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Abstract: A modeling approach 63 based on multiple output variables least squares support 

vector machine (MLS-SVM) inversion is presented by a combination of inverse system and 

support vector machine theory. Firstly, a dynamic system model is developed based on 

material balance relation of a fed-batch fermentation process, with which it is analyzed 

whether an inverse system exists or not, and into which characteristic information of  

a fermentation process is introduced to set up an extended inversion model. Secondly,  

an initial extended inversion model is developed off-line by the use of the fitting capacity of  

MLS-SVM; on-line correction is made by the use of a differential evolution (DE) algorithm 

on the basis of deviation information. Finally, a combined pseudo-linear system is formed by 

means of a serial connection of a corrected extended inversion model behind the L-lysine 

fermentation processes; thereby crucial biochemical parameters of a fermentation process 

could be predicted on-line. The simulation experiment shows that this soft-sensing modeling 

method features very high prediction precision and can predict crucial biochemical 

parameters of L-lysine fermentation process very well. 

 

Keywords: L-lysine fed-batch process, Mass balance relations, Differential evolution 

algorithm, Soft-sensing. 

 

Introduction 
As the indispensable first limiting amino acid in the production process of such sectors as 

medicine, feedstuff and foodstuff, L-lysine has experienced an ever growing market demand 

in recent years [7, 9, 13, 18, 21]. However, L-lysine fermentation process goes with  

a complicated mechanism, featuring strong non-linear property, time variance, uncertainty, 

etc., so it is hard to make on-line or fast measurement of some crucial biochemical parameters 

(such as mycelia concentration, sugar concentration and chemical potency) that directly 

reflect quality during the fermentation process. Currently, they are mostly obtained by way of 

laboratory off-line analysis and assay following timing sampling, and they come with  

a substantial time delay in measurement, making it hard to meet the requirements on real-time 

control and greatly limiting the application of advanced technology in L-lysine fermentation 

process [1, 10, 11, 22]. Soft-sensing technology is an effective way to solve this problem. 

Therefore, research in the soft-sensing of L-lysine fermentation process is of great theoretical 

significance and application value. 

 

As the inverse system method features a clear concept, a simple method and so on, it has been 

extensively applied in non-linear system soft-sensing. However, the application of the inverse 

system method requires the associated object’s mathematical model and specific system 

parameters to be already known; moreover, the analytic expression of the inverse system 

should be accurately determined. All these greatly limit the application of the inverse system 
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method in the soft-sensing of complicated non-linear systems. Specific to the foregoing 

“bottlenecks”, some scholars have introduced the idea of intelligent control into inverse 

system method [3], have used neural network to get inversion models of non-linear systems, 

and have applied that to the soft-sensing of fermentation. However, in this method,  

the process system model for inverse system analysis is based on a simplified model of 

Monod equation which ignores many non-linear components, making it inconsistent with  

the practice of fermentation processes and unreasonable to the original non-linear coupling 

system. Also, traditional neural network method is based on the asymptotic theory of sample 

approximates to infinite, while in such a complicated non-linear system as a biological 

fermentation process, it is hard to obtain accurate sample data, in addition to such problems as 

model structure selection, algorithm convergence, uniqueness of solution, etc. 

 

On the basis of this, in this work, with the use of a mechanism modeling approach, a dynamic 

system model is developed based on the material balance relation in L-lysine fermentation 

processes. With respect to the multi-variable non-linear model, the inverse system method is 

combined with the support vector machine theory, and a modeling approach based on 

multiple output least squares support vector machine (MLS-SVM) inversion is presented.  

The theoretical analysis and the simulation result have demonstrated that the approach 

provides higher accuracy in predicting crucial biochemical parameters during L-lysine 

fermentation process. 

 

Fermentation processes modeling 

In this work, where L-lysine fed-batch fermentation process is taken as an example,  

the concentrations of mycelia and metabolite in various feeding liquids are assumed to be 0. 

According to the material balance relation (1) Eq. (1) of various substances (mycelia, 

substrate, metabolite, oxygen, H+ and so on) in the fermentation process, a dynamic system 

model [2] is developed. 

 

( , , , , )L

x x
X S P C X

d dV
pH

dt dV t
   (1) 

 

where { , , , , }Lx X S P C pH  and , , , , ,LX S P C pH V are mycelia concentration, sugar 

concentration, chemical potency, dissolved oxygen concentration, pH value and the volume of 

the fermentation liquor, respectively;   is the specific rate of various substances.   

