
unsupervised. 
 
Unsupervised learning method is used for neural networks ART1, ART2, ART3, … [7, 8]. 
Supervised method is known as ARTMAP [7, 8]. 
 
The ART1 learning algorithm is described below, it operates with binary input vectors [3]. 
According to [2, 9, 10] learning algorithm is: 
 

1. Notations 
The set of input vectors 
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( ) ( ) ( ) ( ){ } ( )1 , 2 , , , ,  1, 2,nI x x x x N x t R t= … ∈ = … , 
 
where t (time) is a natural number. 
 
Basically ART1 consists of two layers: 

F1 is the input (Comparison field) with n-neurons F11, F12, …, F1n; 
F2 is the output (Recognition field) with M-neurons F11, F22, …, F2M. 

 
Weights from neuron i of F1 layer towards the neuron j of F2 layer 
 

( ) ( ) ( )( ), ," , 1, 2, , ; 1, 2, , ; "i j i jw t i N j M W t w t= … = … =  
 
Each column in matrix W(t) is column vector ( ) , 1, 2, ,n

jw t R j M∈ = … . 
 

( ) ( ) ( ) ( )( )T

1 2" ,  , , "j j j ijw t w t w t w t= …  
 
Weights from neuron j of F2 towards the neuron i of F1 
 

( ) ( ) ( )( ), ," , 1, 2, , ; 1, 2, , ; "j i j iv t j M i n V t v t= … = … =  
 
Each row in matrix V(t) is column vector ( )" , 1, 2, , "n

jv t R j M∈ = …  
 

( ) ( ) ( ) ( )( )T

1 2" ,  , , ;"j j j jiv t v t v t v t= …  
 
( ) Mo t R∈  – firing vector that consist one component for each neuron in F2j. 

 
Vector MRθ ∈  is null vector of the space. 
 

2. Initialization of parameters 
• n – number of neurons in F1 layer; 
• M – number of neurons in F2 layer; 
• N – number of input vectors; 
• ρ – vigilance threshold. 

 

( ) ( )0 0
, , , ,

11    ,  1 1 for   1, 2, , ; 1, 2, ,  
1i j i j j i j iw w v v i n j M

N
= = = = = … = …

+
 (1) 

 
where 0 0

, ,, i j j iw v  are initialized weights at t = 0. 
 

2.1. At the beginning of the work, the fire vector o(1) has all of its components equal to 1, 
i.e., 
 
1  in 2jo F= . (2) 

 



 INT.J.BIOAUTOMATION, 2013, 17(4), 207-216 
 

209 
 

2.2. Read an input vector x(t). 
 
2.3. Compute the activation values for all the enabled neurons j of F2: 
 
( ) ( ) ( )" , "jnet j w t x t=  (3) 

 
Select the winner neuron that has 

 
( ){ } ( )" , 1 max | 1 "j j kk k M net t o net t≤ ≤ = = . (4) 

 
If the maximum is not unique and there is a tie for the winning neuron k in F2 layer, then 
choose a special rule to break the tie. 
 

2.4. Process the vigilance test for F2k output neuron: 
 

( ) ( )
( )
,

" "kv t x t
r

x t
=  (5) 

 
If ρ≥r  there is match go to step 2.5 otherwise go to step 2.6. 
 

2.5. Update the vectors ( ) ( ) and k kv t w t  as follows: 
 
( ) ( ) ( )" 1 * "k kv t v t x t+ =  (6) 

 

( ) ( )
( )
1

" 1 "
0.5 1

k
k

k

v t
w t

v t
+

+ =
+ +

 (7) 

 
( ) ( ) ( ) ( )" 1 , 1 for  1, 2, , , "j j j jv t v t w t w t j M j k+ = + = = … ≠  (8) 
 

Put output ( )1 1,  1,jo t j M+ = =  and store input pattern, go to step 2.7. 

2.6. Disable the output neuron F2k i.e. ( )" 0"ko t =  and go to 2.3. When ( )o t θ=  the 
network rejects the input vector x(t) and it is stored in reject set RI(x) go to step 2.7. 
 
2.7. Put the old weights on the positions of new weights and enable all the output neurons, 
namely 
 
( ) ( ) ( ) ( ) ( )" 1 , 1 , 1 1 for  1, 2, , "j j j j jv t v t w t w t o t j M+ = + = + = = …  (9) 
 
2.8. Step 2.2 has been repeated again with the input set I(x). 
 
2.9. Print the content of classes and the matrixes WandV . 

 
We introduced a static structure of ART1 Neural Network here is described ART1 learning 
algorithm. 
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GN-model 
The GN-model is presented in Fig. 1. Initially the following tokens enter the generalized net: 

• in place L1 – a token with an initial characteristic "Input vectors" – ( )0 " " x I xα = ; 
• in place L6 – a token with an initial characteristic "Number of neurons in F1" – 

" 0x nβ = "; 

• in place L17 – a token with an initial characteristic "Vigilance threshold" – 0 " "xγ ρ= ; 

• in place L22 – a token with an initial characteristic "Initialized weights 0
," "j iv  in F2, 

Number of neurons in F2, Special rule (S)" – 0
0 ," ,   ,   "j ix v M Sδ = . 

