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Abstract: Two of the most common cardiovascular diseases are myocardial ischemia and 

cardiac arrhythmias. Using the frequency domain features of QRS complex (i.e., frequency 

of the maximum peak in power spectrum and total average power) the proposed approach 

analyzes classification probability for these diseases by implementing Linear Discriminant 

Analysis (LDA) and Decision Tree. Moreover the classification probability is visualized 

using Naive Bayes classification algorithm. The methodology includes the QRS complex 

detection technique which is mainly comprises of three stages: Stage-1 – baseline drifts and 

noise cancellation using Moving Average Filter (MAF) and Stationary Wavelet Transform 

(SWT); Stage-2 – R-peaks localization using threshold based windowed filter: Stage-3 –  

Q and S inflection points detection using search interval method. To perform uniform 

classification probability analysis, the proposed methodology is evaluated with 108 selected 

episodes which show 100% accuracy in QRS complex detection. The 108 episodes includes 

36 lengthy ECG recordings from FANTASIA database (healthy subjects), MIT-BIH 

Arrhythmia database (arrhythmic subjects) and Long-Term ST database (ischemic subjects) 

respectively. Moreover, the energy surface distribution of segmented QRS complex is 

analysed with Short-Term Fourier Transform (STFT) which transforms time domain 

information of the complex into time-frequency domain.  

 

Keywords: Ischemia, Arrhythmia, LDA, Decision tree, Naive Bayes classification. 

 

Introduction 
Ischemia and Arrhythmias are not imminently life-threatening conditions and the further 

critical problems can be prevented with therapeutic methods. Most of the Holter ECG 

machines do not classify abnormalities and they require offline or post processing techniques. 

Signal processing and pattern recognition tasks can be embedded on the real-time machine to 

compute the diagnostic requirement [6, 9, 31]. For frequency-based features, frequency 

spectrum of individual QRS complex is found in the range of 0-20 Hz. The spectrum has 

maximum amplitude at 4 Hz in Ventricular Tachycardia (VT) and its amplitude decreases as 

the frequency increases [26]. The frequencies of Ventricular Fibrillation (VF) are 

concentrated between 4-7 Hz [23]. In the time-frequency technique, Wavelet Transform (WT) 

has applied to extract the features of cardiac arrhythmias [9, 31]. Applying these symptomatic 
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features, linear discriminates and Artificial Intelligent (AI) approaches have been proposed to 

improve the classification of cardiac abnormalities including wavelet neural networks [9], 

Artificial Neural Network (ANN) [1, 4, 26, 32], and fuzzy hybrid neural networks [27, 34]. 

Yazdani et al. [35] implemented fixed structure Mathematical Morphology (MM) operators to 

detect QRS complexes in the ECG. Karimipour et al. [21] introduced a simple, low-latency, 

and accurate algorithm for real-time detection of P-QRS-T waves in the electrocardiogram 

(ECG) signal. Christov et al. [7] have reviewed the algorithms for detection and classification 

of the QRS complexes. Combined criteria have been introduced dealing with the QRS areas 

and amplitudes, the wave shapes evaluated by steep slopes and sharp peaks, 

vectorcardiographic (VCG) loop descriptors, RR intervals irregularities [7]. We have also 

reviewed several existing algorithms and methods for QRS complex detection as well as the 

effect of QRS complex on various critical cardiovascular conditions [3]. Jekova et al. [20] 

presented an ECG database, named “PacedECGdb” which contains different arrhythmias 

generated by HKP (Heidelberger Praxisklinik) simulator, combined with artificially 

superimposed pacing pulses that cover the wide ranges of rising edge (from < 10 μs to 100 μs) 

and total pulse durations (from 100 μs to 2 ms) and correspond to various pacemaker modes. 

It could be used for development and testing of methods for pace detection in the ECG. 

Christov et al. [8] described the automatic detection of QRS-onset and T-end based on the 

minimum value of the angle between two segments having a common midpoint and equal 

lengths of 10 ms. Minimum angle is searched in defined time intervals delineated separately 

for the Q and T.  