 

During the fermentation of L-lysine fed-batch, various nutrient solutions are added at a certain 

speed rate, which aims to supplement the necessary carbon source, nitrogen source, inorganic 

salt, precursor substances and biotin, as well as adjust and control the pH value of  

the fermentation liquor within an optimal range. Fermentation volume V  and pH vary with 

the addition of various nutrient solutions. Their balance equations are expressed respectively 

as:  

 

s aspc nh csl

dV
f f f f f

dt
      (2) 

( , , , ),
nh nh c c asp asp cs

L

l cslS f f f S fdpH dV
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S SpH
X S P C X

Vdt t Vd
  

  
  (3) 
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where , , ,nh aspc sf f f f and cslf  are respectively the liquid feeding speeds of glucose, aqueous 

ammonia, monopotassium phosphate, aspartic acid (precursor substance) and corn steep 

(biotin); , , ,c nh asp cslS S SS  are respectively the liquid concentrations of glucose, aqueous 

ammonia, aspartic acid and corn steep;  is the specific consumption of H+.  

 

As a restrictive substrate medium of L-lysine fermentation, the carbon source is required in  

a relatively large quantity and will be consumed at a comparatively fast speed. Considering 

the influence of carbon source (glucose) addition on the fermentation process, the balance 

equation of substrates is expressed as: 

 

( , , , ), c
L c

dS dV
p

S S
X S P C X f

V
H

Vdt dt
     (4) 

 

where   is the specific consumption rate of various substrates. 

 

In the L-lysine synthesis stage, in order to raise the production volume of L-lysine, refrain 

synthesis of by-product glutamic acid, precursor substances and biotin should be added in 

large volume. The influence of aspartic acid and corn steep added on the fermentation process 

has been considered in the balance equation of chemical potency. 

 

,( , ), ,
as aspp csl csl

L

K f K P
X S

fdP dV
pH X

dt
P

d
C

V V t
 


   (5) 

 

where: 
aspK  and cslK  are saturation coefficients;   is the specific production rate of  

the product. 

 

With respect to the aerobiotic characteristic of L-lysine fermentation and in consideration of 

the influence of the reactor size on the dissolved oxygen level of the fermentation liquor,  

the volume oxygen-transferring coefficient ( LaK ) is introduced into dissolved oxygen balance 

equation: 

 

*( , , , ), ) (L L
L La L L

C
X S P C X

dC dV
pH C C

dt dt
K

V
     (6) 

 

where *

LC  is the dissolved oxygen concentration in saturation status; 
T

c nh s paapf f f f f    is 

the specific consumption rate of oxygen. 

 

Mycelia concentration, sugar concentration and the chemical potency  
T

X S P  are selected 

as non-direct immeasurable directly measurable variables; dissolved oxygen concentration, 

pH value and fermentation liquor volume  
T

LC pH V  are selected as directly measureable 

variables; the feeding speeds of various substrates 
T

c nh s asp cslf f f f f    are selected as input. 

Its system status Eq. (7) can be expressed as: 

 



 INT. J. BIOAUTOMATION, 2015, 19(2), 207-222 
 

210 

5
1

1 1

16

5
2

2 1

16 6

5
3 5 3

3 1

1 2 3 4 5

1 1
1 2 3 4 5

2 4
1 2 3 4 5

1 2 3 4 5 4 5

2
1 2 3

16 6

5
4

4 1 4

16

6 1
4 55 1

( , , , , )

( , , , , )

( , , , , )

( , , , , )

( , , , , )

i

i

i

i

i

i

i

i

x
x x x x x x x u

x

s u x
x x x x x x x u

x x

s u s u x
x x x x x x x u

x x

x
x x x x x x x s x s u

x

s u s
x x x x x x x



















 

   


  

    


 









5
7 4 8 5

16

5

1 5

6

1 2 3 46 5

1

i

i

i

i

u s u s u x
u

x

x u u u

x

u u u



















 






     






 (7) 

 

where    
T T

1 2 3 4 5 6 L, , , , , , , , , ,x x x x x x X S P C pH V x  is the status vector; 

 
T

1 2 3 4 5

T

, , , , , , , ,c nh s s slp cau u u u u f f f f f    u  is the input vector; , , , ,      are the 

analytical functions of the respective status variables; ( 1,2, ,8)is i   are all constants other 

than zero. 

