
 INT. J. BIOAUTOMATION, 2014, 18(3), 181-194 
 

 

 

181 

QRS Complex Detection and Analysis  

of Cardiovascular Abnormalities: A Review 

 
Akash Kumar Bhoi

1*
, Karma Sonam Sherpa

2 
 

 
1Department of Applied Electronics & Instrumentation Engineering  

Sikkim Manipal Institute of Technology 

Majhitar, India 

E-mail: akash730@gmail.com  

 
2Department of Electrical & Electronics Engineering 

Sikkim Manipal Institute of Technology 

Majhitar, India  

E-mail: karmasherpa23@gmail.com   

 

Received: February 25, 2014 Accepted: May 31, 2014 

  

 Published: September 30, 2014 

 

Abstract: The ability to evaluate various Electrocardiogram (ECG) waveforms is an 

important skill for many health care professionals including nurses, doctors, and medical 

assistants. The QRS complex is a vital wave in any ECG beat. It corresponds to the 

depolarization of ventricles. The duration, the amplitude and the complex QRS morphology 

are used for the purpose of cardiac arrhythmias diagnosis, conduction abnormalities, 

ventricular hypertrophy, myocardial infarction, electrolyte derangements etc. In this review, 

the different algorithms and methods for QRS complex detection have been discussed. 

Moreover, this review conceptualizes the challenge by discussing the effect of QRS complex 

on various critical cardiovascular conditions. 

 

Keywords: QRS complex, Cardiac arrhythmia, Conduction abnormalities, Ventricular 

hypertrophy, Myocardial infarction. 

 

Introduction 
QRS complex is the most prominent feature in the Electrocardiogram (ECG) signal and 

corresponds to the ventricular excitation [26]. The importance of QRS detection results from 

the wide use of the timing information of this component, e.g., in heart rate variability 

analysis, ECG classification, and ECG compression. In most cases, the temporal location of 

the R-wave is taken as the location of the QRS complex [23]. 
 

The Autonomic nerve system (ANS) controls the Heart rate and the RR interval by changing 

the firing rate of the SA node and the time interval of the Plateau period of the Action 

potential (AP) as well as the conduction velocity of the muscles. The QRS complex is 

considered to be fairly constant and does not change with the change of heart rate as it reflects 

the time that passes between the depolarization of first ventricle muscle and the last one and 

because the AP is carried on the ventricle through the high speed Purkinje fibers and travels 

only a short distance in the ventricle between the endocardium and the epicardium.  

The QT period is closely related to the Plateau period of the Ventricle AP. This is controlled 

by the ANS and changes with the Heart rate. Several formulae were developed to link 

between the QT interval and the Heart rate. The recent and the most accurate one is the 

Framingham correction formula [40]. The formula linearly normalizes the QT interval to  

60 BPM Heart rate according to the relation 

 

 QTLC QT 0.154* 1 RR   , (1) 
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where QTLC is the linearly corrected QT interval duration in seconds, QT is the original  

QT intervals in seconds, and RR is the original interval between two successive R-waves in 

seconds [40]. 

 

Manual and automated QT interval measurement and sources of variation in the QT readings 

were described by Simova and Christov [42]. 

 

As the ANS modulates the cardiac pacemaker and provides beat by beat regulation of the 

cardiovascular system [47], the analysis of Heart rate variability (HRV) can be used clinically 

to assess the ANS providing separate measures of the sympathetic and parasympathetic 

nervous systems [22]. The ECG recording may contain various challenging problems such as 

segment with high noise content, sudden change in QRS amplitude and morphology, or 

muscle and electrode artifact which are not often detected correctly. Hence, reliable and 

correct detection of QRS complexes, under various backgrounds, is very important in any 

algorithm used for ECG analysis. The correct performance of these systems depends on 

several important factors such as quality of ECG signal, the applied detection rule, the 

learning and used testing dataset [21, 25]. 

 

Methodologies  

Slope vector waveform algorithm 
Köhler et al. [23] proposed a Slope vector waveform (SVM) algorithm for the detection of 

QRS complexes in electrocardiographic signals that is based on a feature obtained by 

counting the number of zero crossings per segment. At first, a low-pass filter with cut-off 

frequency 45 Hz is used to filter high-frequency noise, and SVW algorithm is considered 

following filtering. The process of SVW is divided into two steps: variable stage differential 

and non-linear transform.  

 

For non-linear enhancement, the enhancement function used in [23] is written as: 

 

   2 3 4

3 0, 1,8F x x a x x x    , (2) 

 

where a3 is the coefficient that relies upon expected signal-to-noise ratio ratio. 

 

It is well known that zero crossing methods are robust against noise and are particularly useful 

for finite precision arithmetic. Their suggested new detection method inherits this robustness 

and provides a high degree of detection performance even in cases of very noisy 

electrocardiographic signals. Furthermore, due to the simplicity of detecting and counting 

zero crossings, their proposed technique provides a computationally efficient solution to the 

QRS detection problem. They have confirmed the performance of the algorithm by a 

sensitivity of 99.70% (277 false negatives) and a positive predictivity of 99.57% (390 false 

positives) against the MIT-BIH arrhythmia database [23]. 