 
The GN is introduced by the set of transitions: 
 

A = {Z1, Z2, Z3, Z4, Z5} 
 

where the transitions describe the following processes: 
Z1 = "Distribution of the input vectors"; 
Z2 = "Initializing of weights 0

,i jw  in F1"; 
Z3 = "Determination of weights ,i jw  in F1"; 
Z4 = "Determination of resonance state"; 
Z5 = "Determination of weights ,j iv  in F2". 
 
GN-model consists of five transitions with the following description: 
 

Z1= 〈{L1, L5, L9, L25}, {L2, L3, L4, L5}, R1, ∨(∧(L5, L9), ∧(L5, L25), L1, L5)〉 
 

2 3 4 5

1
1

5 5,2 5,3 5,4

9

25

,

L L L L
L False False False True

R
L W W W True
L False False False True
L False False False True

=
 

where: 
W5,2 = W5,3 = W5,4 = "There are input vectors". 
 
The token α  from place L1 that enters in place L5 does not change its characteristic.  
The token α′  from place L5 splits in to three identical tokens entering in places L2, L3, L4.  
The tokens , ζ δ ′  from places L9 and L25 enter in place L5 obtaining a characteristic: 
 

" 1"cuxα α′ = ′ + . 
 

Z2=〈{L6, L8}, {L7, L8}, R2, ∨ (L6, L8)〉 
 
7 8

2
6

8 8,7

,
L L

R
L False True
L W True

=
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where: 
W8,7 = "The weights are initialized". 
 

 

Fig. 1 GN-model 
 

 
The token β  from place L6 enters in place L8 obtaining a characteristic: 

1
1cux

n
β ′ =

+
. 

 
The token β ′  in place L8 enters in place L7 keeping its characteristic. 
 

Z3 = 〈{L3, L7, L14, L15, L16, L23, L24}, {L9, L10, L11, L12, L13, L14, L15, L16}, R3, 
∨(∧(L3(∨(L7, L23)), L14, L15, L16, L24)〉 

 

L1 

Z1 

Z2 

Z3 

Z4 

Z5 

L6 L7 

L8 

L11 

L14 

L16 

L17 

L18 

L23 L2 

L3 

L4 

L5 

L19 

L20 
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L25 

L9 

L13 

L15 

L24 

L26 

L27 

L12 
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9 10 11 12 13 14 15 16

3

7

14 14,163

15 15,10 15,12 15,13 15,14

16

L L L L L L L L
L False False False False False False False True
L False False False False False False False True
L False False False False False True False WR
L False W False W W W True False
L

=

16,9 16,10 16,11

23

24 24,15

,

W W W False False False False True
L False False False False False False True False
L False False False False False False W True

 

 
where: 
W14,16 = "Weights Wk(t + 1) are updated"; 
W15,10 = W16,9 = W16,10 = W24,15 = "o(k)= θ"; 
W15,12 = W15,14 = "Weights Vk(t + 1) are updated"; 
W15,13 = "The value of winning neuron is defined"; 
W16,11 = "The values to the neurons are defined". 
 
The token α′  from place L3 splits in two identical tokens that enter in places L15 and L16.  
The tokens ,  α β′ ′  from places L3 and L7 enter in place L16 obtaining a characteristic: 
 
 ( )" * "cu jx W x tζ = . 
 
The token ζ  splits in two identical tokens one of which enters in place L11 and in place L16 
stays " ,   ,  α β ζ′ ′ ". The tokens  and δ δ′′′ ′′  from place L23 enter in place L15 and unite with 
token α′  from place L3 obtaining a characteristic: 
 

( ) ( )" * "cu kx V t x tη = . 
 
In place L15 stays " , α η′ ". The token µ′  from place L23 unites with token η  from place L15 
and obtains a characteristic: 

( ) ( )" ( * )"cu kx update V t x tη′ = . 
 

The token ν  from place L14 unites with token ζ  from place L16 and obtains a characteristic: 
 

( )" "cu jx w tζ = . 
 

The token α′  from places L15 and L16 enters in place L10 keeping its characteristic. The token 
η′  from places L15 splits in two identical tokens that enter in places L12 and L14, keeping its 
characteristic in place L12. The token η′  from place L15 enters in place L14 obtaining a 
characteristic: 

 ( )
( )
1

0.5 1
k

cu
k

v t
x

v t
ν +
=

+ +
. 
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The token  η  from place L15 enters in place L13 keeping its characteristic. The token ζ  from 
place L16 enters in place L9 also keeping its characteristic. The token σ ′  from L24 enters in 
place L16, obtaining a characteristic cuxζ . The token σ ′′  from L24 splits in two identical tokens 
that enter in places L15 and L16, obtaining characteristics: 
 

( )cux RI xα′ = . 
 