 

Reversibility analysis 
Specific to the dynamic system model of L-lysine fermentation process, soft-sensing 

modeling for multi-variable nonlinear system is made based on inverse system theory.  

 

Suppose there is a “multi-dimension sensor” existing in L-lysine fermentation process: Take 

the non-direct measurable variable x̂ = T

1 2 3( , , )x x x  as its input, and the directly measurable 

variable T

4 5 6( , , )x x xz  as its output, and u= T

2 3 41 5( , , , , )u u u u u  as parameters (dynamic 

coupling existing between variables). If it can be proven that the “multi-dimension sensor” is 

reversible, and its inverse model can be built, then, by serial connection of it as a dynamic 

compensator and a “multi-dimension sensor”, a unit compound system is constructed.  

As the input and the output of the unit compound system present a decoupling identical 

mapping relation, it is possible to realize dynamic compensation to the “multi-dimension 

sensor”, and go further to realize true reappearance of 1 2 3, ,x x x  (i.e. soft-sensing) 

 

Below, reversibility analysis will be made on the “multi-dimension sensor” in the L-lysine 

fermentation process, and its inverse system model will be developed. 

 

Lemma 1. The necessary and sufficient condition for reversibility of System Σ within certain 

realm of Point  0 0,x u : The system meets  T Tˆ
m mrank r l   Z x , l is the dimension number 

of non-direct measurable variable.  

 

Use Interactor algorithm to analyze the reversibility of the “multi-dimension sensor” [2],  

with the analysis process as follows:  
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Calculate all-order derivatives of the directly measurable variable ( 1, 2, 3)iz i   to the time
( )

, , , ik

i i izz z , and select function's derivative information to constitute the vector mZ .  

From Eq. (7):  
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From Eq. (8), it is obvious that 1 1( , ) ( 1, 2, 3)i iz x g x i     x u , 3m  . Let Jacobian 

matrix T T

3 11 2 1 2 3
ˆ ( , , ) ( , , )z z z x x x     J Z x , then 
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Make elementary row transformation for J  and obtain the following: 
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 is constantly not zero in the whole real 

vector space, it can be known from Lemma 1 that
1 22 3

T T

1 1
ˆ ( , , ) ( , 3, )m z z z x x x      J Z x , 

meeting the system reversibility condition, i.e. the system is globally reversible. However,  

as far as  det J  is concerned, it is hard to ensure that the condition of not being zero is met 

everywhere in the whole real vector space R. 

 

Based on the foregoing, and in consideration of the current operation of L-lysine fermentation 

process (always operating in a certain specific working area and such an area is only a very 

small part of the real vector space R), let us first assume that  det J  in the working area of  

L-lysine fermentation process is constantly not zero, meeting the reverse condition for  

the “multi-dimensional sensor”. Afterwards, use the method herein to build the inverse  

soft-sensing model, and then use the actual test result to judge whether such an assumption is 

reasonable. 

 

If we assume that the system meets the inversion conditions in the working area of L-lysine 

fermentation process, then, according to the inverse function existence theorem and the  

Eqs. (7) and (8), the structure of the inverse model of “multi-dimensional sensor” for L-lysine 

fermentation process is: 
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 (11) 

 

L-lysine fermentation process is a complicated non-linear system featuring strong coupling 

and great time variance, while expression (7) is a so-called “grey box” model built based on 

balance relationship of various materials during the fermentation process, presenting the 

following assumption: 1) During fermentation, temperature and pressure in the fermentation 

tank remain constant; 2) Fermentation liquor and various materials concentration as well as 

other factors are not influenced by fermentation heat. Thereby, the inverse model Eq. (12), 

obtained from the assumption conditions does not reflect fermentation temperature, air flow 

volume, waste oxygen content, waste CO2 content and so on, which are parameters exerting 

remarkable influence over L-lysine fermentation process. As a result, the prediction result of 

the soft-sensing comes with a deviation and the prediction precision can hardly meet the 

requirements for an actual fermentation process. Therefore, based on the inverse model’s 

basic structure express (12), 4 parameters, namely, fermentation temperature ( tW ), air flow 

volume ( aF ), waste oxygen content ( cO ) and waste CO2 ( cR ) are introduced into it for 

building the soft-sensing model. The structure expression of the extended inverse model goes 

as follows: 
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As crucial parameters of L-lysine fermentation process are introduced into Eq. (13) for 

building an inverse system, hence more characteristic information of the fermentation process 

being obtained, the inverse system features stronger adaptation to parameter variation during 

fermentation and stronger restraining ability against interference, thus improving adaptability 

of the inverse system. 