 

Fuzzy c-means algorithm 
Deelport and Liesch presented an application of Fuzzy c-means algorithm (FCM) for the 

detection of QRS complexes, using the entropy criteria for the generation of the feature signal 

[12]. This method is suitable for the detection of all kind of morphologies of QRS complexes 

suggested by Mehta et al. [25] the FCM algorithm, which is best known fuzzy clustering 

algorithm, produces constrained soft partition. In order to produce constrained soft partition, 

the objective function J1 of hard c-means has been extended in two ways: (1) the fuzzy 
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membership degree in cluster has been incorporated in the formula and (2) an additional 

parameter m has been introduced as a weight exponent in fuzzy membership. The extended 

objective function, denoted by Jm, is: 
 

  2
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  , (3) 

 

where P is fuzzy partition of dataset X formed by C1, C2, …, Ck and k is number of clusters. 

The parameter m is weight that determines the degree to which partial members of cluster 

affect the clustering result. 

 

Overview of FCM 

FCM (X, c, m, ε) 

X: unlabeled dataset; 

c: the number of cluster to be formed; 

m: the parameter in objective function; 

ε: threshold for the convergence criteria; 

1. Initialize the prototype V = {v1, v2, …, vk}; 

2. Repeat steps 3, 4 and 5 until, 

1

   
c

prevoius

i i

i

v v 


  ; (4) 

3. previousV V ; 

4. Compute the membership function using Eq. (3); 

5. Update the prototype, vi in V using Eq. (4).  

 

The performance of the algorithm was validated using original 12-lead ECG recording from 

the standard ECG database and the onset and offset of the QRS complexes are found to be 

within tolerance limit given by CSE library [25]. 

 

Pan-Tompkins and wavelet algorithms 
The basic idea is to run both algorithms in parallel. When both methods disagree whether to 

predict a QRS complex in a particular time window, Meyer et al. [26] applied a data-driven 

strategy for deciding whether or not to accept the candidate QRS complex. More precisely, in 

cases of disagreement, they suggest to locally rerun the Pan-Tomkins (PT) method with a 

modified threshold, accepting the result of the local rerun as the final decision. The local 

decisions can formally be seen as the majority vote of a (three-component) ensemble 

classifier, where, the third classifier repeats one of the first two classifications, however, with 

modified threshold. Meyer et al. [26] introduced two parameters α and β to control the 

threshold adjustment, which are both estimated on training data. By varying α and β, in 

theory, interpolate between the predictions of the individual algorithms and Boolean 

combinations like union and intersection [26]. 

 

In Fig. 1 the PT method detects peaks at time points 50, 219, and 386 (dashed lines), and the 

wavelet method at time points 219, 386, and 472 (dotted lines); dashed-dotted lines refer to 

QRS complexes predicted by both algorithms [26]. In Fig. 2 the PT algorithm detects peaks at 

time point’s 50, 275, and 498 (dashed lines), and wavelet at time points 41, 139, 368, and 498 

(dotted lines); dashed-dotted lines: prediction by both algorithms [26]. 
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Fig. 1 Example for automatic QRS complex 

detection 

Fig. 2 Second example for automatic QRS 

complex detection 

 

Difference operation method 
Yeh and Wang [48] proposed a simple and fast algorithm, termed the Difference operation 

method (DOM) for detecting the QRS complex. The proposed DOM includes two stages.  

The first stage is to find the point R by applying the difference equation operation to the ECG 

signal. The second stage looks for the points Q and S according to the point R to find the QRS 

complex. The DOM method can detect the QRS complex easily without any complex 

mathematical calculation, such as cross-correlation, Fourier transformation, etc. The time 

complexity for DOM is O(n), where n is the number of sampling points (that is, more 

sampling points need more processing time). The MIT-BIH arrhythmia database [27] is 

experimented to evaluate the effectiveness of the proposed DOM and it has only 0.19% 

failure rate which is much better than the other popular methods. 

 

Combined adaptive threshold 
A real-time detection method is proposed, based on comparison between absolute values of 

summed differentiated electrocardiograms of one of more ECG leads and adaptive threshold. 

The threshold combines three parameters: an adaptive slew-rate value, a second value which 

rises when high-frequency noise occurs, and a third one intended to avoid missing of low 

amplitude beats [9]. 

 

Two algorithms were developed: Algorithm 1 detects the current beat present in the ECG 

signal and Algorithm 2 has an RR interval analysis component. The algorithms are  

self-adjusting to the thresholds and weighting constants, regardless of resolution and sampling 

frequency used. They operate with any number L of ECG leads, self synchronize to QRS or 

beat slopes and adapt to beat-to-beat intervals. The algorithms were tested by an independent 

expert, thus excluding possible author's influence, using all 48 full-length ECG records of the 

MIT-BIH arrhythmia database. The results were: sensitivity Se = 99.69% and specificity  

Sp = 99.65% for Algorithm 1 and Se = 99.74% and Sp = 99.65% for Algorithm 2 [9]. 