 

Lin [24] converts each QRS complexes to a Fourier spectrum from ECG signals; the spectrum 

varies with the rhythm origin and conduction path. The variations of power spectrum are 

observed in the range of 0-20 Hz in the frequency domain. To quantify the frequency 

components among the various ECG beats, grey relational analysis (GRA) is performed to 

classify the cardiac arrhythmias. Exarchos et al. [11] proposed a methodology for the 

automated creation of fuzzy expert systems, applied in ischaemic and arrhythmic beat 

classification. A few other articles suggesting the ischemic effect can be analyzed using QRS 

complex are; morphological changes of QRS slopes upon ischemia [28], changes in QRS 

morphology due to slowing of intra myocardial conduction during ischemia [14, 15, 17], the 

QRS complex is a better marker of ischemia than the traditional ST index [5, 21]. Tanev [33] 

describes very fast procedure for accurate QRS detection in long term ECG Holter recordings, 

followed by classification of the complexes in normal and ectopic. The proposed 

methodology involves the frequency domain features of QRS complex and classifies three 

conditions (i.e., healthy, arrhythmic and ischemic) evaluating standard databases (e.g., 

FANTASIA, MIT-BIH arrhythmia database (MITDB) and Long-Term ST database 

(LTSTDB)). The classification probability estimated with Naive Bayes classification 

algorithm whereas LDA and decision tree are implemented for disease classification. 

 

ECG databases 
The three different classes of ECG signals (i.e., healthy, arrhythmic and ischemic) are selected 

from FANTASIA database, MITDB and LTSTDB respectively. The proposed methodologies 

have been tested over all ECG recording of healthy subjects from FANTASIA database [18], 

arrhythmic patients from MITDB [13] and ischemic patients from LTSTDB [19] having  

1
st
 row (signal) with the duration of 1 hour. The ECG recording of FANTASIA and LTSTDB 

databases are having 250 Hz sampling frequency with 0.004 s sampling interval and MITDB 

database are having 360 Hz sampling frequency with 0.0027 s sampling interval. But out of 

them only 108 (i.e., 36 data from each database) selected ECG data are tabulated (Table 1), 
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which, satisfy the QRS detection performance (i.e., sensitivity and the specificity) to be 

100%. 

 

Baseline drift and noise cancellation 
The ECG signals are passed through pre-processing stages where the baseline drifts and noise 

(i.e., low frequency and high frequency components) is eliminated. The baseline drift of ECG 

signal is removed by applying Moving Average Filtering (MAF) [22] and the process is 

equivalent to low pass filtering with the response of the smoothing given by the difference 

equation by the difference equation: 

 

        
1

1
2 1

SY i Y i N Y i N Y i N
N

      


  (1) 

 

where  SY i  is the smoothed value for the i
th

 data point, N is the number of neighboring data 

points on either side of  SY i , and 2N + 1 is the span. The moving average smoothing method 

used by Curve Fitting Toolbox follows these rules [22]: 

 The span must be odd.  

 The data point to be smoothed must be at the center of the span.  

 The span is adjusted for data points that cannot accommodate the specified number of 

neighbours on either side. 

 The end points are not smoothed because a span cannot be defined. 

 

The Stationary Wavelet Transform [25] is similar to the Discrete Wavelet Transform but the 

SWT [2], output signal is never sub sampled. Considering a given signal X[n] of length N = 2
J
 

for few integer J, where,  1h n  and  1g n  are the impulse responses of the low pass filter and 

the high pass filter. The impulse responses are chosen such that the outputs of the filters are 

orthogonal to each other. The approximation coefficients  1a n  and detailed coefficients 

 1d n  can be obtained with the following equations: 

 

         1 1 1  a n h n X n h n k X k     (2) 

 

         1 1 1  d n g n X n g n k X k     (3) 

 

The filtering result can also be observed from Fig. 1 for MITDB data # 117 having baseline 

drift and noise. The low frequencies components are removed after Fast Fourier Transform 

(FFT) and the signal is restored applying Inverse Fourier Transform (IFT).  