 

However, it is hard to get the analytical expression of the extended inverse model Eq. (12). 

But in recent years, support vector machine algorithm has become a popular research subject, 

breaking the thinking limitation of the empirical risk minimization inductive principle, 

providing a brand-new perspective for machine learning based on empirical risk minimization 

inductive principle, and, additionally, solving such problems as learning and local minimum 

arising out of neural network algorithm, featuring good generalization ability and system 

identification ability, thus suitable for solving non-linear identification problem of a 

complicated non-linear system [4, 6, 8, 12, 14, 19, 20]. Based on this, this work uses support 

vector machine’s strong approximation ability towards non-linear function to identify  

the three non-linear functions 4 5 6, ,    in Eq. (12). 

 

Inverse model identification and soft-sensing modeling 

MLS-SVM algorithm 
Traditional LS-SVM is built upon multi-input/single-output, so it is hard to realize 

identification of a multi-input/multi-output system. To meet the requirement for identification 

of L-lysine fermentation (multi-input/multi-output) inverse model, this work improves  

the algorithm. 

 

Traditional LS-SVM defines the following optimization problems, given L pairs  

of a sample set 
1{( , )}i i

l
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where a  is Lagrange multiplier,   is relaxing factor, and   is penalty parameter. 

 

In this work, the relaxing factor in optimization problem (13) is replaced by a quadratic loss 

function of error, and based on the original LS-SVM problem, the original problem of  

MLS-SVM is presented: 
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where l n R , n  is the number of output variables, 1( ) [ ( ) (,, )]i i i l  x x x . 

 

With the introduction of Lagrange multiplier a , m la R , m  being input vector number,  

and problem (14) becomes: 
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According to KKT optimization conditions,  
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 (16) 

 

Considering Eq. (16), i  and w  are removed, and the optimization problem is transformed 

into solving the following equation set: 

 

   
T0

0
( , )

i i i

i i

b
K I

 
 

 

γ
a y

γ x x
 (17) 

    

where ( , )nK x x  meets the kennel function of Mercer conditions; in this work, RBF kennel 

function 
2

2

( , ) exp[ (2 )]ji i jK   x x x x  is used, with   being kennel width. 

 

The matrix 

T0

( , )i iK I

 
 

 

γ

γ x x
 is non-singular, so 

 

   
-1

T0
0

( , )
i i i

i i

b
K I

 
  

 

γ
a y

γ x x
 (18) 

 

So, the i-th output of MLS-SVM is: 

 

( ) ( , )i i ji if K b x a x x  (19) 

 

Regarding MLS-SVM system identification, the selection of kennel function parameter σ  and 

penalty parameter γ  exerts great influence over the building of the inverse model. Traditional 

parameter selection methods are mostly based on experience and trial-error methods, making 

it hard to ensure precision and computing speed. In order to obtain a soft-sensing model with 
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a relatively high prediction effect, this work applies a differential evolution algorithm to make 

on-line optimization and adjustment of MLS-SVM. 

 

Differential evolution algorithm 
Differential evolution (DE) algorithm is a simple but very effective real parameter random 

optimization algorithm [5, 15-17]. DE uses computing steps similar to the standard evolution 

algorithm, including three operations: variation, crossover and selection. However, unlike  

the traditional evolution algorithm, DE uses proportional difference vectors generated by 

varied individuals randomly selected to interfere with the population individuals of the current 

generation, hence no need for using singular probability distribution to generate the offspring. 

In DE algorithm, D-dimension real parameter vectors 
1{ , , } ( 1, , )t t t

i i iDX x x S i NP    in 

the number of NP constitute a generation of population { , , }N

t t t

i PP X X  and make parallel 

direct search in the search space; here max0, 1, , Tt   represents the evolved generation. 

 

In variation operation, variation vector 
1, ),(t t t

i i iDV v v  is generated by way of carrying out 

variation operation on every target individual t

iX , i.e. on the basis of Eq. (20). 