 

Empirical modal decomposition 
Hadj Slimane and Naït-Ali [16] proposed Empirical modal decomposition (EMD) which is 

defined by a process called sifting. It decomposes a given signal x(t) into a set of AM-FM 

components, called Intrinsic mode functions (IMF). Therefore, K modes dk(t) and a residual 

term r(t) [11, 29] are obtained and expressed by: 

 

     
1

,       1, 2, ,  
s

k

k

X t d t r t k s


    .  (5) 
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The EMD algorithm is summarized by the following steps: 

1. Start with the signal dl(t) = x(t), k = 1. Sifting process hj(t) = dk(t), j = 0; 

2. Identify all local extrema of hj(t); 

3. Compute the upper (EnvMax) and the lower envelopes (EnvMin) by cubic spine lines 

interpolation of the maxima and the minima; 

4. Calculate the mean of the lower and upper envelopes, 

      
1

2
m t EnvMin t EnvMax t  ;  (6) 

5. Extract the detail hj+1(t) = hj(t) − m(t); 

6. If hj+1(t) is an IMF, go to step 7, else, iterate steps 2 to 5 upon the signal hj+1(t), j = j +1; 

7. Extract the mode dk(t) = hj+1(t); 

8. Calculate the residual rk(t) = x(t) − dk(t); 

9. If rk(t) has less than 2 minima or 2 extrema, the extraction is finished r(t) = rk(t).  

Else, iterate the algorithm from step 1 upon the residual rk(t), k = k + 1. 

 

This algorithm requires the following stages: a high-pass filter, signal EMD, a non-linear 

transform, integration and finally, a low-pass filter is used. In order to evaluate the proposed 

technique, the well known ECG MIT-BIH database has been used. Moreover it is compared 

to a reference technique, namely Christov’s detection method [9]. The proposed algorithm 

allows achieving high detection performances [16]. 

 

Short-time Fourier transform based technique 
Uchaipichat and Inban [44] have proposed the Short-time Fourier transform (STFT) which 

was employed in ECG filtering stage. The narrow rectangular window was used to transform 

ECG signals into time-frequency domain. The temporal information at 45 Hz from 

spectrogram was analyzed for detecting QRS locations. The automated thresholding 

combined with local maxima finding method was modified to find the QRS location [44]. 

 

The STFT is the technique for non-stationary signal analysis that transforms signal 

information from time domain into time-frequency domain. The main concept of the STFT is 

to consider a non-stationary signal as a stationary signal over short periods of time within a 

window function [15, 17]. The computation of STFT can be defined as: 

 

      2,  j ftT f x t w t e dt 






    ,  (7) 

 

where w(t − τ) is the window function. From Eq. (1) the STFT maps signal x(t) into two-

dimensional function in time, τ, and frequency, f. The energy surface distribution of STFT 

called spectrogram can be computed by 

 

    2, | , |  E f T f  .  (8) 

 

The rectangular window was used in this study. The narrow window width of 16-point was 

used because the high resolution in time is required to detect QRS complex. The data used in 

their study was MIT-BIH Arrhythmia database. As the results, their proposed technique 

achieved the detection rate better than 99% [44]. 
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Discrete wavelet transform 
Behbahani and Dabanloo have proposed multiresolution wavelet and thresholding methods 

for automatic QRS Complex detection [7]. A wavelet has its energy concentrated in time. 

Sinusoids are useful in analyzing periodic and time-invariant phenomena, while wavelets are 

well suited for the analysis of transient, time-varying signals, thus well suited for ECG 

signals. Basically wavelet transform is the convolution operation of the subject signal f(t) and 

the wavelet function ψ(t). The Discrete wavelet transform (DWT) is expressed as: 

 

   , ,  j k j kX f t t dt




  .  (9) 

 

The approximation coefficient of the signal f(t) is represented as: 

 

   , ,j k j kA f t t dt




  ,  (10) 

 

where  (t) is scaling function, j and k are scale and location respectively. For a range of scale 

n, the original signal f(t) under DWT can be represented as: 

 

     
1

 
n

n j

j

f t f t d t


  , (11) 

 

where fn(t) is mean signal approximation and is given by 

 

   , ,n n k n kf t A t   (12) 

 

and dj(t) is detail signal approximation in scale j. 

 

Automatic extraction of time plane features is important for cardiac disease diagnosis.  

This paper presented a multi-resolution wavelet transform based system for detection and 

evaluation of QRS complex. In first step, Behbahani et al. [7] have implemented the selective 

confident method to find the QRS complex, at next step threshold method is applied to find 

the QRS complex and finally applied the composition of first step algorithm and thresholding 

method which shows robust ability of finding QRS compared to other methods. Achieved 

overall accuracy of QRS detection for only d4 scale without threshold is 84.48%, the 

composition of d3, d4, d5 without threshold 93.23%, only d4 with threshold 90%, and d3, d4, d5 

with threshold 98.2% [7]. 

 

QRS complex analysis: cardiovascular conditions 
A disturbance in the conduction of excitation from the atria to the ventricles is revealed by the 

prolongation of the P-R intervals. Any electrocardiographic lead, which records the P- and 

QRS-wave, can be used to diagnose atrioventricular conduction defects. The electro-

cardiogram can reflect many types of conduction defects. One of these is the atrial 

arrhythmias which may be compatible with life but the severe and dangerous one  

is the ventricular fibrillation where death is ensued if proper step against fibrillation not being 

taken [22]. 
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Analysis of HRV data from patients with congestive heart failure shows a decrease in spectral 

power at all frequency ranges [41]. This finding provides very important evidence that cardiac 

parasympathetic function is depressed in patients prone to sudden cardiac death [22].  

Pueyo et al. stated in their article about the effect of QRS slopes upon ischemia [34]. 