 

QRS complex detection 
The default size windowed filter is applied to the noise free input ECG signal to detect the 

maximum peaks. The small peaks or values are eliminated using a threshold filter and 

significant ones are preserved. The filtering performance is improvised by adjusting size of 

the windowed filter and finally, the R-peaks are detected and localized. After that search 

interval implemented to detect the two inflection points before and after the R-peaks  

(i.e., Q and S point). The normal QRS complex duration is 0.04-0.11 s [30], so the search 

interval-1 is defined which locates 0.027 s before and after the R point. The minimum value 

before R point is marked as point Q1 and after R point is denoted as point S1 [36]. Search 

interval-2 is defined such that 0.055 s before and after R point. The minimum value point 
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behind R is Q2 and after R is S2 [36]. Check the position and amplitude of Q1 and Q2 to 

conform the position of Q. If their position is different and amplitude of Q1 is greater than Q2, 

then the position of Q1 is the position of Q or vice versa. If the position of S1 and S2 are same, 

their position is the position of S. Otherwise, if 
2 1S SV V  the position of point S locates the 

position of point S1; else, the position of point S locates on the position of point S2, where 
iSV  

is the amplitude of point Si, i = 1, 2 (Fig. 1) [36]. To evaluate the classification probability of 

healthy, arrhythmia and ischemia using LDA and decision tree, 100% accurately detected 

QRS complexes (without QT complex inversion) of 108 episodes are selected.  

 

 
Fig. 1 Filtering and QRS complex detection for MITDB data # 117  

(10 s data for better visualization) 

 

The performance of the methodologies is evaluated by the sensitivity (Se) and the specificity 

(Sp). The Se and Sp are normally computed by [36]: 

 

1
FN TP

Se
TP FN TP FN

  
 

  (4) 

 

  1
FP TP

Sp
TP FP TP FP

  
 

  (5) 

 

False Positive (FP) and False Negative (FN) beats are zero for the selected sets of signals  

(i.e., three databases) whereas; the True Positive (TP) beats are 100%. Here Se and Sp found 

to be 100% for the selected 36 signals (i.e., 108 data) from each databases. Further the 

frequency domain features are extracted from the segmented mean QRS complexes of 1 hour 

duration based ECG signals and are tabulated in Table 1. 

 



