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Abstract: Electroporation-based cancer treatment techniques are currently after active 

investigations in the field of drug delivery, optimization of electrical parameters and 

elucidation of the exact mechanisms at a molecular level. The present study is designed to 

investigate the exact in vivo redistribution and persistence of nanoparticles in the tumor tissue 

of colon-cancer grafted mice after electroporation with two different kinds of electrodes.  

The aim of the study is to avoid artifacts during electroporation due to accumulation of 

nanoparticles in the surrounding non-cancer tissues. The isolated electrodes are appropriate 

for the treatment of 3-dimensional tumors and have a large potential in this field.  
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Introduction 
Electroporation is a biophysical phenomenon which is connected to the application of external 

electrical pulses across the cell membrane, aiming to increase its natural permeability [13, 16] 

Some drugs (e.g., bleomycin, cisplatin, nanoparticle-based, etc.), used in chemotherapy 

practices, have poor access to the tumor cells and electroporation offers a possibility for 

enhancing their local delivery [11, 15]. A lot of studies show several-fold potentiating of 

cytotoxicity of anticancer drugs after application of short high-voltage electrical  

pulses [4, 17]. The process is known as electrochemotherapy. Recently this method has been 

routinely used in oncological clinics [5, 14].  

 

Electroporation-based cancer treatment techniques are currently after active investigations in 

the field of drug delivery, optimization of electrical parameters and elucidation of the exact 

mechanisms at a molecular level. Besides membrane electroporation, application of electrical 

pulses in tumor tissues causes blood flow reduction, thus inducing drug entrapment into  
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the target tissue for hours [18]. The exact distribution and retention of drugs into the tumor 

tissue are still disputable issues.  

 

One appropriate approach for the elucidating of the above-mentioned questions is  

the development of highly target-specific and image-guided drug-delivery systems (DDS) 

with drug-release control, based on nanotechnologies [3]. Nanoscaled drug delivery systems 

(nano-DDS or nanoparticles) are constructed to deliver a high local concentration of drugs 

into the target locus (organs, tissues or even cells). The designing of nanocarriers, capable of 

selective disposition into the cancer cells and solid tumors, is an essential issue in the 

development of new diagnostic and therapeutic strategies in cancer [2, 9, 12]. The target-

specific nano-DDS allow the achievement of a much higher local concentration of the 

encapsulated substances (drugs and/or contrast agents) in the region of interest, which can 

improve the diagnostic potential and therapeutic effect [6]. For target selective drug delivery 

and delivery of imaging probes polyioncomplex hollow vesicles (polymersomes) have been 

used as a rule for the last several years. Polymersomes are labeled with different contrast 

agents and their pharmacokinetics is verified in vivo by optical imaging, magnetic resonance 

imaging, positron emision tomography and multimodal imaging. Some of the most 

appropriate fluorescent markers for deep tissue optical imaging are the semiconductor 

quantum dots (QDs) due to their unique spectral properties [1, 3, 22]. In the last years there 

has been an increased number of publications about the application of facilitating and 

accelerating delivery techniques. Electro-assisted technics is also a promising tool. 

 

The present study is designed to investigate the exact in vivo redistribution and persistence of 

nanoparticles in the tumor tissue of colon-cancer grafted mice after electroporation with two 

different kinds of electrodes. The aim of the study is to avoid artifacts during electroporation 

due to the accumulation of nanoparcticles in the surrounding non-cancer tissues. 

 

Materials and methods 

Chemicals 
QD

705
 (Qdot®705 ITK

TM
 carboxyl quantum dots) were purchased from Invitrogen.  

Water-soluble polymersomes were prepared from chemically modified chitosan as described 

by Lee et al. [8]. Labeling of polymersomes with QDs was carried out via carbodiimide 

chemistry, using N-(3-dimethylaminopropyl)-N-ethylcarbodiimide hydrochloride (EDC)  

as a zero-length cross-linker [7]. The nanoparticles were characterized by transmission 

electron microscopy (TEM), dynamic light scattering (DLS) and fluorescent spectroscopy. 

QD concentration in polymersomes was calculated by the method of Yu et al. [21]. 

 

Isoflurane was purchased from Abbott (Japan). All chemicals used in this study were 

analytical or HPLC grade. 

 

Experimental cancer model 
Balb6 nude mice (21  2 g) were used. Conol 26 cells (1x10

5
 in 10 µL PBS, pH 7.4) were 

inoculated subdermally in the left/right hindpaw. All measurements were performed  

~ 9-10 days after inoculation, when the tumor size was ~ 100 mm
3
. 

 

All experiments were conducted in accordance with the guidelines of the Physiological 

Society of Japan and were approved by the Animal Care and Use Committee of the National 

Institute of Radiological Sciences, Chiba, Japan. 
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Optical imaging 
All experiments in vivo were conducted under anesthesia. Briefly, the mouse was anesthetized 

with 1.5% isoflurane using a mask. The tail vein was catheterized for administration of 

nanoparticles and the mouse was fixed in the camera of the Maestro EX Imaging System, 

connected to the anesthesia device. The body autofluorescence was registered at excitation 

filter 435-480 nm and emission filter 700 nm longpass. Nanoparticles (QD
705

-labeled 

polymersomes) were injected intravenously (i.v.) via the tail vein (single dose – 80 nmol;  

100 µL volume) and the whole body fluorescence was registered on the back side at different 

time-intervals. 

 

The data were analyzed by Living Image In Vivo Imaging software (Maestro version 2.10.0). 