Myocardial ischemia precedes infarction and is manifested by reduced blood flow to the 

heart, and may be caused by narrowing or occlusion of a coronary artery during a short period 

of time. Ischemia is sometimes accompanied with pain (angina pectoris) and sometimes 

without (silent ischemia), thus making its diagnosis more difficult. During the first instants of 

acute coronary occlusion, ischemia is manifested in the ECG by changes in the ventricular 

repolarization period (i.e., ST segment and T-wave). Alterations during the ventricular 

depolarization (QRS complex) have traditionally been associated with the onset of the 

necrotic process. However, early animal studies demonstrated changes in QRS morphology 

due to slowing of intra myocardial conduction during ischemia [17-19]. Later on, similar 

results have been obtained in clinical studies with patients undergoing percutaneous trans-

luminal coronary angioplasty (PTCA). During this procedure, a balloon is inserted and 

inflated inside a coronary artery to induce controlled ischemia, whereas, upon release, the 

blood flow to the cardiac cells is restored. Wagner et al. [46] reported on changes in QRS 

amplitudes during PTCA. Some changes occurred during the early part of inflation being 

secondary to ST segment changes. However, primary changes occurred during the later part 

which was believed to reflect conduction delays. Since such changes disappeared after 

balloon deflation, they were associated with ischemia. In another study with patients 

undergoing elective PTCA in one of the major coronary arteries [33], the time course of 

ischemia was analyzed during both depolarization and repolarization. It was shown that QRS 

changes occur later in time than ST and T changes, indicating that more severe ischemia is 

required to cause depolarization changes. Recent studies have suggested that a decrease in 

high-frequency content (150-250 Hz) of the QRS complex is a better marker of ischemia than 

the traditional ST index [19, 26, 34]. However, the reduction in RMS voltage of the high-

frequency QRS components (HF-QRS) exhibits large inter individual variation, disqualifying 

this index for separation of subjects with and without Coronary artery disease (CAD) [18] and 

subjects with and without previous MI [36]. The main clinical application of HF-QRS is thus 

restricted to the monitoring of ischemia in a given patient [1, 4, 31], unless a baseline  

HF-QRS value is available for the patient. In addition to the RMS voltage, the high-frequency 

QRS components have been quantified by the presence of so-called reduced-amplitude zones 

(RAZ). Abboud et al. introduced an RAZ index which, in contrast to the RMS voltage, was 

able to separate healthy subjects from CAD patients [2]. It is known that myocardial ischemia, 

in its advanced phase, modifies the electrophysiological properties of the ventricular cells by 

reducing the upstroke slope and the amplitude of the action potential, due to an increase in the 

potassium level of the extracellular space [10, 19, 45]. These alterations may be manifested as 

a widening of the QRS complex and a decrease in its amplitude. Accordingly, Pueyo et al. 

[34] hypothesized that the reduction in the upward and downward slopes of the QRS complex 

serve as measurements of ischemia-induced alterations and the approach avoids the problem 

of filter ringing, which smears the signal so that the nature of the localized HF-QRS features 

is masked. Furthermore, the proposed slope indices do not require signal averaging, but are 

computed directly from the ECG, thus constituting more robust indices. To further investigate 

this, Pueyo et al. [34] measured the QRS slopes and HF-QRS both before and during PTCA 

recordings and compared the abilities of the indices as well as some other traditional ECG 

indices, to detect ischemia-induced alterations. Pueyo et al. concluded that QRS slope 

information can be used as an adjunct to the conventional ST segment analysis in the 

monitoring of myocardial ischemia [34]. 
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Altuve et al. [3] have stated in their article about Apnea-Bradycardia Characterization in 

Preterm Infants by analyzing QRS complex of ECG signal. The repetition of these episodes 

has been associated with a poor neuromotor prognosis at 3 years [20] and has been identified 

as a predisposing factor to sudden-death syndrome in newborns [5]. Furthermore, these 

episodes extend the hospitalization periods and occasionally require telemonitoring at home. 

Therefore, in neonatal intensive care units, preterm infants undergo continuous 

cardiorespiratory monitoring to detect apnea-bradycardia episodes and to initiate quick 

nursing actions. Manual stimulation is the most common way to stop apnea-bradycardia 

episodes in preterm newborns, however, the intervention delay measured from the activation 

of the monitoring alarm to the application of the therapy remains long [32]. The cardiac cycle 

length (RR interval) extracted from the electrocardiogram (ECG) is generally used to detect 

apnea-bradycardia episodes. However, other parameters extracted from the ECG, like R-wave 

amplitude and QRS complex duration, could be also integrated in a new detection approach. 

Therefore, in this paper, three time series (RR, R-wave amplitude and QRS complex duration) 

were studied for periods at rest, before, during and after apnea-bradycardia episodes.  

To extract these series from the ECG, a QRS detector algorithm [30] followed by an ECG 

segmentation method [13] were applied. However, these methods were conceived for the 

analysis of adult ECG and should be adapted to the specific characteristics of the newborn’s 

ECG. Evolutionary algorithms were chosen to realize these important steps. 