 INT. J. BIOAUTOMATION, 2015, 19(4), 531-542 
 

535 

Table 1. Frequency domain features of mean QRS complexes 

Fantasia Peak_Freq Pwr MITDB Peak_Freq Pwr LTSTDB Peak_Freq Pwr 

f1o01 8.6207 0.1774 100 21.1765 0.2951 s20011 7.8125 0.1866 

f1o02 11.3636 0.1720 101 15.2432 0.1349 s20051 14.7059 0.3942 

f1o04 12.5000 0.2843 105 5.6250 0.1630 s20061 11.3636 0.2361 

f1o05 16.6667 0.2960 106 18.9474 0.3275 s20071 13.8889 0.2468 

f1o06 11 0.1350 109 5.7143 0.2517 s20081 11.3636 0.2148 

f1o07 9.6154 0.1918 111 6.5455 0.1626 s20091 6.4103 0.1445 

f1o09 10 0.1009 112 9.4737 0.1756 s20101 10.2154 0.0841 

f1o10 12.5000 0.2976 113 18.9474 0.2995 s20111 10.4167 0.3104 

f1y01 13.8889 0.2211 114 17.4217 0.2600 s20121 7.2133 0.0939 

f1y02 13.1579 0.2053 115 12 0.1975 s20131 11.2156 0.1529 

f1y03 15.6250 0.2742 117 11.2500 0.2531 s20141 10 0.1841 

f1y04 12 0.1555 119 14.9571 0.1309 s20151 6.5789 0.1569 

f1y05 14.1241 0.1391 121 7.3469 0.2433 s20161 13.1579 0.2958 

f1y06 16.6667 0.2713 122 9.2308 0.2670 s20171 11.9048 0.2651 

f1y07 10.4167 0.1611 123 8.5714 0.1629 s20181 12 0.1284 

f1y08 15.6250 0.2607 124 6.6667 0.2058 s20191 7.1429 0.2144 

f1y09 14 0.1196 200 8.1818 0.1904 s20201 12.5000 0.2656 

f1y10 15.6250 0.2945 202 6 0.1416 s20211 20.8333 0.2987 

f2o01 14.7059 0.2339 203 5.2174 0.2091 s20221 4.7170 0.1481 

f2o02 13.2561 0.1523 205 7 0.1351 s20231 15.6250 0.3028 

f2o03 9.2593 0.1733 208 8.1742 0.1367 s20241 7.5758 0.1441 

f2o04 13.8889 0.2662 210 5.9016 0.1592 s20251 4.3860 0.1928 

f2o06 14 0.1173 212 8.3721 0.2067 s20261 7 0.1040 

f2o07 9.6154 0.1864 213 10.1246 0.1490 s20271 12 0.1146 

f2o09 13.1579 0.2826 214 5.9016 0.1431 s20272 14.7059 0.2671 

f2o10 10.4167 0.1778 215 15 0.3308 s20273 13.8889 0.2674 

f2y01 15.6250 0.2618 220 22.5000 0.3220 s20274 11.9048 0.2085 

f2y02 10.4167 0.2563 221 12.2512 0.0988 s20281 10.4167 0.1938 

f2y03 15.6250 0.2616 222 11.6129 0.1586 s20291 13 0.1146 

f2y04 10.4167 0.1821 223 7.5000 0.1831 s20301 15.6250 0.3274 

f2y05 12 0.1081 228 9.7297 0.1585 s20331 17.8571 0.2847 

f2y06 13.3151 0.1492 230 13.1572 0.1776 s20341 11.3636 0.2434 

f2y07 11.3636 0.1970 231 13.3333 0.2474 s20351 6.7568 0.1597 

f2y08 9.6154 0.1812 232 14.3721 0.1500 s20361 10 0.1212 

f2y09 9.2593 0.1635 233 11.2500 0.3527 s20371 12.1562 0.1146 

f2y10 15.8333 0.2944 234 8.3721 0.1552 s20381 16.6667 0.2789 

 

Short time Fourier transform 
The Short Time Fourier Transform (STFT) is applied on the segmented mean QRS complex 

accumulated from all the detected QRS complexes of ECG signal and that being further used 

for frequency domain feature extraction. The STFT is the technique for non-stationary signal 

analysis that transforms signal information from time domain into time-frequency domain.  

The main concept of the STFT is to consider a non-stationary signal as a stationary signal 

over short periods of time within a window function [12, 30]. The computation of STFT can 

be defined as follows: 
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      2, j ftT f x t w t e dt 






      (6) 

 

where  w t   is the window function. From Eq. (6) the STFT maps signal x(t) into  

two-dimensional function in time,   and frequency, f. The energy surface distribution of STFT 

called spectrogram (Fig. 2a) can be computed from the following equation: 
 

    2, | , |E f T f    (7) 

 

 
 

a) b) 

Fig. 2 The spectrogram and power spectrum of QRS complex for MITDB # 117:  

a) result of STFT; b) Peak frequency of 11.25 Hz at maximum power. 

 
The frequency of the maximum peak in power spectrum is calculated from the periodogram 

power spectral density estimate and the total average power and power over a frequency band 

also computed. In the frequency-domain, the total average power is computed as the sum of 

the power of all the frequency components of the mean QRS complexes. The value of power 

(pwr in Table 1) calculated as the sum of all the frequency components available in the power 

spectrum of the signal. The peak frequency and power of mean QRS complexes are tabulated 

(Peak_Freq in Table 1) for all three standard databases. 

 

Naive Bayes’ classifiers 
In probability theory, Bayes’ theorem relates the conditional and marginal probabilities of two 

random events. It is often used to compute posterior probabilities given observations.  

Let 
1 2( , ,..., )dx x x x  be a d-dimensional instance which has no class label and our goal is to 

build a classifier to predict its unknown class label based on Bayes theorem.  

Let  1 2,  , ...,   kC C C C  be the set of the class labels. P(Ck) is the prior probability of  

Ck, (k = 1, 2, ..., K) that are inferred before new evidence; ( | )kP x C  be the conditional 

probability of seeing the evidence x if the hypothesis Ck is true. A technique for constructing 

such classifiers to employ Bayes’ theorem to obtain: 

 

 

 

( | )    
( | )

( | )  

k k

k

k kk

P x C P C
P x C

P x C P C 




  (8) 
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A Naive Bayes’ classifier assumes that the value of a particular feature of a class is unrelated 

to the value of any other feature, so that: 

 

1

( | ) ( | )
d

j

k k

j

P x C P x C


   (9) 

 

Naive Bayes’ probability classifier is often useful to analyse the probability of data 

classification instead of relying on labels to reveal the class that a particular observation falls 

into. The proposed approach visualizes the classification probability of healthy, ischemic and 

arrhythmic classes using frequency domain features before subjected to LDA and decision 

tree classifier (Fig. 3).  