 

Electroporation 
An electroporator “Chemopulse IV”, generating bipolar pulses, was used in  

the experiments [5]. The instrument was equipped with a large voltage control in the limits  

of 100-2200 V, simplified operations, locking against illegal manipulations and enhanced 

protection against electrical hazards. The electro-treatment was carried out by 16 biphasic 

pulses, each of them of 50+50 μs duration with a 20 µs pause between both phases and  

a pause between bipolar pulses of 880 μs.  

 

Two types of parallel stainless steel electrodes (caliper type) with adjustable intra-electrode 

distance in the range of 1-30 mm were used, the first one without a bottom insulator and 

another one with a 1.5 mm insulator to minimize the side-effects of electroporation  

(e.g., accumulation of nanoparticles, drugs or contrast substances outside the tumor area)  

(Fig. 1). Electrical pulses with intensity of 1000 V/cm were applied.  

 

 
Fig. 1 Two types of electrodes used in the present study: (A) New electrode with bottom 

isolation (left part); (B) Standard electrode without isolation (right part) 

 

Results and discussion 
Aiming to study the effect of electroporation on drug and/or nanoparticles in vivo distribution 

in tumor-grafted mice models, we apply electrical pulses after intravenous (i.v.) injection  

of QD
705 

labeled nanosomes. The images, obtained 2 min after injection (without and 

followed by electroporation with a standard electrode), are presented in Fig. 2. In both cases, 

the tumor was visualized in this short time-interval due to angiogenesis. Three hours after 

treatment, the fluorescent intensity was comparatively high in the tumor area of  

the electroporated mice (Fig. 2E), while without electroporation the fluorescent signal 

disappeared (Fig. 2B). In the case of electroporation, the fluorescence intensity is higher  
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due to penetration of the nanoparticles in cancer tissue and trapping into the tumor area.  

The traces of standard electrodes are detected in non-cancer tissue near the tumor (Fig. 2E). 

Presumably, a part of QD-labeled polymersomes are arrested outside the tumor tissue – in the 

skin covering the implanted tumor. Thus a part of nanoparticles are lost. Figs. 2C and 2F 

present in vivo fluorescence intensity 24 hours after i.v. injection with or without 

electroporation using standard electrode. A significant difference between electroporated and 

non-electroporated mice is observed. Weak tumor fluorescence with clearly visible traces of 

electrodes is shown in Fig. 2F, and there is no fluorescence in the absence of electroporation 

(Fig. 2C). 

 
Fig. 2 Images of colon cancer-grafted mice obtained: 2 min, 3 hours, and 24 hours after i.v. 

injection of polymersomes without electroporation (A-C) and 2 min, 3 hours, and 24 hours 

after i.v. injection of polymersomes with electroporation using standard electrode (D-F) 

 

To avoid side effects of electrotreatment of tumor-grafted mice and to enrich  

the concentration of nanoparticles inside the tumor area, we decided to isolate the bottom  

of the electrodes with the epoxy resin insulator. Fig. 3 shows the fluorescence intensity after 

electroporation using new isolated electrodes. Traces of electrodes are not detected near  

the tumor area. In the tumor area, the fluorescence intensity is comparatively high even  

24 hours after electrotreatment (Fig. 3E). 

 

Currently, the electroassisted therapeutic strategies in cancer are under active investigation. 

Several studies about the dependence of current density and electric field spatial distribution 

[10] on the geometry and position of used electrodes have been published [10, 19]. 

 

The influence of the material of the electrodes is also a disputable issue [20]. To our 

knowledge, there are no data about the exact distribution of the drug applied during 

electrochemotherapy. 

 

Our study shows that the redistribution of the QD
705

 labeled polymersomes (or drugs) into  

the tumor area after electroporation depends on the type of electrodes. In our particular case, 

the isolation of electrodes in the bottom side enhances the delivery of nanoparticles into  

the tumor tissue without “losing material” in the surrounding area. The nanoparticles are 

trapped inside the tumor within 24 hours after combined treatment with nanoparticles and 

electroporation. 
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Fig. 3 Images of colon cancer-grafted mice obtained: 30 min (A), 1 hour (B), 6 hours (C),  

8 hours (D), 24 hours (E), and image and fluorescence intensity spectra of ex vivo tumor  

24 hours (F) after i.v. injection of polymersomes and electroporation  

using new resin isolated electrodes 

 

From our clinical practice we can present a few cases of patients with Carcinoma 

basocellulare and hyper pigmentation on the sides of electrode application even one month 

after electrochemotherapy using standard (non-isolated) electrodes (Fig. 4). 

 

 

Fig. 4 Effect of electrochemotherapy (using standard electrodes) with bleomycin of a patient 

with Carcinoma basocellulare; the arrows point to the traces of the electrodes 

 

Despite the presented side effect of electrochemotherapy, the application of the bottom resin 

isolated electrodes in the cure of human skin tumor lesions is ineffective due to the fact that 

most of them are flat (usually they are not three-dimensional).  

 

The isolated electrodes are appropriate for the treatment of 3D tumors and have a large 

potential in this field. 

 

Conclusion 
In this study, we present in vivo fluorescence imaging of the distribution of QD

705
-labeled 

polymersomes into the tumor area of colon-cancer grafted mice after electrotreatment with 

two different types of electrodes. The results demonstrate that better coverage of the tumor is 

essential for the effectiveness of the electrochemotherapy of three-dimensional tumors.  
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