 

Altuve et al. [3] have proposed an automatic beat detection and segmentation methods which 

have been adapted to the ECG signals from preterm infants, through the application of two 

evolutionary algorithms. ECG data acquired from 32 preterm infants with persistent apnea-

bradycardia have been used for quantitative evaluation. The adaptation procedure led to an 

improved sensitivity and positive predictive value, and a reduced jitter for the detection of the 

R-wave, QRS onset, QRS offset, and iso-electric level. Additionally, time series representing 

the RR interval, R-wave amplitude and QRS duration, were automatically extracted for 

periods at rest, before, during and after apnea-bradycardia episodes. Significant variations  

(p < 0.05) were observed for all time-series when comparing the difference between values at 

rest versus values just before the bradycardia event, with the difference between values at rest 

versus values during the bradycardia event. These results reveal changes in the R-wave 

amplitude and QRS duration, appearing at the onset and termination of apnea-bradycardia 

episodes, which could be potentially useful for the early detection and characterization of 

these episodes [3].  

 

In patients with Brugada syndrome (BS), the presence of fragmented QRS was shown to 

predict occurrence of spontaneous ventricular arrhythmias and cardiac arrest [28]. Batchvarov 

et al. [6] used Principal component analysis (PCA) of the QRS complex to assess 

depolarization heterogeity during Ajmaline test in 96 patients with suspected BS. PCA was 

performed on 15-lead ECGs (12 leads +V1, V2 and V3 from 3rd inter costal space, V1 h to 

V3 h using a) V1, V2 and V3 (QRS-PCA stand), b) V1 h, V2 h and V3 h (QRS-PCA high), 

and c) V1 to V3, V1 h to V3 h (QRS-PCA total). Among patients with positive tests (n = 23), 

those with symptoms (n = 6) had higher QRS-PCA high before (p = 0.003) and during 

maximum drug effect (p = 0.001) than those without symptoms (n = 17). Following Ajmaline 

test [6], QRS-PCA decreased significantly in patients with negative (n = 73) (p = 0.00004), 

but not in those with positive tests (p = 0.098). Symptomatic patients with non-diagnostic 

resting ECGs have increased depolarization heterogeneity. PCA could detect depolarization 

heterogeity and thus help the diagnosis and risk stratification of patients with BS [6]. 
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Time-domain Ventricular late potentials (VLP) analysis has established the clinical value for 

stratifying the risk of development of sustained ventricular arrhythmias in patients recovering 

from myocardial infarction, and for the identification of patients with ischemic heart disease 

and unexplained syncope [8]. Recently, the VLP parameters have also been applied to assess 

the risk of ventricular arrhythmias for symptomatic and asymptomatic patients with BS [43], 

Chagas disease patients [35] and patients with arrhythmogenic right ventricular 

cardiomyopathy [14]. Lin [24] proposed a Finite-impulse-response (FIR) prediction model to 

analyze the Unpredictable intra-QRS potentials (UIQP) for identifying ventricular tachycardia 

patients with high-risk ventricular arrhythmias. The simulation study shows that a QRS 

complex including Abnormal intra-QRS potentials (AIQP) has a higher UIQP and  

UIQP-to-QRS ratio in comparison with one without AIQP. The clinical results demonstrate 

that the mean UIQP-to-QRS ratios of VT patients in leads X, Y and Z were significantly 

larger than those of the normal subjects, and the linear and logical combination of  

UIQP-to-QRS ratios and ventricular late potential parameters can enhance diagnosis 

performance for VT patients [24]. 

 

Romero et al. [38] evaluated as to represent a robust measure of pathological changes within 

the depolarization phase i.e. ischemia-induced changes in the main three slopes of the QRS 

complex, upward (τUS) and downward (τDS) slopes of the R-wave as well as the upward (τTS) 

slope of the terminal S-wave (Fig. 3). They proposed 4 major steps for their evaluation, i.e.  

1) evaluate the normal variation of the QRS slopes in the standard 12 leads at resting state 

(control recordings) in a large population, with the purpose of determining reliable limits of 

significant QRS slope changes due to an ischemic patho-physiological process; 2) apply a 

normalization procedure to both control and PCI recordings to attenuate low-frequency 

variation in the slopes and stabilize the slope reference for better quantification of patho-

physiologically significant changes; 3) test the performance of this improved method in 

monitoring QRS slope changes along the dynamic ECG recordings during PCI-induced 

ischemia on the standard 12-lead ECG and leads derived from the spatial QRS loop; and  

4) determine the timing of significant changes during PCI [38]. 

 

 
Fig. 3 Template of the simulation study and related upward  

and downward slopes τUS and τDS 

 

Ruschitzka et al. [39] presented in their article Cardiac-resynchronization therapy (CRT) that 

reduces morbidity and mortality in chronic systolic heart failure with a wide QRS complex. 

Mechanical dyssynchrony also occurs in patients with a narrow QRS complex, which 

suggests the potential usefulness of CRT in such patients. In patients with systolic heart 

failure and QRS duration of less than 130 msec, CRT does not reduce the rate of death or 

hospitalization for heart failure and may increase mortality (funded by Biotronik and GE 

Healthcare; EchoCRT ClinicalTrials.gov number, NCT00683696) [39]. 
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Conclusion 
The process of determining or labeling the type of cardiac dysfunction which are related with 

QRS complex can be challenging. By implementing automated detection algorithms, it can be 

easier to detect or monitor the normal and abnormal cardiac conditions. Certain vital techniques 

and algorithms to detect and analyze the QRS complex are discussed in this review, i.e. 