 

 
Fig. 3 Naive Bayes’ probability classifiers 

 

Linear discriminant analysis 
In this case, multi-class Linear Discriminant Analysis (LDA) to classify three unknown group 

of ECG signals (i.e., healthy, arrhythmic and ischemic) based on the frequency domain 

features (e.g., peak frequency and power) of QRS complex by calculating of mean, global 

mean, mean subtraction, transpose, covariance, probability, frequencies and at the end 

defining thresholds for each class on the distributed space area [16]. Duda et al. [10] described 

in the mathematical derivation of the LDA as:  

 

     1 11
ln

2

T T

i i i i id x P C x C m m C m     (10) 

 

where mi is the N length of mean vector for i
th

 class iC  is the N N  covariance matrix for the 

i
th

 class,  iP C  is the prior probability of class iC . The selected class is the one that has the 

highest value of  id x . 

 

Without any further assumptions, the resulting classifier is referred to as Quadratic 

Discriminant Analysis (QDA). The resubstitution error of LDA, which is the misclassification 

error (Fig. 4(a), adding cross marks) on the training set (observations with known class 

labels), is found to be 52.78%. Moreover the misclassification error for QDA is 50.93%.  
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Taking frequency domain QRS features of arrhythmic and healthy signals for classification, 

where, resubstitution error of LDA is found to be 37.50% and misclassification error of QDA 

is found to be 25.00%. 

 

  
a) b) 

Fig. 4 Classification of three classes using LDA:  

(a) misclassification result; (b) classification using LDA. 

 

Decision tree 
When considering classification tasks, a decision tree (T) is a tree shaped classifier which 

consists of nodes (t) and edges. Any tree originates from a node without any incoming edge, 

called root node. The terminal nodes, i.e. nodes which do not possess any out coming edges, 

are called leaves. The remaining nodes are called internal nodes. To each leaf, a class or even 

a class probability is assigned. Each of the non-leave nodes represents a split regarding the 

input space. Such split is represented by a decision (.). Most often, univariate decision,  

i.e., (.) = (x) of the from “x  threshold” or “x  set”, where x represents a single attribute, 

are considered. 

 

The decision tree can be linearized into decision rules and used for operation search and 

decision analysis. The proposed work visualizes the classification (Fig. 5) of healthy  

(i.e., FANTASIA), arrhythmia (i.e., MITDB) and ischemia (i.e., LTSTDB) subjects and prune 

tree with best level (Fig. 6) also formulated at SL: 8.59. The misclassification error is 24.07% 

for decision tree. The misclassification error for healthy and arrhythmia QRS features 

(frequency domain) during classification found to be 8.33%. The misclassification result of 

decision tree is relatively lower than that of the LDA and QDA. 

 

Conclusion 
The time domain information of detected QRS complex is transform into time-frequency 

domain with STFT. The frequency domain information, i.e., peak frequency of power 

spectrum and average power of the QRS complex are computed for each sets of data.  

The classification probability is estimated with the tabulated features for the three different 

classes, i.e., healthy, arrhythmic and ischemic. The classification performance is visualized 

and analyzed with the misclassification results for Naive Bayes’ classification, LDA, QDA 

and decision tree.  
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Fig. 5 Result of decision tree classifier Fig. 6 Best level prune tree 

 
The classification result of decision tree is found to be promising and the prune tree with best 

level shows the major classification between data sets of arrhythmia and healthy subjects.  

The misclassification error of both LDA and QDA is much lower when arrhythmic and 

healthy signals are considered for classification. The better classification results can be 

expected with large number of data sets where the future scope lies and certainly this will 

formulate new research objective with exploring new possibility in the cardiovascular disease, 

decision making and pattern recognition. 
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