 

1 2 3( )t t t t

i r r rV X F X X     (20) 

 

where 1 2 3, ,r r r  are integers randomly selected from the set { 1, 2, , }i NP  and different 

from each other; F  is the scale factor with a value range being [0.4, 1], used for controlling 

scaling of the differential vector. 

 

To enhance the potential diversity of population, the target vector t

iX  and its variation  

vector t

iV  make a cross-operation, i.e. generating a test vector 
1 ),( ,tt

tDi

t

tU u u  according to 

Eq. (21). 

 

rand, rand CR or

, otherwise

t

ij ijt

ij t

ij

v j j
u

x

  
 
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 (21) 

 

where randij
 is the randomly selected dimension number index, which ensures that at least 

one element of the test vector t

iU  is contributed by the variation vector; t

iV  is a probability 

constant. 

 

Greedy strategy is used for selection operation. Use Eq. (22) to compare the objective 

function value (fitness) of the test vector with the objective function of the target individual;  

if the former is smaller or equal to the latter, the test vector will take the place of  

the corresponding target individual and enter the next generation, otherwise the target vector 

is kept unchanged. 

 

1
, ( ) ( )

, otherwise

i t t

t i it

i t

i

U f U f X
X

X


 

 
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 (22) 
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where f is objective function; the objective function selected in this work for DE operation is 

the square of the deviation between MLS-SVM output value and off-line analysis value. 

 

DE algorithm features simple theory, a small number of controlled parameters and fast 

convergence speed, hence an effective global optimal search algorithm. It is comparatively 

suitable for solving complicated optimization problems, so the use of DE’s global search 

capability to make on-line optimization and adjustment on performance parameters σ  and 

2 31{ , , }x x x  of MLS-SVM will definitely result in a relatively accurate inverse system model. 

 

Inverse model identification based on MLS-SVM 
Use MLS-SVM to identify the extended inversion model (12) of L-lysine fermentation 

process, with specific steps of the identification process as follows: 

 

1) Data acquisition. In the working area of L-lysine fermentation process, an adequate 

excitation signal is applied to the system; on the precondition of meeting the sampling 

theorem, make timing sampling on excitation input signal, directly measurable 4 5 6{ , , }x x x  and 

relevant parameter { , , , }a c ctW F O R , thus obtaining the original data sample 
1 2 3 4{ , , , ,u u u u  

4 5 65, , , , , , , }t c cau x x x W F O R . Non-direct measurable variable 1 2 3{ , , }x x x  can be obtained by 

way of laboratory off-line assay. 

 

2) Data Processing. To calculate all-order derivatives in need, according to the inverse model 

structure determined with Eq. (12), use the method of higher order numerical differentiation 

(five points derivation method is used herein) on  4 5, ,x x u  obtained from sampling, to get its 

all-order derivatives  4 4 5, , ,x x x u . Also, use polynomial interpolation method to process  

off-line data 1 2 3{ , , }x x x  into data of the corresponding sampling period. As a result, a data 

sample set 1 2 3{ , , }x x x  and   4 5 4 4 56, , , , , , , , , , ,a c ctx x x x x x W F O Ru u will be obtained, with 

the former serving as the output of the extended inversion model (i.e. a crucial biochemical 

parameter) and the latter is the input for the extended inversion model. 

 

3) Off-line fitting and on-line correction. Based on the input/output data set, have MLS-SVM 

undergo off-line training and learning, and use crossover verification method to determine  

the corresponding initial parameters (σ  and γ ), thus building the initial extended inverse 

model. According to the analysis value of an actual fed-batch fermentation process and  

the deviation information output by the extended inversion model, go further to use DE 

algorithm to optimize MLS-SVM performance parameters and make on-line correction on  

the initial extended inversion model. Fig. 2 shows the on-line correction figure of the 

extended inversion model of L-lysine fermentation process. 
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Fig. 2 On-line correction figure of the extended MLS-SVM inversion model 

 

Soft-sensing modeling method based on MLS-SVM inversion 
To ensure high-quality input data obtained from soft-sensing, it is necessary to process error 

of the input data ( 4 5( ), ( ),x pH x CL u  in particular, if the noise pollution is not effectively 

filtered out, it will cause frequent data variation of 4 4 5, , ,x x x u  and a substantial variation 

amplitude). To effectively filter out random errors, this work proposes an improved method  

to process error. Take pH as example. Firstly, make data pretreatment of the input values  

to refrain strong noise as the initial step; afterwards, make secondary treatment on  

the processed data (moving average filtering method) to further refrain noise error.  