 SVW algorithm which shows sensitivity of 99.70% [23];  

 FCM algorithm which use multilead (i.e. 12 lead) detection of onset and offset of the 

QRS complexes [12];  

 Pan-Tompkins and wavelet algorithms [26]; 

 Difference operation method which proposed a simple and fast algorithm with only 

0.19% failure rate [48]; 

 Christov developed Combined adaptive threshold method to solve the problem 

remains with QRS detection accuracy in noisy ECGs [9];  

 EMD [16];  

 STFT based technique [44];  

 DWT [7].  

 

More over all these methods are evaluated with standard databases (i.e. MIT-BIH ECG 

databases).  

 

The effect of QRS complex on various other cardiac conditions is discussed i.e. QRS-wave 

can be used to diagnose atrio-ventricular conduction defects [22], effect of QRS slopes upon 

ischemia [34], changes in QRS amplitudes during PTCA [46], effect of QRS components on 

CAD [18], Apnea-bradycardia characterization in Preterm Infants by analyzing QRS complex 

[3], presence of fragmented QRS in BS [28] & UIQP for identifying ventricular tachycardia 

[24]. However many techniques have been evolved for the detection and quantification of 

QRS complex, but the further need of research have to be done in this field to achieve more 

significant and analytical results. For the reader to understand the key concepts, this review 

analyses the QRS complex, which will help them to carry on their further research. 

 

References 
1. Abboud S. (1993). High-frequency Electrocardiogram Analysis of the Entire QRS in the 

Diagnosis and Assessment of Coronary Artery Disease, Prog Cardiovasc Dis, 35(5),  

311-328. 

2. Abboud S., B. Belhassen, H. I. Miller, D. Sadeh, S. Laniado (1986). High Frequency 

Electrocardiography using an Advanced Method of Signal Averaging for Non-invasive 

Detection of Coronary Artery Disease in Patients with Normal Conventional 

Electrocardiogram, J Electrocardiology, 19(4), 371-380. 

3. Altuve M., G. Carrault, J. Cruz, A. Beuchae, P. Pladys, A. Hernandez (2009). Analysis of 

the QRS Complex for Apnea-bradycardia Characterization in Preterm Infants,  

Proceedings Annual International Conference of the IEEE Engineering in Medicine and 

Biology Society, 1, 946-949. 

4. Aversano T., B. Rudikoff, A. Washington, S. Traill, V. Coombs, J. Raqueno (1994).  

High Frequency QRS Electrocardiography in the Detection of Reperfusion Following 

Thrombolytic Therapy, Clin Cardiol, 17(4), 175-182. 

5. Baird T. M. (2004). Clinical Correlates, Natural History and Outcome of Neonatal Apnea, 

Semin Neonatology, 9(3), 205-211. 



 INT. J. BIOAUTOMATION, 2014, 18(3), 181-194 
 

 

 

191 

6. Batchvarov V. N., I. I. Christov, G. Bortolan, E. R. Behr (2010). Principal Component 

Analysis of the QRS Complex During Diagnostic Ajmaline Test for Suspected Brugada 

Syndrome, Computing in Cardiology, 37, 501-504. 

7. Behbahani S., N. J. Dabanloo (2011). Detection of QRS Complexes in the ECG Signal 

using Multiresolution Wavelet and Thresholding Method, Computing in Cardiology, 38, 

805-808. 

8. Cain M. E., J. L. Anderson, M. F. Arnsdorf, J. W. Mason, M. M. Scheinman, A. L. Waldo 

(1996). Signal-averaged Electro Cardiography, Journal of the American College of 

Cardiology, 27, 238-249.  

9. Christov I. I. (2004). Real Time Electrocardiogram QRS Detection using Combined 

Adaptive Threshold, BioMedical Engineering OnLine, 3, 28, http://www.biomedical-

engineering-online.com/content/3/1/28. 

10. Cimponeriu A., C. F. Starmer, A. Bezerianos (2001). A Theoretical Analysis of Acute 

Ischemia and Infarction using ECG Reconstruction on a 2-D Model of Myocardium, 

IEEE Trans Biomed Eng, 48(1), 41-54. 

11. Damerval C., S. Meignen, V. Perrier, Empirical Mode Decomposition, http://www-

ljk.imag.fr/membres/ValeriePerrier/PUBLI/EMD.pdf 

12. Deelport V., D. Liesch (1994). Fuzzy C-means Algorithm for Code Book Design in 

Vector Quantization, Electronic Letter, 30(13), 1025-1026. 

13. Dumont J., A. Hernández, G. Carrault (2010). Improving ECG Beats Delineation with an 

Evolutionary Optimization Process, IEEE Transactions on Biomedical Engineering, 

57(3), 607-615. 

14. Folino A. F., B. Bauce, G. Frigo, A. Nava (2006). Long-term Follow-up of the Signal- 

averaged ECG in Arrhythmogenic Right Ventricular Cardiomyopathy: Correlation with 

Arrhythmic Events and Echocardiographic Findings, Europace, 8, 423-429. 

15. Gade S., K. Gram-Hansen (1997). The Analysis of Non-stationary Signals, Sound and 

Vibration, 31, 40-46. 