Z4 = 〈{L4, L13, L17, L20, L21}, {L18, L19, L20, L21}, R4, ∨(∧(L4, L13), ∧(L17, L21), L20)〉 
 

18 19 20 21
4

4

13

17

20 20,18 20,19

21 21,20

,

L L L L
R

L False False False True
L False False False True
L False False True False
L W W True False
L False False W True

=

 

where: 
W20,18 = " rρ ≤ "; 
W20,19 = ¬W20,18; 
W21,20 = "Resonant state is calculated". 
 
The tokens and α η′  from places L4 and L13 unite in place L21, obtaining a characteristic: 
 

( )
" "k

cu
Vx

x t
λ = . 

 
The tokens  and  λ γ  from places L17 and L21 unites in place L20, obtaining a characteristic: 
 

( )" "cux rµ ρ= = . 
 

In place L21 stays λ , in all time of life of GN. The token µ  from place L20 splits in two 
tokens ,  µ µ′ ′′ , that enter in places L18 and L19. The token µ′  that enters in place L18 obtains a 
characteristic: 

" "cux rµ ρ′ = ≤ . 
 

The token µ′′  that enters in place L19 obtains a characteristic: 
 

" "cux rµ ρ′′ = > . 
 

Z5 = 〈{L2, L11, L12, L18, L19, L22, L26, L27}, {L23, L24, L25, L26, L27}, R5,  
(∨(∧(L2, L11, L22), ∧(L22, L27), ∧(L12, L26), ∧(L19, L27)), L18)〉 



 INT.J.BIOAUTOMATION, 2013, 17(4), 207-216 
 

214 
 

23 24 25 26 27

2

115

12

18

19

22

26 26,23 26,25

L L L L L
L False False False False True
L False False False False TrueR
L False False False True False
L True False False False True
L False False False False True
L False False False True True
L W False W Tru

=

27 27,24 27,26

,

e False
L False W False W True

 

where: 
W26,23 = "Weights and winning neuron are defined"; 
W26,25 = "Weight matrices are updated; 
W27,24 = "Winning neuron is disabled"; 
W27,26 = "Winning neuron is defined". 
 
The token δ  from place L22 splits in two tokens − δ′  enters in place L27 and δ ′′  enters in 
place L26 obtaining characteristics: 
 0

,,  ;       j iM S vδ δ′ ′ =′= . 
 
In place L27 stays δ ′ , in all time of life of GN. The token α′  from place L2 enters in place L27, 
obtaining a characteristic: 

( ) 1cux o tδ ′ = = . 
 

The token ζ  from place L11 unites with token δ ′  in place L27 obtaining a characteristic: 
 

 ( ) ( )
( ) ( )

"max ,  1"
"max ,  1  if "

cu

cu

x k o k
x k o k S

ε

ω

 = = 
 = = =  

. 

 
The tokens  and ε ω  from place L27 enter in place L26 obtaining a characteristic: 
 

( ) ( )max , "cux k V kδ ′′ = . 
 

The tokens  and  δ δ′′ ′′′  from place L26 enter in place L23 keeping their characteristics.  
The token η′  from place L12 unites with token δ ′′  in place L26 obtaining a characteristic: 
 

( )cu jx v tψ = . 
 

The token µ′  from place L18 splits in two identical tokens that enter in places L23 and L27, in 
place L23 obtaining a characteristic: 

( )" "cu kx o t updateµ′ = = . 
 

The token µ′  from place L18 enters in place L27 obtaining a characteristic: 
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 ( ) ( )
( ) ( )

"max ,  0"
"max ,  0  if "

cu

cu

x k o k
x k o k S

ε

ω

 = = 
 = = =  

. 

 
The token µ′′  in place L19 unites with token  ε  in place L27 obtaining a characteristic: 
 
 ( ) ( )" 0,  1"cu k Mx o t o tσ = = = . 
 
The token µ′′  in place L19 enters in place L27 obtaining a characteristic: 
 
 ( ) ( )" 0,  1  if "cu k Mx o t o t Sω′ = = = = . 
 
The token ψ  from place L26 enters in place L25 keeping its characteristic. The token  σ  in 
place L27 enters in place L24 obtaining a characteristic: 
 

 ( ) ( )
( ) ( )

" if  0"

" if   "
cu kj

cu M

x net o t
x RI x o t

σ

σ θ

′

′′

 = = 
 = =  

. 

 
The token ω′  in place L27 enters in place L26 obtaining a characteristic: 
 
 ( ) ( )'''

max ,   if  .cux k V k Sδ = =  
 
Conclusion 
In the present work a GN-model to describe the learning algorithm of ART1 Neural Network 
is used. It has been shown, how the input vector is recognized and the process of acceptance 
or rejection (if there are not uncommitted neurons) from neural network. In that matter, the 
method can be used to solve the “stability-plasticity dilemma”. 
 
This paper is in the second series of papers devoted on the ART1 neural network. 
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