The specific steps are as follows: 

 

1) Judge whether ( )nx k  is pathological data. Method: If k is 1, directly go to Step 2); 

otherwise, make calculation of ˆ( ) ( 1)n nx k x k  ; if the value is bigger than the threshold value 

( max ( ) ( 1) max ( ) ( 1) ,( 2 ),3,n n n nx k x k s k s k k      ), go to Step 2); otherwise, the measured 

value is reliable, so make ˆ ( ) ( )n nx k x k  and go to Step 3). 

 

2) According to Eq. (23), confirm whether it is pathological data and make a correction. 
 

1 1 1

1 1 1

( ) ( ),

( ) (

ˆ( ) ( 1) ( )

ˆ ˆ( ) ( ) ( 1) ( )

( ), otherwise

),

n n n n n

n n n n n n

n

k s k

k s k

x x k x k s k

x k x x k x k s k

x k

  

  

   


 



 



 (23) 

 

3) According to Eqs. (24) and (25), update ( )nx k  and ( )ns k  at moment k. 

 

1
ˆ( 1) ( )

( ) n n
n

n x x k
x k

n

 
  (24) 

2 2

1

1 1
ˆ( )( ( ( ) ( ))

1
)n n n n

n
s k x k x k

n n
s k 


 


  (25) 

 

where 
1( ), ( )n nk xx k

  average pH values of batch n − 1 and batch n at moment k; 
1

ˆ ( )nx k
 and 

ˆ ( )nx k   corrected pH values of batch n − 1 and batch n at sampling moment k; 
1( )ns k

 and 

( )ns k   pH standard deviation of batch n − 1 and batch n at sampling moment k. 
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4) Make moving average filtering processing according to Eq. (26). 

 

1 2 1 1
ˆ ˆ ˆ ˆ ˆ

15 15 5

4
( ) ( 4) ( 3)

1
( 2) ( 1) ( )

5 3
n n n n n nx k k kx x x xk k kx          (26) 

 

where ( ), ( )5, 6, 7,nx k k   is the result of moving average filtering. 

 

Fig. 2 is the figure of error processing results of pH value of Batch 9. 

 

 
Fig. 2 Comparison of error processing results of the pH value of Batch 9 

 

According to Fig. 2, after error processing by use of the improved method, pathological data 

of pH are eliminated and data become smoother, thus reducing the negative impact on  

the model exerted by the first derivation of pH with a relatively big variation amplitude and 

enhancing the soft-sensing precision. 

 

After connecting the improved error processing module and the extended MLS-SVM 

inversion model of L-lysine fermentation process, a unit compound system is formed; make 

the compound system’s input/output to present an identical mapping relationship and realize 

on-line prediction of crucial biochemical parameters. Fig. 3 shows a combined pseudo linear 

system chart. 
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Fig. 3 Combined pseudo linear system chart 

 

Simulation test and analysis 
Take the fermentation process of L-lysine fed-batch as the object for experimental 

verification. To bring the experiment close to an actual production process, the experiment 

process is designed as follows: 
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1) The fermentation period for each batch is 72 h, the sampling period is 15 min, the tank 

pressure is controlled between 0-0.25 Mp, and the temperature in the early and the middle 

stage of fermentation is controlled at about 32 °C, while that in the late stage of fermentation 

is about 30 °C; mark the reference reading of the dissolved oxygen electrode when the mixing 

motor speed is 400 r/min before the fermentation. Non-direct measurable variable 1 2 3{ , , }x x x  

is obtained every two hours by sampling and off-line assay. Among that, X  is obtained by 

calculation based on the dry cell weight method, i.e. taking 10 ml fermentation liquor in  

a centrifugal tube, running centrifugal operation for 5 min at 3000 r/min, abandoning  

the supernatant, washing with distilled water twice, and after drying it at 105 °C till it 

becomes dry and its weight is constant, weighing it. Use SBA-40C multi-functional biosensor 

for measurement of .S  P uses improved ninhydrin colorimetry for measurement, i.e. use 2 ml 

supernatant and add 4 ml ninhydrin reagent for mixing; use a boiling water bath for heating 

for 20 min; after cooling, measure the optical density at the 475 mm position by use of an 

ultraviolet spectrophotometer; and get the value by reference to a standard L-lysine curve. 