16. Hadj Slimane Z.-E., A. Naït-Ali (2010). QRS Complex Detection using Empirical Mode 

Decomposition, Digital Signal Processing, 20(4), 1221-1228. 

17. Hamlin R. L., F. S. Pipers, H. K. Hellerstein, C. R. Smith (1968). QRS Alterations 

Immediately following Production of Left Ventricular Freewall Ischemia in Dogs,  

4m J Physiol, 215, 1032-1040. 

18. Hamlin R. L., F. S. Pipers, H. K. Hellerstein, C. R. Smith (1969). Alterations in the QRS 

during Ischemia of the Left Ventricular Free-wall in Goats, J Electrocardiology, 2,  

223-228.  

19. Holland R. P., H. Brooks (1976). The QRS Complex during Myocardial Ischemia:  

An Experimental Analysis in the Porcine Heart, J Clin Invest, 57, 541-550. 

20. Janvier A., M. Khairy, A. Kokkotis, C. Cormier, D. Messmer, K. J. Barrington (2004). 

Apnea is Associated with Neurodevelopmental Impairment in Very Low Birth Weight 

Infants, J Perinatology, 24(12), 763-768. 

21. Jekova I., V. Krasteva, I. Dotsinsky (2009). Filtering of Chest Compression Artefacts in 

the Electrocardiogram, Int J Bioautomation, 13(4), 19-28. 

22. Khayer M. A., M. A. Haque (2004). ECG Peak Detection using Wavelet Transform,  

Proceedings of 3
rd

 International Conference on Electrical & Computer Engineering 

ICECE 2004, Dhaka, Bangladesh, 28-30. 

23. Köhler B. U., C. Hennig, R. Orglmeister (2003). QRS Detection Using Zero Crossing 

Counts, Progress in Biomedical Research, 8(3), 138-145. 

24. Lin C.-C. (2010). Analysis of Unpredictable Components within QRS Complex using a 

Finite-impulse-response Prediction Model for the Diagnosis of Patients with Ventricular 

Tachycardia, Computers in Biology and Medicine, 40(7), 643-649. 



 INT. J. BIOAUTOMATION, 2014, 18(3), 181-194 
 

 

 

192 

25. Mehta S. S., C. R. Trivedi, N. S. Lingayat (2009). Identification and Delineation of QRS 

Complexes in Electrocardiogram using Fuzzy c-means Algorithm, Journal of Theoretical 

and Applied Information Technology, 5, 609-617.  

26. Meyer C., J. F. Gavela, M. Harris (2006). Combining Algorithms in Automatic Detection 

of QRS complexes in ECG Signals, IEEE Transactions on Information Technology in 

Biomedicine, 10(3), 468-475. 

27. MIT-BIH Database Distribution, Massachusetts Institute of Technology, Cambridge, MA, 

1998. 

28. Morita H., K. F. Kusano, D. Miura (2008). Fragmented QRS as a Marker of Conduction 

Abnormality and a Predictor of Prognosis of Brugada Syndrome, Circulation, 118,  

1697-1704. 

29. Oukhellou L., P. Aknin, E. Delechelle (2006). Railway Infrastructure System Diagnosis 

using Empirical Mode Decomposition and Hilbert Transform, Proceedings of 

International Conference in Acoustics, Speech and Signal Processing, ICASSP 2006, 

Toulouse, 3, doi: 10.1109/ICASSP.2006.1660866. 

30. Pan J., W. J. Tompkins (1985). A Real-time QRS Detection Algorithm, IEEE Trans 

Biomed Eng, 32(3), 230-236. 

31. Pettersson J., E. Cairo, L. Edenbrandt, C. Maynard, O. Pahlm, M. Ringborn, L. Sommo, 

S. G.Warren, G. S.Wagner (2000). Spatial, Individual, and Temporal Variation of the 

High-frequency QRS Amplitudes in the 12 Standard Electrocardiographic Leads,  

Amer Heart J, 139, 352-358. 

32. Pichardo R., J. S. Adam, E. Rosow, J. Bronzino (2003). Vibrotactile Stimulation System 

to Treat Apnea of Prematurity, Biomed Instrum Technol, 37(1), 34-40. 

33. Pueyo E., J. García, G. Wagner, R. Bailón, L. Sörnmo, P. Laguna (2004). Time Course of 

ECG Depolarization and Repolarization Changes during Ischemia in PTCA Recordings, 

Methods Inf Med, 43, 43-46. 

34. Pueyo E., L. Sornmo, P. Laguna (2008). QRS Slopes for Detection and Characterization 

of Myocardial Ischemia, IEEE Transactions on Biomedical Engineering, 55(2), 468-477. 

35. Ribeiro A. L., P. S. Cavalvanti, F. Lombardi, M. C. Nunes, M. V. Barros, M. C. Rocha 

(2008). Prognostic Value of Signal-averaged Electrocardiogram in Chagas Disease, 

Journal of Cardiovascular Electrophysiology, 19, 502-509.  

36. Ringborn M., O. Pahlm, G. S. Wagner, S. G. Warren, J. Pettersson (2001). The Absence 

of High-frequency QRS Changes in the Presence of Standard Electrocardiographic QRS 

Changes of Old Myocardial Infarction, Amer Heart J, 141(4), 573-579. 

37. Rioul O., M. Vetterli (1991). Wavelets and Signal Processing, IEEE Signal Processing 

Magazine, 8, 14-38. 

38. Romero D., M. Ringborn, P. Laguna, O. Pahlm, E. Pueyo (2011). Depolarization Changes 

during Acute Myocardial Ischemia by Evaluation of QRS Slopes: Standard Lead and 

Vectorial Approach, IEEE Transactions on Biomedical Engineering, 58(1), 110-120. 

39. Ruschitzka F., J. Brugada, H. Krum (2013). Cardiac-resynchronization Therapy in Heart 

Failure with a Narrow QRS Complex, N Engl J Med, 369, 1395-1405. 

40. Sagie A., M. G. Larson, R. J. Goldberg, J. R. Bengtson, D. Levy (1992). An Improved 

Method for Adjusting the QT Interval for Heart Rate (The Framingham Heart Study),  

The American Journal of Cardiology, 70(7), 797-801. 

41. Sahambi J. S., S. N. Tandon, R. K. P. Bhatt (1997). Using Wavelet Transform for ECG 

Characterization, IEEE Engineering in Medicine and Biology Magazine, 16(1), 77-83. 

42. Simova I., I. Christov (2007). Sources of Variation in the QT Readings: What should you 

be Aware of?, Int J Bioautomation, 6, 78-91. 

43. Tatsumi H., M. Takagi, E. Nakagawa, H. Yamashita, M. Yoshiyama (2006).  

Risk Stratification in Patients with Brugada Syndrome: Analysis of Daily Fluctuations in 



 INT. J. BIOAUTOMATION, 2014, 18(3), 181-194 
 

 

 

193 

12-lead Electrocardiogram (ECG) and Signal Averaged Electrocardiogram (SAECG), 

Journal of Cardiovascular Electrophysiology, 17(7), 705-711.  

44. Uchaipichat N., S. Inban (2010). Development of QRS Detection using Short-time 

Fourier Transform based Technique, IJCA Special Issue on Computer Aided Soft 

Computing Techniques for Imaging and Biomedical Applications – CASCT, 7-10. 

45. Vandyck-Acquah M., P. Schweitzer (2004). Electrocardiographic Background,  

In: Dynamic Electrocardiography, M. Malik, A. Camm, (Eds.), Oxford, U.K., Blackwell 

Future, 217-232. 

46. Wagner N. B., D. C. Sevilla, M. W. Krucoff, K. L. Lee, K. S. Pieper, K. K. Kent,  

R. K. Bottner, R. H. Selvester, G. S. Wagner (1998). Transient Alterations of the QRS 

Complex and ST Segment during Percutaneous Transluminal Balloon Angioplasty of the 

Left Anterior Descending Coronary Artery, Amer J Cardiology, 62, 1038-1042. 

47. Wiklund U., M. Akay, U. Niklasson (1997). Short-term Analysis of Heart-rate Variability 

by Adapted Wavelet Transform-methods for Characterizing Autonomic Nervous System 

Modulation of Cardiovascular Activity, IEEE Engineering in Medicine and Biology 

Magazine, 113-118. 

48. Yeh Y.-C., W.-J. Wang (2008). QRS Complexes Detection for ECG Signal:  

The Difference Operation Method, Computer Methods and Programs in Biomedicine, 91, 

245-254. 

 

 



 INT. J. BIOAUTOMATION, 2014, 18(3), 181-194 
 

 

 

194 

Assist. Prof. Akash Kumar Bhoi, M.Tech. 

E-mail: akash730@gmail.com 

 

 

 

Akash Kumar Bhoi has completed his B.Tech. (Biomedical 

Engineering) from the TAT, Bhubaneswar and M.Tech. (Biomedical 

Instrumentation) from Karunya University, Coimbatore in the year 

2009 and 2011 respectively. He is working as an Assistant Professor 

in the Department of Applied Electronics & Instrumentation at 

Sikkim Manipal Institute of Technology (SMIT), India since 2012. 

He is a member of ISEIS & IAENG, Associate member of UACEE 

and Editorial Board member of IJAEEE, ITSI-TEEE, IJECCE and 

IJCTT. His areas of research are Biomedical Signal Processing, 

Image Processing, Sensor & Transducer and Medical 

Instrumentation. He has published papers in national and 

international journals and conferences. He has also published two 

book chapters. He has participated in workshops, seminars and 

conferences. 

 

 

 

Prof. Karma Sonam Sherpa, Ph.D.  

E-mail: karmasherpa23@gmail.com 

 

 

 

Karma Sonam Sherpa has completed his B.E. (Electrical 

Engineering) from the MREC, Jaipur, and M.Tech. (Power 

Electronics and Machine Drives) from I.I.T., Kharagpur in the year 

1996 and 2003 respectively. He is a doctorate from Sikkim Manipal 

University. He has been serving SMIT, Sikkim for the last sixteen 

years. Presently, he is a Professor in the Department of Electrical & 

Electronics Engineering and officiating head of the Department of 

Applied Electronics & Instrumentation Engineering. He is a life 

member of ISTE, IEI and System Society of India. His areas of 

interests are Electric Power Distribution System, Power Electronics 

and Electrical Drives. He has published papers in national and 

international journals and conferences. He has organized workshop, 

seminars and conference. 

 

mailto:akash730@gmail.com
mailto:karmasherpa23@gmail.com