 

2) During the experiment, only 10 batches of medium are considered to check the 

identification ability of MLS-SVM inversion over small samples. The initial conditions of 

various batches are set to be different, with the flow strategies of various nutrient solutions 

varying correspondingly to enlarge batch differences. Among them, the fermentation data of 

the first 6 batches are selected as a training sampling set, which are off-line trained to obtain 

the initial extended inversion model of the fermentation process, then the data of the 7
th

 batch 

and the 8
th

 batch are used to correct on-line the initial extended inversion model, and the data 

of the 9
th

 batch and the 10
th

 batch are used to examine the identification precision of  

the extended inversion model. 

 

To verify the performance of this method, compare it with the traditional LS-SVM method 

and calculate the relative error of the soft-sensing results. The initial performance parameter 

of MLS-SVM uses empirical values: 2 [1.0, 1.0, 1.0]σ , [10, 10, 10]γ . Following DE 

calibration, the performance parameters of MLS-SVM are: 2 [0.53, 1.61, 0.48]σ , 

[10.2, 6.4, 8.2]γ . 

 

Fig. 4 shows the comparison figure of crucial biochemical parameter soft-sensing results in 

the 10
th

 batch fermentation. Fig. 5 is the relative error figure of the corresponding soft-sensing 

values and the off-line assay values. Table 1 lists the maximum relative error MRE of  

the soft-sensing results of the two data batches. 

 

Results and discussion 

As shown in Fig. 4, Fig. 5 and Table 1, in comparison with the use of the traditional LS-SVM 

soft-sensing method, MLS-SVM inverse soft-sensing method produces prediction results that 

are closer to actual assay values; in particular, the prediction effect of its sugar concentration 

is very remarkable, adequately indicating that this work’s assumption that det( )J  is 

constantly not equal to zero in the penicillin (the fermentation process working area) is totally 

reasonable. During the logarithmic phase and the stationary growth stage (15-55 h) of  

L-lysine fermentation, when LS-SVM method is used, the average RMSE of the soft-sensing 

of mycelia concentration, sugar concentration and chemical potency are 0.216, 0.149 and 

0.182 respectively, while when MLS-SVM inverse method is used, the soft-sensing RMSE of 

the three results are respectively 0.0436, 0.0385 and 0.0402. This shows that the use of  

MLS-SVM inverse method is effective and reliable, capable of enhancing soft-sensing 
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precision of mycelia concentration, sugar concentration and chemical potency, and reaching 

the expected goal relatively satisfactorily. 

 

 
(a) Biomass concentration 

 
(a) Biomass concentration 

 
(b) Substrate concentration 

 
(b) Substrate concentration 

 
(c) Product concentration 

 
(c) Product concentration 

Fig. 4 Comparison figure Fig. 5 RE Comparison of the prediction results 

 

Table 1. MRE comparison by two models 

Fermentation  

batch 

MLS-SVM Inversion LS-SVM 

X, [g·L
-1

]  S, [g·L
-1

]  P, [g·L
-1

] X, [g·L
-1

]  S, [g·L
-1

]  P, [g·L
-1

] 

The 9
th

 batch 1.96%     1.35%      2.04% 6.23%      3.07%     4.82% 

The 10
th

 batch 2.01%     1.51%      1.87% 5.02%      2.84%     4.77% 

 
In order to solve the difficulties in on-line measurement of crucial biochemical process 

variables in L-lysine fed-batch fermentation process, a modeling approach of L-lysine 

fermentation process soft-sensing based on MLS-SVM inversion is presented in this work by 

a combination of inverse system and support vector machine theory. On the basis of building 

a dynamic system model for fed-batch fermentation process, reversibility analysis is made on 

a non-linear model based on the inverse system method; also MLS-SVM system identification 

and DE algorithm on-line optimization are used to build an extended inversion model,  

and in this way on-line prediction of crucial biochemical parameters during fermentation is 

realized. Simulation research has shown that the system dynamic model is reasonable and that 

MLS-SVM inverse soft-sensing method is effective for L-lysine fed-batch fermentation 

process. 
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